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We work on a low-order finite element approximation of the vorticity, velocity and pressure formulation

of the bidimensional Stokes problem. In a previous paper, we have introduced the adequate space in

which to look for the vorticity in order to have a well-posed problem. In this paper, we deal with the

numerical approximation of this space, prove optimal convergence of the scheme and show numerical

experiments in good accordance with the theory. We remark that despite one supplementary unknown

(the vorticity), results of the scheme are much better than the ones obtained with the P
1 plus bubble−P

1

element in the velocity–pressure formulation.

Keywords: Stokes problem; vorticity–velocity–pressure formulation; mixed formulation; finite elements

method; harmonic functions; integral method.

1. Introduction

1.1 Motivation

LetΩ be an open bounded domain of R
2 with a regular boundary ∂Ω ≡ Γ . Modelling of the equilibrium

of an incompressible and viscous fluid leads to the Navier–Stokes problem (Landau & Lifchitz, 1971).

If we neglect convection terms (when the viscosity is sufficiently important or the velocity of the fluid

sufficiently small), we obtain the stationary Stokes problemwhich is (in primitive variables, i.e., velocity

u and pressure p)
{

−ν∆u + ∇p = f in Ω ,

div u = 0 in Ω ,
(1.1)

where ν is the kinematic viscosity and f is a field of given external forces. For the sake of simplicity, we

shall take ν = 1 in all the following. We will, in the sequel, consider this problem in a vorticity–velocity–

pressure setting which is well adapted to nonstandard boundary conditions (Girault, 1988 or Bramble &

Lee, 1994) and was already studied in the framework of least-square finite element methods (see, e.g.,

Bochev & Gunzburger, 1994). For obtaining such a scheme, we introduce the vorticity ω which is the



curl of the velocity, as a new unknown. Hence, the equations of the Stokes problem become











ω − curl u = 0 in Ω ,

curlω + ∇p = f in Ω ,

div u = 0 in Ω .

(1.2)

Moreover, we suppose that the velocity is zero on the boundary, which will be written here

u · n = 0 on Γ and u · t = 0 on Γ , (1.3)

where u · n and u · t stand, respectively, for the normal and the tangential components of the velocity, n

being the unit outer normal vector to the boundary Γ and t the tangent vector, chosen such that (n, t) is

direct.

Remark 1.1 The original scheme allows one to decompose the boundary Γ of the domain Ω with the

help of two independent partitions

{

Γ = Γ̄m ∪ Γ̄p with Γm ∩ Γp = ∅;
Γ = Γ̄θ ∪ Γ̄t with Γθ ∩ Γt = ∅.

(1.4)

Thus, the general boundary conditions for the Stokes problem read



















u · n = 0 on Γm,

p=Π0 on Γp,

ω= 0 on Γθ ,

u · t = σ0 on Γt.

(1.5)

In all the following, we restrict ourselves to the most favourable case (see Dubois et al., 2003b), which

is Γp = ∅ so Γm = Γ . It means that the normal velocity is zero on the whole boundary

u · n = 0 on Γ . (1.6)

Moreover, we will suppose, for convenience only, that Γθ = ∅, so Γt = Γ , and that σ0 = 0, which means

u · t = 0 on Γ . (1.7)

This scheme, introduced by Dubois (1992), extends to arbitrary triangular meshes the very reli-

able method to solve the complete Navier–Stokes equations on quadrilateral and regular meshes, the

HAWAY one (Harlow and Welch MAC scheme: Harlow & Welch, 1965; Arakawa C-grid: Arakawa,

1966; Yee staggered grids for Maxwell equations: Yee, 1966). In particular, it is now a basic method in

the Computer Graphics community to simulate realistic movements of fluids; see, e.g., Génevaux et al.

(2003). The idea of this formulation is to use exactly the same degrees of freedom as in the HAWAY

method (see Fig. 1). Note that we will have to deal with only 7 degrees of freedom and that the pressure

is discontinuous, which leads to a low-order approximation. In comparison, the lowest P
1 − P

0 approxi-

mation of the Stokes problem in primitive variables asks also for 7 degrees of freedom. But as it is well
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Fig. 1. Left panel: HAWAY discretization on a cartesian mesh. Right panel: Degrees of freedom on a triangular mesh.

known for a long time, this scheme needs stabilization because the inf–sup condition is not verified for

this element (see, for example, Girault & Raviart, 1986). Nevertheless, there is still work done on this

lowest approximation; see for an example of recent stabilization (Wang et al., 2012). Compared with it,

additional work for stability of our scheme is of the same order, but in addition, our scheme leads to an

exactly divergence-free velocity.

We have intensively studied this three-fields mixed formulation in vorticity–velocity–pressure (see

Dubois, 2002; Dubois et al., 2003a,b; Salaün & Salmon, 2007) looking for the vorticity in H1(Ω),

the velocity in H(div,Ω) and the pressure in L2(Ω), and exploring finite element discretization. As it

allows a wide range of boundary conditions, this formulation is becoming more and more interesting,

see, for example, Amara et al. (2004) for a stabilized version looking for vorticity in L2(Ω), the velocity

in H(rot, div,Ω) and the pressure in L2(Ω). We can also cite works of Bernardi and co-authors for a

spectral discretization of the formulation in the case of homogeneous Dirichlet boundary conditions

on the velocity; see, for example, Bernardi & Chorfi (2006), Amoura et al. (2007b) with extensions to

multiply connected domains and extensions to Navier–Stokes equations in Azaïez et al. (2006), Amoura

et al. (2007a).

We have proved in Dubois et al. (2003b) that a good way of obtaining a well-posed and stable

problem is to look for the vorticity in a less regular functions space, denoted by M , of square integrable

functions whose curl is in the dual space of H0(div,Ω) (see Equation (2.2)). We have also shown in

this paper that in two dimensions and in the particular case of Dirichlet boundary conditions (where

the velocity u is null on the whole boundary), this space reduces to the one previously introduced

for the stream function–vorticity formulation by Bernardi et al. (1992) of square integrable functions

whose Laplacian is in H−1(Ω)= (H1
0 (Ω))

′. From our point of view, the well-posedness of the problem

should lead to a good numerical scheme. So, we work with the well-posed vorticity–velocity–pressure

variational formulation. We propose, in the sequel, to study a natural discretization of the ‘good’ space

for the vorticity, which leads to a numerical scheme using harmonic functions to compute the vorticity

along the boundary.

Then, the scope of this work is the following. In Section 2, we recall the variational formulation

and the needed properties of the space of vorticity. Section 3 is devoted to the numerical discretization

of the scheme. In Section 4, we prove the stability and the optimal convergence of the scheme. The

last section contains numerical experiments that confirm the theory and shows that, despite its very low

order, results of our scheme are much better that the one obtained with the famous P
1 plus bubble−P

1

element in the velocity–pressure formulation (which, furthermore, asks for 11 degrees of freedom for

each triangle).



1.2 Functional spaces and notation

LetΩ be a given open bounded and simply connected domain of R
2 with a boundary Γ whose regularity

will be precised later. We refer the reader to Adams (1975) for more details on the Sobolev spaces. We

shall consider the following spaces: D(Ω) is the space of all infinitely differentiable functions from

Ω to R with compact support and L2(Ω) is the space of all classes of square integrable functions.

