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FAST PROXIMAL METHODS VIA TIME SCALING OF DAMPED INERTIAL DYNAMICS

HEDY ATTOUCH, ZAKI CHBANI, AND HASSAN RIAHI

Abstract. In a Hilbert setting, we consider a class of inertial proximal algorithms for nonsmooth convex optimization,
with fast convergence properties. They can be obtained by time discretization of inertial gradient dynamics which
have been rescaled in time. We will rely specifically on the recent developement linking Nesterov’s accelerated method
with vanishing damping inertial dynamics. Doing so, we somehow improve and obtain a dynamical interpretation of
the seminal papers of Güler on the convergence rate of the proximal methods for convex optimization.

Key words: Nonsmooth convex optimization; inertial proximal algorithms; Lyapunov analysis; Nesterov accelerated
gradient method; time rescaling.
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1. Introduction

Throughout the paper, H is a real Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖, and Φ : H → R∪{+∞} is
a convex lower-semicontinuous and proper function such that argmin Φ 6= ∅. Our study falls within the general setting
of the Inertial Proximal Algorithm, (IPA)αk,λk

for short

(IPA)αk,λk

{
yk = xk + αk(xk − xk−1)

xk+1 = proxλkΦ(yk),

where (αk) is a sequence of positive extrapolation parameters, and (λk) is a sequence of positive proximal parameters.
On the basis of an appropriate tuning of αk and λk, we will show that for any sequence (xk) generated by (IPA)αk,λk

,

the convergence of values Φ(xk)→ minHΦ can be done arbitrarily fast. Recall that, for λ > 0, the proximal mapping
proxλΦ : H → H is defined by

proxλΦ(x) = argminξ∈H

{
Φ(ξ) +

1

2λ
‖x− ξ‖2

}
.

Equivalently, proxλΦ(x) + λ∂Φ (proxλΦ(x)) 3 x, that is, proxλΦ = (I + λ∂Φ)
−1

is the resolvent of index λ of the
maximally monotone operator ∂Φ. The proximal mapping enters as a basic block of many splitting methods for
nonsmooth structured optimization. A rich literature has been devoted to proximal-based algorithms. One can
consult [5], [19], [20], [26], [37], [38] for some recent contributions to the subject in the convex optimization setting.

As a guideline of our approach, we consider proximal algorithms corresponding (when Φ is smooth) to various time
discretizations of the second-order evolution equation

(AVD)α,β ẍ(t) +
α

t
ẋ(t) + β(t)∇Φ(x(t)) = 0.

The case β(t) ≡ 1 corresponds to the dynamic introduced by Su-Boyd-Candès [45] as a continuous version of the
Nesterov accelerated gradient method, see also [5], [11]. The terminology (AVD) refers to Asymptotic Vanishing
Damping, a specific characteristic of this dynamic in which the damping coefficient α

t vanishes in a controlled manner
(neither too fast nor too slowly), as t goes to infinity. The introduction of the varying parameter t 7→ β(t) comes
naturally with the time reparametrization of this dynamic, and plays a key role in the acceleration of its asymptotic
convergence properties (the key idea is to take β(t) → +∞ as t → +∞ in a controlled way). Doing so, we obtain a
dynamic interpretation of Güler’s founding articles [29, 30] on the convergence rate of the proximal methods for convex
optimization. Our work is part of the study of the link between continuous dynamics and algorithms in optimization.
It is a living subject, and particularly delicate in the non-autonomous case, here are some recent references on the
subject [2], [11], [15], [17], [18], [23], [28], [39], [44], [45].

As a model example of our results, consider the algorithm (IPA)αk,λk
associated with the following discretization

of (AVD)α,β

(1) (xk+1 − 2xk + xk−1) +
α− 1

k
(xk+1 − xk) +

1

k
(xk − xk−1) + βk∇Φ(xk+1) = 0.

The parameter βk is the discrete version of β(t). Along with β(t) → +∞ as t → +∞, we will pay special attention
to the case βk → +∞ as k → +∞. Taking βk = kδ (it corresponds to β(t) = tδ in (AVD)α,β) gives the parameters
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αk = 1− α

k + α− 1
, and λk =

kδ+1

k + α− 1
. Assuming that α > 3, and 0 < δ < α−3, we will show that for any sequence

(xk) generated by the algorithm (IPA)αk,λk
,

Φ(xk)−min Φ = o

(
1

k2+δ

)
.