The subspace of L2(Ω) containing square integrable functions whose mean value is zero over Ω is

denoted by L2
0(Ω). For any integer m> 0 and any real p such that 1 6 p 6 ∞, Wm,p(Ω) is the space

of all functions v ∈ Lp(Ω) whose partial derivatives in the distribution sense, up to the total order m,

belong to Lp(Ω). We define as usualH1(Ω)=W 1,2(Ω) and H2(Ω)= W 2,2(Ω). We denote by ‖ · ‖m,p,Ω

(respectively, | · |m,p,Ω ) norms (respectively, semi-norms) in Sobolev spaces Wm,p(Ω). We make the

usual modification for p = ∞ and we agree to drop index 2 when p = 2. Space H1
0 (Ω) is the closure

of D(Ω) with respect to the norm ‖ · ‖1,Ω . In the following, (·, ·) denotes the standard inner product in

L2(Ω) and 〈·, ·〉−1,1 the duality product between H1
0 (Ω) and its topological dual space H−1(Ω). Finally,

γ shall denote the trace operator from H1(Ω) onto H1/2(Γ ), or from H2(Ω) onto H3/2(Γ ) (see Lions

& Magenes, 1968). We shall also need the dual spaces of D(Ω) denoted by D ′(Ω) and of H1/2(Γ )

(respectively, H3/2(Γ )) denoted by H−1/2(Γ ) (respectively, H−3/2(Γ )) (see again Lions & Magenes,

1968).

• For any vector field v in R
2, the divergence of v is defined by

div v =
∂v1

∂x1
+
∂v2

∂x2
.

Then,H(div,Ω) is the space of vector fields that belong to (L2(Ω))2 with divergence (in the distribution

sense) in L2(Ω). We have classically

H(div,Ω)= {v ∈ (L2(Ω))2/div v ∈ L2(Ω)}, (1.8)

which is a Hilbert space for the norm

‖ v ‖div,Ω=





2
∑

j=1

‖ vj ‖2
0,Ω + ‖ div v ‖2

0,Ω





1/2

. (1.9)

We recall that functions ofH(div,Ω) have a normal trace inH1/2(Γ ) that we will shortly denote by v · n.

• Finally, let us recall that if v is a vector field in a bidimensional domain, then curl v is the scalar field

defined by

curl v =
∂v2

∂x1
−
∂v1

∂x2
. (1.10)

In the following, we shall also use the curl of a scalar field, say ϕ, which is the bidimensional field

defined by

curlϕ =
(

∂ϕ

∂x2
,−

∂ϕ

∂x1

)t

. (1.11)



2. Continuous variational formulation

2.1 The problem to be solved

• Suppose that we are looking for the vorticity in a space M , for the velocity in a space X and for the

pressure in a space Y (these spaces will be detailed below). To obtain the variational formulation, we

multiply the first equation of (1.2) by a test function ϕ ∈M and we formally integrate by parts

(ω,ϕ)− (curl u,ϕ)= (ω,ϕ)− 〈curlϕ, u〉 − 〈u · t, γ ϕ〉Γ .

In this expression, 〈., .〉Γ stands for a boundary integral while 〈., .〉 will appear further as a duality

bracket. Then, with boundary condition (1.7), we obtain, for any ϕ,

(ω,ϕ)− 〈curlϕ, u〉 = 0 ∀ϕ ∈ M .

The second equation of (1.2) is multiplied by a field v ∈ X . As we have

(∇p, v)= −(p, div v)+ 〈p, v · n〉Γ ,

with the boundary condition (1.6), we obtain

〈curlω, v〉 − (p, div v)= (f , v) ∀v ∈ X .

Finally, the third equation of (1.2) is multiplied by q in Y and becomes

(div u, q)= 0 ∀q ∈ Y .

Then, the vorticity–velocity–pressure formulation is the following:



















Find (ω, u, p) in M × X × Y such that

(ω,ϕ)− 〈curlϕ, u〉 = 0 ∀ϕ ∈M ,

〈curlω, v〉 − (p, div v)= (f , v) ∀v ∈ X ,

(div u, q)= 0 ∀q ∈ Y .

(2.1)

• Let us now introduce the spaces M ,X and Y .

◦ For the velocity, we define the space X by

X = H0(div,Ω)= {v ∈H(div,Ω)/v · n = 0 on Γ }. (2.2)

◦ For the pressure, the space is

Y = L2
0(Ω)=

{

ϕ ∈ L2(Ω)

/
∫

Ω

ϕ dx= 0

}

. (2.3)

◦ Here, we shall define the new spaceM where we search for the vorticity as announced above. Looking

at the variational formulation (2.1), our problem is to give sense to the term 〈curlϕ, u〉 when u belongs

to H0(div,Ω). Previously (see Dubois et al., 2003a), we took ϕ in H1(Ω) and 〈curlϕ, u〉 was simply

the L2 scalar product. However, it appears to be too restrictive: It is sufficient to take curl ϕ in the dual

space of H0(div,Ω). It is the choice which is followed in Dubois et al. (2003b) where in the considered



case Γt ≡ Γ , the complete equivalence between the vorticity–velocity–pressure and the classical stream

function–vorticity formulation has been proved. Starting from this last formulation and following Ruas

(1991) and Bernardi et al. (1992), we introduce the space for the vorticity as

M = {ϕ ∈ L2(Ω)/∆ϕ ∈H−1(Ω)}, (2.4)

where H−1(Ω) is the topological dual space of H1
0 (Ω) with the associated norm

H−1(Ω) ∋ θ 7−→‖ θ ‖−1,Ω= sup
v∈H1

0 (Ω)

〈θ , v〉−1,1

‖ ∇v ‖0,Ω

. (2.5)

Consequently, the norm on M is defined by the relation

‖ ϕ ‖M= (‖ ϕ ‖2
0,Ω + ‖∆ϕ ‖2

−1,Ω)
1/2, (2.6)

and M is a Hilbert space for this norm.

• The first question that arises is why choosing ω in M gives sense to the duality bracket 〈curlϕ, v〉 for
v ∈ X . To answer this question, we need to study some properties of the space M .

2.2 Properties of the vorticity space

This section gives the main properties of the space M we shall use in the sequel. The extensive proofs

of the three following propositions can be found in Dubois et al. (2003b).

Proposition 2.1 Equivalence of norms.

◦ The Sobolev space H1(Ω) is contained in M with continuous embedding. We have ‖ϕ‖M 6 ‖ϕ‖1,Ω

for any function ϕ in H1(Ω).

◦ Moreover, if ϕ ∈ M ∩ H1
0 (Ω), its M -norm is equal to its H1

0 -norm.

Proposition 2.2 Trace in M .

LetΩ be a simply connected, open bounded domain in R
2, with a Lipschitz boundary Γ . Then, there

exists a trace operator, still denoted by γ , which is a continuous application from M in (H1/2(Γ ))′ =
H−1/2(Γ ).

• Now, let us explain the meaning of 〈curlϕ, v〉 when ϕ belongs toM and v to X = H0(div,Ω). However,

the curl of an element of M is generally not in L2(Ω). Thus, we have to check that it belongs to the dual

space X ′.

Proposition 2.3 Curl of an element of M belongs to X ′.
Let Ω be a simply connected, open bounded domain in R

2, with a Lipschitz boundary Γ . Then the

curl of any element ϕ of M belongs to the dual space X ′ = (H0(div,Ω))
′.

Proof.

◦ Let ϕ be an element of M . First, we introduce function ψ , which is the unique solution in H1
0 (Ω) of

the homogeneous Dirichlet problem

{

∆ψ =∆ϕ in Ω ,

ψ = 0 on Γ .