This result provides with a much simpler algorithm the convergence rate obtained by Güler in [30]. As a result, by
taking the parameter α large enough, we can take a large parameter δ, and thus obtain an arbitrarily fast convergence
rate of values (in the scale of powers of 1

k ). In doing so, αk is close to one (following Nesterov’s acceleration), and
λk is large (this is the large step proximal method). In addition, we obtain convergence rates to zero for speed and
acceleration, and we show that the sequence (xk) converges weakly to some x∞ belonging to the solution set argmin Φ.
Our study also opens new perspectives on the acceleration of proximal methods for inclusions governed by maximally
monotone operators. This is an active research subject (link with ADMM algorithm) where proximal methods with
large steps play an important role, see the recent studies [6], [7], [8], [14].

The paper is organized as follows: In section 2, we introduce the accelerated proximal algorithms via an implicit
discretization of the rescaled dynamic (AVD)α,β . In section 3, we show that a proper tuning of the parameters provides
fast convergent algorithms. In section 4, we show the convergence of the iterates to optimal solutions. In section 5,
we compare our results with those of Güler. In section 6, we study the stability of the algorithms with respect to
perturbations and errors. Finally, in section 7 we analyze the fast convergence properties of a general class of inertial
proximal algorithms that extend the situation studied in the previous sections. The Appendix contains a brief analysis
of the convergence properties of the associated dynamics, as well as some useful technical lemmas.

2. Accelerated proximal algorithms via time rescaling of inertial dynamics

In this section, we aim to introduce the algorithms and their fast convergence properties from a dynamic point of
view. To simplify the presentation and consideration of inertial dynamics, just for this section we assume that Φ is
convex continuously differentiable.

2.1. Inertial dynamics for convex optimization. We will rely on the recent developments linking Nesterov ac-
celerated method for convex optimization with inertial gradient dynamics. As a main originality of our approach, we
will show that time rescaling of these dynamics leads to proximal algorithms that converge arbitrarily fast.

Precisely, (IPA)αk,λk
bears close connection with the Inertial Gradient System

(2) (IGS)γ ẍ(t) + γ(t)ẋ(t) +∇Φ(x(t)) = 0,

which is a non-autonomous second-order differential equation where γ(·) is a positive viscous damping parameter.
As pointed out by Su-Boyd-Candès in [45], the (IGS)γ system with γ(t) = 3

t can be seen as a continuous version
of the accelerated gradient method of Nesterov (see [35, 36]). This method has been developed to deal with large
scale structured convex minimization problems, such as the FISTA algorithm of Beck-Teboulle [20]. These methods
guarantee (in the worst case) the convergence rate Φ(xk) − minH Φ = O

(
1
k2

)
, where k is the number of iterations.

Convergence of the sequences generated by FISTA, has not been established so far (except in the one dimensional case,
see [12]). This is a puzzling question in the study of numerical optimization methods. By making a slight change in the
coefficient of the damping parameter, one can overcome this difficulty. Recently, Attouch-Chbani-Peypouquet-Redont
[11] and May [34] showed convergence of the trajectories of the (IGS)γ system with γ(t) = α

t and α > 3

(3) (AVD)α ẍ(t) +
α

t
ẋ(t) +∇Φ(x(t)) = 0.

They also obtained the improved convergence rate Φ(x(t)) −minH Φ = o( 1
t2 ) as t → +∞. Corresponding results for

the algorithmic case have been obtained by Chambolle-Dossal [25], and by Attouch-Peypouquet [13].

2.2. Time rescaling: implicit versus explicit time discretization. Let us show that, by time rescaling, we can
make converge the trajectories of (AVD)α arbitrarily fast to the infimal value of Φ. Suppose that α ≥ 3. Given a
trajectory x(·) of (AVD)α, we know that (see [4], [11], [45])

(4) Φ(x(t))−min
H

Φ = O
(

1

t2

)
.

Let’s make the change of time variable t = τ(s) in (AVD)α , where τ(·) is an increasing function from R to R, which
satisfies lims→+∞ τ(s) = +∞. We have

(5) ẍ(τ(s)) +
α

τ(s)
ẋ(τ(s)) +∇Φ(x(τ(s))) = 0.

Set y(s) := x(τ(s)). By the derivation chain rule, we have

ẏ(s) = τ̇(s)ẋ(τ(s)), ÿ(s) = τ̈(s)ẋ(τ(s)) + τ̇(s)2ẍ(τ(s)).
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Reformulating (5) in terms of y(·) and its derivatives, we obtain

1

τ̇(s)2

(
ÿ(s)− τ̈(s)

τ̇(s)
ẏ(s)

)
+

α

τ(s)

1

τ̇(s)
ẏ(s) +∇Φ(y(s)) = 0.

Hence, y(·) is solution of the rescaled equation

(6) ÿ(s) +

(
α

τ(s)
τ̇(s)− τ̈(s)

τ̇(s)

)
ẏ(s) + τ̇(s)2∇Φ(y(s)) = 0.

The inequality (4) becomes

(7) Φ(y(s))−min
H

Φ = O
(

1

τ(s)2

)
.

Hence, by making a fast time reparametrization, we can obtain arbitrarily fast convergence property of the values.
The damping coefficient of (6) is equal to

γ̃(s) =
α

τ(s)
τ̇(s)− τ̈(s)

τ̇(s)
=
ατ̇(s)2 − τ(s)τ̈(s)

τ(s)τ̇(s)
.

As a model example, take τ(s) = sp, where p is a positive parameter. Then γ̃(s) =
αp

s , where αp = 1 + (α− 1)p, and
(6) writes

(8) ÿ(s) +
αp
s
ẏ(s) + p2s2(p−1)∇Φ(y(s)) = 0.

From (7) we have

(9) Φ(y(s))−min
H

Φ = O
(

1

s2p

)
.

For p > 1, we have αp > α, so the same damping features as for (AVD)α. The only major difference is the coefficient

s2(p−1) in front of ∇Φ(y(s)) which explodes when s→ +∞.
As a general rule, implicit discretization preserves the convergence properties of the continuous dynamics. Precisely,

we are going to show that the implicit discretization of (8) provides proximal algorithms whose convergence rate can
be made arbitrarily fast with p large. The physical intuition is clear. Fast convergence just corresponds to fast
parametrization of the trajectories of the (AVD)α system.

The situation is completely different when we consider the gradient algorithms obtained by the explicit dicretization
of (8). Indeed, the fast convergence rate (9) cannot be transposed to the gradient methods: As a general rule, when
passing from continuous dynamics to explicit discretized versions, in order to preserve the optimization properties, a
step size smaller than the inverse of the Lipschitz constant of the gradient of the potential function must be chosen.
Since the Lipschitz constant of s2(p−1)∇f tends to +∞ as s→ +∞, this is not compatible with taking a fixed positive
step size for the time discretization. Indeed, we know that the optimal convergence rate of the values (best possible
in the worst case) for first-order gradient methods is O

(
1
k2

)
, see [36, Theorem 2.1.7].

2.3. Introducting the scaled proximal inertial algorithm from a dynamic perspective. Motivated by the
fast convergence properties of the trajectories of (8), we consider the second-order differential equation

(10) (AVD)α,β ẍ(t) +
α

t
ẋ(t) + β(t)∇Φ(x(t)) = 0,

where the positive damping parameter α satisfies α ≥ 1, and β(·) is a positive time dependent scaling coefficient. From
our perspective, the most interesting case is when β(t) → +∞ as t → +∞. We will then specialize our result in the
important case β(t) = tp considered above.

Let us consider the following implicit discretization of (AVD)α,β where for simplicity, the time step size has been
normalized equal to one: for k ≥ 1,

(11) (xk+1 − 2xk + xk−1) +
α− 1

k
(xk+1 − xk) +

1

k
(xk − xk−1) + βk∇Φ(xk+1) = 0.

Note the special form of the discretization for the damping term α
t ẋ(t), which was used above. This proves to be

practical for our study. In section 7, we will study other types of discretization of the damping term, for which similar
convergence properties hold. But for the moment, for the sake of simplicity, we will study this specific case as a model
example. Equivalently, (11) writes as follows

(1 +
α− 1

k
)(xk+1 − xk) + βk∇Φ(xk+1) = (1− 1

k
)(xk − xk−1).

Setting αk =
k − 1

k + α− 1
and λk =

kβk
k + α− 1

, we obtain the inertial proximal algorithm

(IPA)αk,λk

{
yk = xk + αk(xk − xk−1)

xk+1 = proxλkΦ(yk).
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The algorithm (IPA)αk,λk
still makes sense for a general convex lower-semicontinuous proper function Φ : H →

R ∪ {+∞}. In this case, equality (11) is replaced by the inclusion

(12) (xk+1 − 2xk + xk−1) +
α− 1

k
(xk+1 − xk) +

1

k
(xk − xk−1) + βk∂Φ(xk+1) 3 0.