As usual, for such problems there exists C> 0 such that

‖ψ ‖1,Ω6 C ‖∆ϕ ‖−1,Ω . (2.7)

Second, as we have ∆(ϕ − ψ)= 0, and since we are in two dimensions, this is equivalent to curl(ϕ −
ψ)= 0. Hence, let w = curl(ϕ − ψ); it is in (H−1(Ω))2 and its curl is zero. As Ω is simply connected,

there exists a unique χ in L2
0(Ω) such that w= ∇χ , and the inf–sup condition for the divergence (see

Girault & Raviart, 1986) implies that

‖ χ ‖0,Ω 6C ‖ w ‖−1,Ω 6C(‖ curlψ ‖−1,Ω + ‖ curlϕ ‖−1,Ω). (2.8)

Now, let us observe that, for any η in L2(Ω),

‖ curl η ‖−1,Ω = sup
v∈H1

0 (Ω)

〈curl η, v〉−1,1

‖ ∇v ‖0,Ω

= sup
v∈H1

0 (Ω)

(η, curl v)

‖ ∇v ‖0,Ω

6 ‖ η ‖0,Ω .

Hence, we deduce from (2.7) and (2.8)

‖ χ ‖0,Ω 6C(‖ψ ‖0,Ω + ‖ ϕ ‖0,Ω)6C ‖ ϕ ‖M . (2.9)

◦ Hence, we have obtained the following decomposition curlϕ = curlψ + ∇χ , with ψ in H1
0 (Ω) and χ

in L2
0(Ω). Now, let us consider a function v in (D(Ω))2, which is contained in X . Then, let us calculate,

in the distribution sense, 〈curlϕ, v〉D ′(Ω),D(Ω) for any ϕ in M and v in (D(Ω))2. Using the previous

decomposition, we have

〈curlϕ, v〉D ′(Ω),D(Ω) = (curlψ , v)+ 〈∇χ , v〉D ′(Ω),D(Ω) = (curlψ , v)− (χ , div v).

Finally, using (2.7) and (2.9), we obtain (C denotes various constants)

|〈curlϕ, v〉D ′(Ω),D(Ω)| 6‖ curlψ ‖0,Ω‖ v ‖0,Ω + ‖ χ ‖0,Ω‖ div v ‖0,Ω

6C(‖∆ϕ ‖−1,Ω‖ v ‖0,Ω + ‖ ϕ ‖M‖ div v ‖0,Ω)

6C ‖ ϕ ‖M‖ v ‖div,Ω .

This inequality proves that curl ϕ defines a linear functional on (D(Ω))2, which is continuous for the

H(div,Ω)-topology. As X is the closure of (D(Ω))2 with respect to the H(div,Ω)-norm, curlϕ effec-

tively belongs to X ′ for any ϕ of H1(Ω). Let us remark that this density argument forces us to restrict

ourselves to the case Γm equal to Γ .

◦ As, in the above inequality, the continuity constant depends on the M -norm, we deduce that any

function ϕ of M has a weak curl which belongs to X ′, by density of H1(Ω) in M . Finally, the previous

inequality shows that, for any ϕ of M ,

‖ curlϕ ‖X ′= sup
v∈X

〈curlϕ, v〉
‖ v ‖div,Ω

6 C ‖ ϕ ‖M . (2.10)

�



• Let us introduce now the space of harmonic functions of L2(Ω)

H (Ω)= {ϕ ∈ L2(Ω),∆ϕ = 0 ∈ D
′(Ω)}.

We have the following decomposition of M (see Abboud et al., 2004).

Proposition 2.4 Decomposition of M .

◦ Any ϕ of M can be split as ϕ = ϕ0 + ϕ∆, with ϕ0 ∈H1
0 (Ω) and ϕ∆ ∈ H (Ω) (i.e., harmonic). We

have

M =H1
0 (Ω)⊕ H (Ω).

◦ IfΩ is convex and if ϕ belongs to H2(Ω) ∩ M = H2(Ω), then both ϕ0 and ϕ∆ belong also to H2(Ω)

and there exists a constant C> 0 such that
{

‖ϕ0‖2,Ω , 6C‖ϕ‖2,Ω ,

‖ϕ∆‖2,Ω , 6C‖ϕ‖2,Ω .

Finally, the following orthogonality property occurs.

Proposition 2.5 Orthogonality property.

LetΩ be a simply connected, open bounded domain in R
2, with a Lipschitz boundary. Then, for any

harmonic function ϕ∆ of H (Ω) and for any velocity field v of H0(div,Ω) which is divergence-free,

we have

〈curlϕ∆, v〉 = 0. (2.11)

Proof. This result is an immediate consequence of the following inequality:

|〈curlϕ, v〉| 6C(‖∆ϕ ‖−1,Ω‖ v ‖0,Ω + ‖ ϕ ‖M‖ div v ‖0,Ω),

which was obtained during the proof of Proposition 2.3. �

• In this paper, we will not deal with the hypotheses which make the continuous problem (2.1) well-

posed in the most general case: Some results were established in Dubois et al. (2003b). We will

only focus on numerical aspects of the above bidimensional case when Ω is convex with a Lipschitz

boundary.

3. Numerical discretization

Let T be a triangulation of the domainΩ . As we want to use a finite element method, we shall assume

that Ω is convex and polygonal (therefore with a Lipschitz boundary) in such a way that it is entirely

covered by the mesh T and that the needed regularity assumptions in the previous section are verified.

Moreover, we will assume that the mesh T belongs to a regular family of triangulations in the sense of

Ciarlet (1987). Finally, hT will be the maximum of the diameters of the triangles of T .

Let us now introduce finite-dimensional spaces, say MT , XT and YT , which are, respectively,

contained in M , X and Y .

3.1 Numerical discretization of the pressure and velocity spaces

The velocity is given by its fluxes through edges of the triangles, by the use of the Raviart–Thomas

finite element of degree 1, say RT0
T
, see Raviart & Thomas (1977). Then the discrete space for velocity



reads as

XT = {v ∈ RT0
T
/v · n = 0 on Γ }, (3.1)

and ifΠ
div

T
stands for the interpolation operator of any vector field v in (H1(Ω))2, the interpolation error

is given by the following theorem:

Theorem 3.1 Interpolation error for velocity, see Thomas (1980).

Let us assume that the mesh T belongs to a regular family of triangulations. Then, there exists a

strictly positive constant C, independent of hT , such that, for any v in (H1(Ω))2, we have

‖ v −Π
div

T
v ‖0,Ω 6 ChT ‖ v ‖1,Ω .

• For pressure interpolation, the space P0
T

of piecewise constants is chosen. Then, we set

YT =
{

q ∈ P0
T

/∫

Ω

q dx = 0

}

. (3.2)

If we introduce the L2 projection operator on YT , denoted by Π0
T
, we recall the following result (see,

e.g., Girault & Raviart, 1986):

Theorem 3.2 Interpolation error for pressure.

Let us assume that the mesh T belongs to a regular family of triangulations. There exists a strictly

positive constant C, independent of hT , such that, for any q ∈ H1(Ω), we have

‖ q −Π0
T
q ‖0,Ω 6ChT |q|1,Ω .

• To conclude this section, let us recall the following basic property (see Brezzi & Fortin, 1991):

Proposition 3.3 For any v in (H1(Ω))2 and for any q in YT , we have

∫

Ω

q div(Π
div

T
v − v) dx = 0.

3.2 Numerical discretization of the vorticity space

Starting from the decomposition ofM given in Proposition 2.4, we begin by the discretization ofH (Ω).

We recall that Ω being polygonal allows us to entirely cover it with a mesh T . We introduce the

trace of mesh T on the boundary Γ . This is a set A (T ,Γ ) of edges of triangles of the mesh which are

contained in Γ . If Na(T ,Γ ) is the number of these edges, we label them Γi, 1 6 i6Na(T ,Γ ). As Γ is

closed, Na(T ,Γ ) is also equal to the number of vertices of the mesh T on the boundary Γ . Then, we

define the vector space CT generated by the characteristic functions of the edges Γi ∈ A (T ,Γ ) of Γ

CT = Span{qi = 1Γi
/Γi ∈ A (T ,Γ ), 1 6 i6Na(T ,Γ )}, (3.3)

where 1Γi
is the function from Γ to R defined by

1Γi
(x)=

{

1 if x ∈ Γi,

0 if x 6∈ Γi.



The dimension of CT is clearly equal to Na(T ,Γ ). Then, we denote by S the ‘single layer’ operator

applied to functions of CT , defined by

S :CT ∋ qi 7−→ ϕi ∈ HT , I , 16 i6Na(T ,Γ ),

where

ϕi(x)= S qi(x)=
∫

Γ

G(x, y) qi(y) dγy ∀x ∈ Ω̄ ,

and G(x, y)= (1/2π) log |x − y| is the Green kernel. Moreover, HT , I is the discrete space spanned by

functions ϕi = S qi for any qi ∈ CT , 1 6 i6 Na(T ,Γ ). This space is finite-dimensional and, clearly,

its dimension is equal to the dimension of CT . By construction, functions of HT , I are harmonic. We

shall denote by S = γS the operator S on the boundary. Finally, for any x on the boundary Γ and for

any i, 1 6 i6Na(T ,Γ ), we introduce

γ ϕi(x)= Sqi(x)=
∫

Γi

G(x, y) dγy.

It is important to remark that our discretization will be conforming as HT , I is contained in H (Ω)⊂M ,

and that the boundary traces of functions in HT , I are in H−1/2(Γ ) (see Proposition 2.2).

• Now, we introduce the space H1
T

of continuous functions defined on Ω̄ , polynomial of degree 6 1 in

each triangle of T and H1
0,T = H1

T
∩ H1

0 (Ω). Then, for the discretization of M , we set

MT =H1
0,T ⊕ HT , I . (3.4)

More precisely, let us introduce the projection operator on CT by the following definition.

Definition 3.4 The L2-projection on the space of piecewise constants CT is

pC : L2(Γ )−→ CT ,

ρ 7−→ pCρ such that

∫

Γ

(pCρ − ρ)q dγ = 0 ∀q ∈ CT .

Then, ifΠ1
T

:H2(Ω)−→ H1
T

is the classical Lagrange interpolation operator associated with mesh

T , using the previous results and the above-mentioned decomposition of M (see Proposition 2.4), we

set the following definition.

Definition 3.5 Interpolation operators for the vorticity.

◦ The interpolation operator for a harmonic function ϕ∆ is defined by

φT :H (Ω) ∩ H2(Ω)−→ HT , I ,

where

φT ϕ∆(x)= S pC (γ ϕ
∆)(x)=

∫

Γ

G(x, y)pC (γ ϕ
∆)(y) dγy ∀x ∈ Ω̄ .



◦ The interpolation operator for a vorticity field ϕ is associated with the decomposition ϕ = ϕ0 + ϕ∆, by

PT :M ∩ H2(Ω)−→ MT = H1
0,T ⊕ HT , I ,

where

PT ϕ =Π1
T
ϕ0 + φT ϕ∆.

Remark 3.6 Assuming that the function ϕ∆ is in H (Ω) ∩ H2(Ω) allows us to define the projection of

its trace pC (γ ϕ
∆).

To conclude, let us observe that MT has exactly the same dimension as H1
T
. But, on the boundary,

the classical piecewise linear continuous functions are replaced by harmonic functions.

3.3 Interpolation error for the vorticity

Let us begin with the following important result, whose proof can be found, e.g., in Nédélec (1977) or

Dautray & Lions (1985).

Theorem 3.7 The operator S is an isomorphism from the Sobolev space H s(Γ ) onto H s+1(Γ ) for any

real number s.

Then, let us mention an important property of the ‘single layer’ operator S . If we define the fol-

lowing subspace of H−3/2(Γ ),

◦H
−3/2(Γ )= {µ ∈ H−3/2(Γ )/〈µ, 1〉−3/2,3/2 = 0},

we have the following result (see Abboud et al., 2004).

Proposition 3.8 For any q ∈ ◦H
−3/2(Γ ), if the harmonic function S q of L2(Ω) is defined by

S q(x)=
∫

Γ

G(x, y)q(y) dγy ∀x ∈ Ω̄ ,

there exists a strictly positive constant C such that, for any q ∈ ◦H
−3/2(Γ ),

‖S q‖0,Ω 6C‖q‖−3/2,Γ . (3.5)

• Now, let us come back to the L2-projection operator pC on the space of piecewise constants CT

(see (3.3)). If hT is the maximum diameter of triangles in T , the standard interpolation error (Ciarlet,

1987) gives, for any ρ in H1(Γ ),

‖ρ − pCρ‖0,Γ 6ChT |ρ|1,Γ . (3.6)

Then, using the classical result of interpolation between Sobolev spaces (Lions & Magenes, 1968), we

obtain the following inequality for any ρ ∈H1/2(Γ ):

‖ρ − pCρ‖0,Γ 6Ch
1/2
T

‖ρ‖1/2,Γ . (3.7)



Owing to this result, we obtain the two following propositions, already proved in Abboud et al. (2004),

but written again for completeness of the study:

Proposition 3.9

◦ For any ρ ∈ H1/2(Γ ), we have

‖ρ − pCρ‖−3/2,Γ 6 Ch
3/2
T

‖ρ‖1/2,Γ . (3.8)

◦ For any ρ ∈ H1(Γ ), we have

‖ρ − pCρ‖−3/2,Γ 6Ch2
T

‖ρ‖1,Γ . (3.9)

Proof.

◦ By definition of the norm in H−3/2(Γ ), we have

‖ρ − pCρ‖−3/2,Γ = sup
η∈H3/2(Γ )

〈ρ − pCρ, η〉−3/2,3/2

‖η‖3/2,Γ

.

In the two cases, as ρ and η belong also to L2(Γ ), the duality product can be rewritten as

〈ρ − pCρ, η〉−3/2,3/2 =
∫

Γ

(ρ − pCρ)η dγ .

By definition,
∫

Γ
(ρ − pCρ)χ dγ = 0 for any χ ∈ CT , thus

〈ρ − pCρ, η〉−3/2,3/2 =
∫

Γ

(ρ − pCρ)(η − χ) dγ 6 ‖ρ − pCρ‖0,Γ ‖η − χ‖0,Γ .

This result being true for any χ ∈ CT , we can choose χ = pC η. Then, using (3.6), we obtain

〈ρ − pCρ, η〉−3/2,3/2 6 ‖ρ − pCρ‖0,ΓChT ‖η‖1,Γ 6ChT ‖ρ − pCρ‖0,Γ ‖η‖3/2,Γ ,

which leads to

‖ρ − pCρ‖−3/2,Γ 6 ChT ‖ρ − pCρ‖0,Γ . (3.10)

◦ Hence, if ρ belongs to H1/2(Γ ), inequality (3.8) is a direct consequence of (3.10) and (3.7). And when

ρ belongs to H1(Γ ), (3.9) results from (3.10) and (3.6). �

We can now state the main result of this section.

Theorem 3.10 Error estimates.