Remark 2.1. It is interesting to note that similar proximal inertial algorithms can be obtained by discretizing (AVD)α
(i.e., with β ≡ 1) with a variable step size hk. Then βk = h2

k, and so taking hk large corresponds to taking βk large.
In [5] Attouch-Cabot consider the case of a general extrapolation coefficient αk, but their study is limited to the case
of a fixed step size, hk ≡ h > 0, which therefore does not cover our situation.

3. Fast convergence results

We now return to the general situation where Φ : H → R∪{+∞} is a convex lower-semicontinuous proper function
such that argmin Φ 6= ∅. We will analyze the convergence rate of the values for the sequences (xk) generated by the
algorithm (IPA)αk,λk

. Let’s recall the basic result concerning the case αk = 1 − α
k , λk ≡ µ > 0, which is directly

related to the Nesterov accelerated method (see [13], [20], [25], [45]). When α ≥ 3, we have Φ(xk)−min Φ = O
(

1

k2

)
.

Indeed, we are going to show that the introduction of the scaling factor βk into the algorithm allows us to improve
the convergence rate, and so obtain, for any sequence (xk) generated by the algorithm (IPA)αk,λk

Φ(xk)−min Φ = O
(

1

k2βk

)
.

3.1. Convergence of the values.

Theorem 3.1. Suppose α ≥ 1. Take αk =
k − 1

k + α− 1
, λk =

kβk
k + α− 1

. Suppose that the sequence (βk) satisfies the

growth condition: there exists k1 ∈ N such that for all k ≥ k1

(Hβ) βk+1 ≤
k(k + α− 1)

(k + 1)2
βk.

Then, for any sequence (xk) generated by the algorithm (IPA)αk,λk
, we have

(i) Φ(xk)−minHΦ = O
(

1

k2βk

)
,

(ii)
∑
k≥1 k

2β2
k‖ξk‖2 < +∞, with ξk ∈ ∂Φ(xk+1),

(iii)
∑
k≥1 Γk (Φ(xk+1)−minH Φ) < +∞

where Γk := k(k + α− 1)βk − (k + 1)2βk+1 is non-negative by (Hβ).

Proof. Let us denote briefly m := minHΦ. Fix z ∈ argmin Φ, that is Φ(z) = minHΦ = m, and consider, for k ≥ 1,
the energy function:

Ek := k2βk (Φ(xk)−m) +
1

2
‖vk‖2,

with

vk := (α− 1)(xk − z) + (k − 1)(xk − xk−1).

Let’s look for conditions on βk so that the sequence (Ek)k is non-increasing. To this end, we evaluate the term
Ek+1 − Ek.

(13)

Ek+1 − Ek = (k + 1)2βk+1 (Φ(xk+1)−m)− k2βk (Φ(xk)−m) + 1
2‖vk+1‖2 − 1

2‖vk‖
2

= (k + 1)2(βk+1 − βk) (Φ(xk+1)−m) + (k + 1)2βk (Φ(xk+1)−m)− k2βk (Φ(xk)−m)

+ 1
2‖vk+1‖2 − 1

2‖vk‖
2

=
[
(k + 1)2(βk+1 − βk) + (2k + 1)βk

]
(Φ(xk+1)−m) + k2βk (Φ(xk+1)− Φ(xk))

+ 1
2‖vk+1‖2 − 1

2‖vk‖
2.

On the other hand,

vk+1 − vk = (α− 1)(xk+1 − xk) + k(xk+1 − xk)− (k − 1)(xk − xk−1)

= (α− 1)(xk+1 − xk) + (xk − xk−1) + k(xk+1 − 2xk + xk−1)

= −kβkξk,
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with ξk ∈ ∂Φ(xk+1), where the last equality comes from (12). Combining the above formula with the definition of vk,
we obtain

〈vk+1 − vk, vk+1〉 = 〈(α− 1)(xk+1 − z) + k(xk+1 − xk),−kβkξk〉
= (α− 1)kβk〈ξk, z − xk+1〉+ k2βk〈ξk, xk − xk+1〉
≤ (α− 1)kβk (Φ(z)− Φ(xk+1)) + k2βk (Φ(xk)− Φ(xk+1)) ,

where the last inequality follows from α ≥ 1, the convexity of Φ, and ξk ∈ ∂Φ(xk+1). Using the elementary algebraic
equality

(14)
1

2
‖vk+1‖2 −

1

2
‖vk‖2 = 〈vk+1 − vk, vk+1〉 −

1

2
‖vk+1 − vk‖2,

we obtain
1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ (α− 1)kβk (Φ(z)− Φ(xk+1)) + k2βk (Φ(xk)− Φ(xk+1))− 1

2
‖kβkξk‖2.