We suppose that the mesh T belongs to a regular family of triangulations. Let ϕ be a given element

of M decomposed into ϕ0 and ϕ∆. We assume ϕ ∈ H2(Ω) and ϕ0 ∈ H2(Ω) ∩ H1
0 (Ω). Then there exists



some strictly positive constants, say C, only depending on the mesh family, such that

‖ϕ0 −Π1
T
ϕ0‖M 6ChT |ϕ0|2,Ω , (3.11)

‖ϕ∆ − φT ϕ∆‖M 6Ch
3/2
T

‖ϕ‖2,Ω . (3.12)

Moreover, if ϕ belongs to H5/2(Ω), we have

‖ϕ∆ − φT ϕ∆‖M 6Ch2
T

‖ϕ‖5/2,Ω . (3.13)

Proof.

◦ As H2(Ω) is a subset of C 0(Ω) when Ω is two-dimensional, we can use the classical interpolation

operator and we have the following interpolation error estimate (Ciarlet, 1987):

‖ϕ0 −Π1
T
ϕ0‖1,Ω 6ChT |ϕ0|2,Ω .

But ‖ϕ0 −Π1
T
ϕ0‖M = ‖ϕ0 −ΠT ϕ0‖1,Ω because ϕ0 −Π1

T
ϕ0 belongs toH1

0 (Ω) (see Proposition 2.1),

finally, relation (3.11) is established.

◦ We now interpolate the harmonic part ϕ∆ of ϕ. By definition, ϕ∆ verifies

{

∆ϕ∆ = 0 in Ω ,

γ ϕ∆ = γ ϕ on Γ .

As ϕ is assumed to be in H2(Ω), its trace γ ϕ belongs to H3/2(Γ ). As S is an isomorphism from H s(Γ )

onto H s+1(Γ ) (see Theorem 3.7), there exists a unique q in H1/2(Γ ) such that Sq = γS q= γ ϕ on Γ .

And because of uniqueness, S q = ϕ∆ on Ω . Let us set now qT = pC q in CT . We recall that φT ϕ∆ is

given by

φT ϕ∆(x)= S qT (x)=
∫

Γ

G(x, y)qT (y) dγy ∀x ∈ Ω̄ .

As these functions are harmonic, we obtain

‖ϕ∆ − φT ϕ∆‖M = ‖ϕ∆ − φT ϕ∆‖0,Ω = ‖S q − S qT ‖0,Ω .

As constants belong to CT ,
∫

Γ
(q − qT ) dγ = 0, which means q − qT belongs to ◦H

−3/2(Γ ). Hence,

Proposition 3.8 gives

‖S q − S qT ‖0,Ω 6 C‖q − qT ‖−3/2,Γ .

Then, inequality (3.8) leads to

‖q − qT ‖−3/2,Γ = ‖q − pC q‖−3/2,Γ 6Ch
3/2
T

‖q‖1/2,Γ ,

and, finally,

‖ϕ∆ − φT ϕ∆‖M 6Ch
3/2
T

‖q‖1/2,Γ = Ch
3/2
T

‖S−1(ϕ)‖1/2,Γ 6 Ch
3/2
T

‖γ ϕ‖3/2,Γ

because S is an isomorphism. Then, the continuity of the trace operator leads to the announced result.

◦ Finally, noting that if ϕ is assumed to be in H5/2(Ω), its trace γ ϕ belongs to H2(Γ ). Therefore, there

exists a unique q in H1(Γ ) such that Sq = γS q = γ ϕ on Γ . The same arguments as above lead to the



inequality

‖S q − S qT ‖0,Ω 6C‖q − qT ‖−3/2,Γ .

Then, from formula (3.9), we have

‖q − qT ‖−3/2,Γ = ‖q − pC q‖−3/2,Γ 6 Ch2
T

‖q‖1,Γ .

Finally, (3.13) is obtained from the previous inequality by using exactly the same arguments (S is an

isomorphism and trace continuity) as for (3.12). �

4. Stability and convergence results

For the sake of simplicity, in what follows, we will denote (curlϕ, v) for the duality product between X ′

and X .

4.1 Discrete inf–sup conditions

As we work with a three-fields formulation, the analysis of this mixed problem leads to two inf–sup

conditions (see Ladyzhenskaya & Ural’tseva, 1968; Babuška, 1971; Brezzi, 1974): A first classical

one between pressure and velocity and a second one between vorticity and velocity. First, we give

the discrete inf–sup condition between velocity and pressure, whose proof can be found in Raviart &

Thomas (1977).

Proposition 4.1 Inf–sup condition on velocity and pressure.

Let us assume that Ω is polygonal and bounded, and that the mesh T belongs to a regular family

of triangulations. Then, there exists a strictly positive constant a, independent of hT , such that

inf
qT ∈YT

sup
vT ∈XT

(qT , div vT )

‖ vT ‖div,Ω‖ qT ‖0,Ω

> a. (4.1)

• Let us now express the link between vorticity and velocity. In a first step, we have to define the discrete

kernel of the divergence operator. We set

VT = {v ∈ XT /(div v, q)= 0, for all q ∈ YT }.

Then, this space is characterized by (see Dubois et al., 2003a)

VT = {v ∈ XT /div v = 0 in Ω}. (4.2)

Moreover, the following link occurs between velocity and vorticity (see Dubois et al., 2003a).

Lemma 4.2 Let us assume that Ω is simply connected. For any vector field v of RT0
T
, divergence-free,

such that v · n = 0 on Γ , there exists a scalar field ϕ in H1
T

such that γ ϕ = 0 on Γ and v= curlϕ in Ω .

Conversely, for any scalar field ϕ in H1
T

such that γ ϕ = 0 on Γ , v = curlϕ is a divergence-free vector

field of RT0
T

such that v · n = 0 on Γ .

This lemma leads naturally to the following result.



Proposition 4.3 Inf–sup condition on vorticity and velocity. Let us assume that Ω is a polygonal

convex domain. Then, there exists a strictly positive constant b, independent of hT , such that

inf
vT ∈VT

sup
ϕT ∈MT

(vT , curlϕT )

‖ vT ‖div,Ω‖ ϕT ‖M

> b. (4.3)

Proof.

◦ The convexity of the domain allows us to write (vT , curlϕT ) for vT ∈ VT and ϕT ∈ MT .

◦ Let vT be an arbitrary element of VT . Then, due to Lemma 4.2, we know that there exists a scalar

field ϕ0 in H1
T

such that γ ϕ0 = 0 on Γ and vT = curlϕ0 on Ω . Then ϕ0 belongs to H1
0,T and then to

MT , and ‖ϕ0‖M = ‖ϕ0‖1,Ω ; see Proposition 2.1. Thus,

sup
ϕT ∈MT

(vT , curlϕT )

‖ ϕT ‖M

>
(vT , curlϕ0)

‖ ϕ0 ‖M

=
‖ vT ‖2

0,Ω

‖ ϕ0 ‖1,Ω

.

Let us observe that, as vT is divergence-free, we have ‖ vT ‖2
0,Ω=‖ vT ‖2

div,Ω . Moreover, using the

Poincaré inequality, there exists a strictly positive constant C, independent of hT , such that

‖ ϕ0 ‖1,Ω 6 C ‖ ∇ϕ0 ‖0,Ω = C ‖ curlϕ0 ‖0,Ω =C ‖ vT ‖0,Ω .

These results lead to the expected inequality with b = 1/C. �

Remark 4.4 Both inf–sup conditions are very classical because of the boundary condition con-

sidered: u is null on the whole boundary Γ . We can prove, for example, an inf–sup condition on

velocity and pressure with the velocity null only on a part of the boundary or an inf–sup condition

on vorticity and velocity with Dirichlet boundary conditions for the vorticity and the velocity on the

same part of the boundary (see Dubois et al., 2003a).

4.2 Well-posedness of the discrete problem

In order to use the previous results, let us recall that we must assume that Ω is a convex domain with

a Lipschitz boundary. In the frame of a finite element discretization, it leads naturally to the following

hypotheses on Ω , stated in the next result.

Proposition 4.5 We assume that Ω is a polygonal convex domain and that the mesh T belongs to a

regular family of triangulations.

Then, the discrete problem which consists in finding (ωT , uT , pT ) in MT × XT × YT such that











(ωT ,ϕT )− (curlϕT , uT )= 0 ∀ϕT ∈ MT ,

(curlωT , vT )− (pT , div vT )= (f , vT ) ∀vT ∈ XT ,

(div uT , qT )= 0 ∀qT ∈ YT

(4.4)

has a unique solution.

Proof. First, let us observe that the hypotheses are such that the two inf–sup conditions (4.1) and (4.3)

are true. Secondly, as we consider a finite-dimensional square linear system, the only point to prove

is that the solution associated with f equal to zero, is zero. For this, in the above system, we choose



ϕT =ωT , vT = uT and qT = pT , and we add the three equations. We obtain

(ωT ,ωT )= 0,

which implies ωT = 0. Then, the second equation becomes

(pT , div vT )= 0 ∀vT ∈ XT .

Then, inf–sup condition (4.1) leads to pT = 0. Finally, the third equation shows that uT belongs to VT ,

and the first one becomes

(curlϕT , uT )= 0 ∀ϕT ∈MT ,

as ωT = 0. Finally, uT is zero owing to inf–sup condition (4.3). �

4.3 Stability of the discrete problem

We can now study the stability of the discrete problem. Let (ω, u, p) be the solution in M × X × Y of

the continuous problem










(ω,ϕ)− (curlϕ, u)= 0 ∀ϕ ∈M ,

(curlω, v)− (p, div v)= (f , v) ∀v ∈ X ,

(div u, q)= 0 ∀q ∈ Y ,

and (ωT , uT , pT ) in MT × XT × YT be the solution of the discrete problem (4.4). As discrete spaces

MT , XT and YT are, respectively, contained in the continuous ones M , X and Y , we can take ϕ = ϕT ,

v = vT and q = qT in the continuous problem. Then, subtracting each corresponding equation in the

two systems, and setting

◦ f =ω − PT ω, which belongs to L2(Ω),

◦ g = −u +Π
div

T
u, which belongs to X and is divergence-free (Proposition 3.3),

◦ k = curl (ω − PT ω), which is in the dual space X ′,

◦ l = −p +Π0
T
p, which is in L2(Ω),

the following auxiliary problem appears:



















Find (θT ,wT , rT ) in MT × XT × YT such that

(θT ,ϕT )− (curlϕT ,wT )= (f ,ϕT )+ (curlϕT , g) ∀ϕT ∈ MT ,

(curl θT , vT )− (rT , div vT )= (k, vT )+ (l, div vT ) ∀vT ∈ XT ,

(divwT , qT )= 0 ∀qT ∈ YT .

(4.5)

• Now, we can prove a stability result, which is the key point that fails when looking for the vorticity

in H1(Ω).

Proposition 4.6 Stability of the discrete variational formulation.

Let us assume thatΩ is a convex polygonal domain and that the mesh T belongs to a regular family

of triangulations. Then, the problem (4.5) is well-posed and there exists a strictly positive constant C,



independent of the mesh, such that

‖ θT ‖M + ‖wT ‖div,Ω + ‖ rT ‖0,Ω 6C(‖ f ‖0,Ω + ‖ g ‖0,Ω + ‖ k ‖X ′ + ‖ l ‖0,Ω).

Proof.

◦ We observe that the hypotheses are such that the two inf–sup conditions (4.1) and (4.3) are true.

Then, exactly as in Proposition 4.5, the problem (4.5) is well-posed. Moreover, we remark that the third

equation of (4.5) shows that wT is divergence-free (see Proposition 4.2). Then, we have

‖wT ‖X=‖ wT ‖div,Ω=‖ wT ‖0,Ω .

Moreover, we recall that the M -norm is defined by

‖ ϕ ‖M= (‖ ϕ ‖2
0,Ω + ‖∆ϕ ‖2

−1,Ω)
1/2.

Then, using the decomposition of M (see Proposition 2.4), any ϕ of M can be split as ϕ = ϕ0 + ϕ∆,

with ϕ0 ∈ H1
0 (Ω) and ϕ

∆ harmonic. Hence,

‖ ϕ ‖M= (‖ ϕ ‖2
0,Ω + ‖∆ϕ0 ‖2

−1,Ω)
1/2,

with ‖∆ϕ0 ‖−1,Ω=‖ ∇ϕ0 ‖0,Ω (see Proposition 2.1), and, as a bidimensional problem is considered, we

finally obtain

‖ ϕ ‖M= (‖ ϕ ‖2
0,Ω + ‖ curlϕ0 ‖2

0,Ω)
1/2. (4.6)

The proof of the inequality is given in six steps, in which C will denote various constants, independent

of the mesh.

◦ First step. We take ϕT = θT , vT = wT and qT = rT in (4.5). As wT is divergence-free, after

adding the three equations, we obtain

‖ θT ‖2
0,Ω = (f , θT )+ (curl θT , g)+ (k,wT )

6 ‖ f ‖0,Ω‖ θT ‖0,Ω + |(curl θT , g)| + ‖ k ‖X ′‖wT ‖0,Ω .

Then, using the classical inequality αβ 6 1
2
(α2 + β2), we deduce

‖ θT ‖2
0,Ω6‖ f ‖2

0,Ω +2|(curl θT , g)| + 2 ‖ k ‖X ′‖ wT ‖0,Ω . (4.7)

◦ Second step. We apply the inf–sup condition (4.3) to wT , which is divergence-free, in the first

equation of (4.5). We deduce

b ‖wT ‖div,Ω 6 sup
ϕ∈MT

(curlϕ,wT )

‖ ϕ ‖M

6 sup
ϕ∈MT

(θT ,ϕ)− (f ,ϕ)− (curlϕ, g)

‖ ϕ ‖M

.

Using |(curlϕ, g)| 6 ‖ curlϕ ‖X ′‖ g ‖X , the fact that g is divergence-free and (2.10), we obtain

b ‖ wT ‖div,Ω 6‖ θT ‖0,Ω + ‖ f ‖0,Ω +C ‖ g ‖0,Ω . (4.8)

◦ Third step. Let us recall that the discrete vorticity field θT can also be split in θT = θ0
T

+ θ∆
T
, with

θ0
T

in H1
0,T and θ∆

T
harmonic (see (3.4)). Moreover, Proposition 4.2 shows that vT ≡ curl θ0

T
belongs

to RT0
T
, is divergence-free and such that vT · n = 0 on Γ . Then, vT belongs to XT and, introducing



this velocity field in the second equation of (4.5), we obtain

(curl θT , vT )= (k, vT ),

as it is divergence-free. Moreover, we have

(curl θT , vT )= (curl θ0
T
, vT )+ (curl θ∆

T
, vT )= (curl θ0

T
, vT )

as harmonic functions and divergence-free ones are orthogonal (see (2.11)). Finally, replacing vT by its

value, we obtain ‖ curl θ0
T

‖2
0,Ω= (k, curl θ0

T
), which obviously leads to

‖ curl θ0
T

‖0,Ω 6 ‖ k ‖X ′ . (4.9)

◦ Fourth step. Let us go back to the term |(curl θT , g)|. Using again the splitting of θT and (2.11) as g

is also divergence-free, we obtain

(curl θT , g)= (curl θ0
T
, g)+ (curl θ∆

T
, g)= (curl θ0

T
, g).

Hence, we deduce that

|(curl θT , g)| 6 ‖ curl θ0
T

‖0,Ω‖ g ‖0,Ω . (4.10)

◦ Fifth step. Inequalities (4.7), (4.9) and (4.10) lead to

‖ θT ‖2
0,Ω 6 ‖ f ‖2

0,Ω + 2 ‖ g ‖0,Ω‖ k ‖X ′ + 2 ‖ k ‖X ′‖wT ‖0,Ω ,

or else, using again αβ 6 1
2
(α2 + β2), we obtain

‖ θT ‖2
0,Ω 6 ‖ f ‖2

0,Ω + ‖ g ‖2
0,Ω + ‖ k ‖2

X ′ + 2 ‖ k ‖X ′‖ wT ‖0,Ω .

Finally, introducing (4.8) in the above inequality, we have

‖ θT ‖2
0,Ω 6 ‖ f ‖2

0,Ω + ‖ g ‖2
0,Ω + ‖ k ‖2

X ′ +
2

b
‖ k ‖X ′ (‖ θT ‖0,Ω + ‖ f ‖0,Ω +C ‖ g ‖0,Ω)

6C(‖ f ‖2
0,Ω + ‖ g ‖2

0,Ω + ‖ k ‖2
X ′)+

2

b
‖ k ‖X ′‖ θT ‖0,Ω ,

where C is a constant equal to 1 + (2/b)max(C, 1). Now, we use the classical inequality 2αβ 6 α2/ε +
εβ2, true for any strictly positive real number ε, to obtain

‖ θT ‖2
0,Ω 6C(‖ f ‖2

0,Ω + ‖ g ‖2
0,Ω + ‖ k ‖2

X ′)+
1

bε
‖ k ‖2

X ′ +
ε

b
‖ θT ‖2

0,Ω .

Taking ε6 b/2, we finally obtain

‖ θT ‖2
0,Ω 6C(‖ f ‖2

0,Ω + ‖ g ‖2
0,Ω + ‖ k ‖2

X ′). (4.11)

The inequalities (4.6), (4.9) and (4.11) lead to

‖ θT ‖2
M 6C(‖ f ‖2

0,Ω + ‖ g ‖2
0,Ω + ‖ k ‖2

X ′),



and then

‖ θT ‖M 6 C(‖ f ‖0,Ω + ‖ g ‖0,Ω + ‖ k ‖X ′). (4.12)

Finally, introducing (4.12) in (4.8) gives

‖ wT ‖div,Ω 6C(‖ f ‖0,Ω + ‖ g ‖0,Ω + ‖ k ‖X ′). (4.13)

◦ Sixth step. We use the inf–sup condition (4.1) in the second equation of (4.5) and obtain

a ‖ rT ‖0,Ω 6 sup
v∈XT

(div v, rT )

‖ v ‖div,Ω

6 sup
v∈XT

(curl θT , v)− (l, div v)− (k, v)

‖ v ‖div,Ω

.

As XT is a subspace of X , it is obvious that this inequality leads to

a ‖ rT ‖0,Ω 6 sup
v∈X

(curl θT , v)− (l, div v)− (k, v)

‖ v ‖div,Ω

.

Then, the norm in X being the norm in H(div,Ω), we finally have

a ‖ rT ‖0,Ω 6‖ curl θT ‖X ′ + ‖ l ‖0,Ω + ‖ k ‖X ′ . (4.14)

Let us recall that ‖ curl θT ‖X ′6C ‖ θT ‖M because θT belongs to M (see (2.10)). Then, the final

inequality, given in the proposition, is a direct consequence of (4.12–4.14). �

4.4 Convergence of the discrete problem

We can now state the convergence result associated with our numerical scheme.

Theorem 4.7 Convergence of the discrete variational formulation.

Let us assume thatΩ is a polygonal convex domain, that the mesh T belongs to a regular family of

triangulations and that hT is small enough. Let (ω, u, p) be the solution inM × X × Y of the continuous

problem (2.1) and (ωT , uT , pT ) in MT × XT × YT be the solution of the discrete problem (4.4). We

suppose that the solution is such that u ∈ (H1(Ω))2, with div u ∈H1(Ω), p ∈H1(Ω) and ω ∈ H2(Ω).

Then, there exists a strictly positive constant C, independent of the mesh, such that

‖ω − ωT ‖M + ‖ u − uT ‖div,Ω + ‖ p − pT ‖0,Ω

6ChT (‖ω ‖2,Ω + ‖ u ‖1,Ω + ‖ div u ‖1,Ω + ‖ p ‖1,Ω).

Proof. First, let us recall the basic inequalities

‖ω − ωT ‖M 6 ‖ω − PT ω ‖M + ‖ PT ω − ωT ‖M ,

‖ u − uT ‖div,Ω 6 ‖u −Π
div

T
u ‖div,Ω + ‖Π div

T
u − uT ‖div,Ω ,

‖ p − pT ‖0,Ω 6 ‖p −Π0
T
p ‖0,Ω + ‖Π0

T
p − pT ‖0,Ω .

(4.15)

In these relations, the first terms are well known: They are the classical interpolation errors. And the

second terms are precisely the solutions of the auxiliary problem (4.5), where we have

θT =ωT − PT ω, wT = uT −Π
div

T
u, rT = pT −Π0

T
p.



Then, Proposition 4.6 ensures that there exists a strictly positive constant C, independent of the mesh,

such that

‖ωT − PT ω ‖M + ‖ uT −Π
div

T
u ‖div,Ω + ‖ pT −Π0

T
p ‖0,Ω

6C(‖ f ‖0,Ω + ‖ g ‖0,Ω + ‖ k ‖X ′ + ‖ l ‖0,Ω),

where we have set f =ω − PT ω, g = −u +Π
div

T
u, k = curl (ω −Π1

T
ω) and l = −p +Π0

T
p. Then,

the above inequality and (4.15) lead to

‖ω − ωT ‖M + ‖ u − uT ‖div,Ω + ‖ p − pT ‖0,Ω

6 C(‖ω − PT ω ‖M + ‖ u −Π
div

T
u ‖div,Ω + ‖ p −Π0

T
p ‖0,Ω)

6 C(‖ω0 −Π1
T
ω0 ‖M + ‖ω∆ − φT ω∆ ‖M

+ ‖ u −Π
div

T
u ‖div,Ω + ‖ p −Π0

T
p ‖0,Ω),

where C is another constant independent of the mesh size. Finally, using the interpolation errors recalled

in Theorems 3.1, 3.2, 3.10 and Proposition 2.4, we obtain the announced result, as far as hT is small

enough to overestimate h
3/2
T

by hT . �

• Let us make one comment on this result. If ω belongs to H5/2(Ω), we have seen in

Proposition 3.10 that

‖ω∆ − ω∆
T

‖0,Ω 6Ch2
T

‖ω‖5/2,Ω .

As Ω is also assumed to be convex and always under the assumptions of the previous theorem, using

the classical Aubin–Nitsche argument, which says that the regularity on the adjoint problem is obtained

(Aubin, 1967; Nitsche, 1968), we can expect that

‖ω − ωT ‖0,Ω6Ch2
T

‖ω ‖5/2,Ω . (4.16)

5. Numerical experiments

The first numerical experiments have been performed on a unit square with an analytical solution (test of

Bercovier & Engelman, 1979). The velocity is zero on the whole boundary Γ and there is no boundary

condition on the pressure and the vorticity. The external force field is given by

f1(x, y)= g(x, y)+ (y − 1
2
), f2(x, y)= −g(y, x)+ (x − 1

2
),

with

g(x, y)= 256(x2(x − 1)2(12y − 6)+ y(y − 1)(2y − 1)(12x2 − 12x + 2))

for which we obtain

ω(x, y)= 256(y2(y − 1)2(6x2 − 6x + 1)+ x2(x − 1)2(6y2 − 6y + 1)),

u1(x, y)= −256x2(x − 1)2y(y − 1)(2y − 1),

u2(x, y)= 256y2(y − 1)2x(x − 1)(2x − 1),

p(x, y)= (x − 1
2
)(y − 1

2
).



Fig. 2. Two unstructured meshes obtained by EMC2.

• For the second numerical experiments, we have considered circular domains. They have been per-

formed on a circle of radius 2 with an analytical solution (test suggested by Ruas, 1997). The boundary

conditions are exactly the same as in the previous case. The external force field is given by

f1(x, y)= −32y, f2(x, y)= 32x,

which gives

ω(x, y)= 32 − 16x2 − 16y2,

u1(x, y)= −4y(4 − x2 − y2),

u2(x, y)= 4x(4 − x2 − y2),

and the pressure p is constant (equal to 1) on the whole domain.

Remark 5.1

• For error estimates on the circle, let us note that we should add a boundary approximation error.

However, the boundary is approximated by continuous polynomials of degree 1. Nevertheless, the

forthcoming results show that this error does not pollute the numerical scheme.

• All the integrals for assembling the mass matrix in the first equation of (4.4) were computed with

the help of a Gauss formula using 13 quadrature points, and we obtain results in accordance with

the theory. Although errors due to numerical integration were not studied here, they seem to be

dominated by other errors and again do not pollute results.

• In these two cases, we have worked with unstructured meshes obtained with EMC2, mesh generator

of Modulef (Bernadou et al., 1988); see Fig. 2.

For the first test, the analytical vorticity attains its extremum on the middle of each edge of the square

and its value is then +16.00. And, for the second one, the extremum (−32) is attained on the whole

boundary. We recall that the method introduced in Dubois et al. (2003a) uses piecewise linear functions

to approximate the vorticity on the whole domain. On structured meshes with regular functions, we

have optimal convergence for the three fields in L2-norm: O(h2) for the vorticity, O(h) for velocity and

pressure, where h stands for the mesh size parameter (we think that this is due to superconvergence



Fig. 3. Convergence curves without harmonic functions—Bercovier–Engelman’s test.

Fig. 4. Convergence curves without harmonic functions—Test proposed by Ruas.

properties on regular meshes; see Girault & Raviart, 1986). But on unstructured meshes, results were

really not satisfactory: Vorticity and pressure fields are not well approximated. In particular, on tests

introduced above, for which an analytical solution is known, we observe that values of vorticity and

pressure are far from the expected ones along the boundary, even if the mesh is refined. Moreover, the

order of convergence for all these fields, except the velocity, is more or less O(
√
h), as numerically

illustrated in Figs 3 and 4. The theoretical study of convergence shows that the problem is a stability

one: The curl of the vorticity, which appears in the formulation, is not bounded except if we suppose

that the velocity and the vorticity are given on the same part of the boundary (Γθ = Γm).

Remark 5.2 However, in the very particular case of Γθ = Γm, an optimal rate of convergence is

achieved, even on unstructured meshes (see Dubois et al., 2003a). Nevertheless, this condition is clearly

too restrictive.

The new numerical scheme replaces piecewise linear functions on the boundary by harmonic func-

tions obtained by a ‘single layer’ potential. The number of harmonic functions is equal to the number

of vertices on the boundary. Figure 5 gives the values of the vorticity along the boundary obtained in

Dubois et al. (2003a) without harmonic functions and by the new method on the same mesh. In fact, in
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Fig. 5. Comparison: vorticity along the boundary—Bercovier–Engelman’s test.

Dubois et al. (2003a) extrema of the vorticity exploded on the boundary when the mesh is not regular

(see Fig. 5). Moreover, for both tests, the exact solution is very regular and the domain is convex. Then,

it is not surprising to obtain, as expected by theorem 4.7 and (4.16), a convergence of order 2 for the

L2-norm of the vorticity (see Figs 6 and 7).

With regard to the pressure, in Dubois et al. (2003a), the error remains at a too important level: More

than 200% in relative error for the quadratic norm (see Figs 3 and 4). For instance, the pressure varies

between −7.67 and 6.44 instead of −0.25 and 0.25 in the Bercovier–Engelman case, and between

−17.56 to 12.83 instead of the constant value in the Ruas test. With the new scheme, results are as

expected for the pressure. We also observe that the rate of convergence for the pressure goes from

approximatively O(
√
hT ) (Dubois et al., 2003a) to O(hT ) with the new scheme (see Figs 6 and 7), as

expected by Theorem 4.7.

Let us conclude with a comparison between the vorticity–velocity–pressure formulation and the

classical formulation in velocity–pressure using P
1 plus bubble−P

1 element. This element is the well-

known lowest one verifying the inf–sup condition, and it asks for 11 degrees of freedom (4 for each

component of the velocity and 3 for the pressure which is continuous). Figure 8, obtained by the free

software FreeFem++1, shows that, for Bercovier–Engelman test, result on the pressure is far from the

expected one, even if theoretical convergence results prove that error will converge to zero. In Fig. 9, we

can see that the result of the vorticity–velocity–pressure scheme, asking for only 7 degrees of freedom

(3 for the vorticity, 3 for the velocity and 1 for the pressure, which is discontinuous), is much better and

very close to the analytical solution, presented in Fig. 8.

1 http://www.freefem.org.



Fig. 6. Convergence curves with harmonic functions—Bercovier–Engelman’s test.

Fig. 7. Convergence curves with harmonic functions—Test proposed by Ruas.
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Fig. 8. Left panel: Computed pressure with the P
1+bubble−P

1 element, FreeFem++ result on the mesh shown in Fig. 2, extrema:

−5.15 to 2.97. Right panel: Analytical pressure interpolated on the same mesh, extrema: −0.25 to 0.25.



Fig. 9. Computed pressure without (left panel) and with (right panel) harmonic functions in the vorticity–velocity–pressure

scheme, extrema: −7.67 to 6.44 (left) and −0.25 to 0.26 (right).

6. Conclusion

We have introduced in Dubois et al. (2003a) a vorticity–velocity–pressure variational formulation of

the bidimensional Stokes problem. For this formulation, we have defined a natural numerical scheme

which can be viewed as an extension of the popular MAC scheme on triangular meshes. We have

numerically studied this scheme and observed that it is not stable in the general case of boundary con-

ditions. If it gives correct results on structured meshes, improvable ones are obtained on unstructured

meshes.

In this paper, we have studied the well-posed bidimensional Stokes problem in the vorticity–

velocity–pressure form we have introduced in Dubois et al. (2003b). We have shown theoretically and

numerically that approximating numerically the space of real harmonic functions with the help of an

integral representation is sufficient to obtain, on the one hand, a better numerical solution and, on the

other hand, better estimations on the convergence than those obtained previously. Actually, we obtain

convergence with an optimal rate in the Dirichlet boundary conditions case on the quadratic norm of the

vorticity. We stress on the facts that first, the scheme is a very low order one and, second, the velocity is

exactly divergence-free. Finally, the only additional cost (computation of the mass matrix of harmonic

functions, which is on the order of the square of the number of boundary nodes) needs to be done

only once. Then, the extension of our scheme to the nonstationary Stokes problem does not incur any

significant additional numerical cost.
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