Combining the above inequality with (13), and after simplification, we obtain

Ek+1 − Ek +
1

2
k2β2

k‖ξk‖2 ≤
[
(k + 1)2(βk+1 − βk) + (2k + 1)βk − (α− 1)kβk

]
(Φ(xk+1)− Φ(z))

≤
[
(k + 1)2βk+1 − kβk(k + α− 1)

]
(Φ(xk+1)− Φ(z)) .

Hence

Ek+1 − Ek +
1

2
k2β2

k‖ξk‖2 + Γk (Φ(xk+1)− Φ(z)) ≤ 0,(15)

where
Γk := k(k + α− 1)βk − (k + 1)2βk+1.

By assumption (Hβ), for all k ≥ k1 we have Γk ≥ 0, and hence Ek+1 ≤ Ek. The sequence (Ek)k≥k1 is non-increasing
and minorized by zero. Consequently, it is convergent. By definition of Ek, we obtain, for all k ≥ k1

k2βk (Φ(xk)−min Φ) ≤ Ek ≤ Ek1 ,
which gives item (i),

Φ(xk)−min Φ = O
(

1

k2βk

)
.

Moreover, from inequality (15) and Γk ≤ 0 for k ≥ k1, we obtain, for all i ≥ k1

Ei+1 − Ei +
1

2
i2β2

i ‖ξi‖2 ≤ 0.

Summing the above inequalities from i = k1 to k ≥ k1, we get 1
2

∑k
i=k1

i2β2
i ‖ξi‖2 ≤ Ek1 − Ek+1 ≤ Ek1 , and hence∑

k≥1

k2β2
k‖ξk‖2 < +∞,

which gives item (ii).
For item (iii), we go back to (15). By summing the corresponding inequalities for k ≥ k1, we obtain

0 ≤
∞∑

k=k1

Γk (Φ(xk+1)− Φ(z)) ≤ Ek1 < +∞,

which gives the claim. �

3.2. Convergence rate to zero of the velocities and the accelerations. To obtain fast convergence of velocities
to zero, we need to introduce the following slightly strengthened version of (Hβ).

Definition 3.2. We say that the sequence (βk) satisfies the growth condition (H+
β ) if there exists k1 ∈ N and ρ > 0

such that for all k ≥ k1

(H+
β ) βk+1 ≤

k(k + (α− 1)(1− ρ))

(k + 1)2
βk.

Note that (Hβ) corresponds to the case ρ = 0. Let’s give an equivalent form of (H+
β ) convenient for calculation.

From (H+
β ) we immediately get

(k + 1)2βk+1 − k2βk − (α− 1)(1− ρ)kβk ≤ 0.

Hence

(16) ρ(α− 1))kβk ≤ −(k + 1)2βk+1 + k2βk + (α− 1))kβk = Γk.

We can now establish the following rate of convergence for the velocities, and the acceleration. Note that the quantity
‖xk+1 + 2xk − xk−1‖ = ‖(xk+1 − xk)− (xk − xk−1)‖ is a discrete form of the norm of the acceleration.
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Proposition 3.3. Suppose that α > 3
2 . Under condition (Hβ)+ we have

+∞∑
k=1

k‖xk − xk−1‖2 < +∞.

and
∞∑
k=1

k2‖xk+1 − 2xk + xk−1‖2 < +∞.

Moreover
∞∑
k=1

kβk

(
Φ(xk+1)−min

H
Φ
)
< +∞.

Proof. Consider, for k ≥ 1, the global energy function:

Wk := βk (Φ(xk)−m) +
1

2
‖wk‖2,

with

wk := xk − xk−1.

Let’s evaluate the term (k + 1)2Wk+1 − k2Wk.

(17)

(k + 1)2Wk+1 − k2Wk = (k + 1)2βk+1 (Φ(xk+1)−m)− k2βk (Φ(xk)−m) + (k+1)2

2 ‖wk+1‖2 − k2

2 ‖wk‖
2

= (k + 1)2(βk+1 − βk) (Φ(xk+1)−m) + (k + 1)2βk (Φ(xk+1)−m)

−k2βk (Φ(xk)−m) + (k+1)2

2 ‖wk+1‖2 − k2

2 ‖wk‖
2

=
[
(k + 1)2(βk+1 − βk) + (2k + 1)βk

]
(Φ(xk+1)−m) + k2βk (Φ(xk+1)− Φ(xk))

+k2

2

(
‖wk+1‖2 − ‖wk‖2

)
+ 2k+1

2 ‖wk+1‖2

≤ (α− 1)kβk (Φ(xk+1)−m) + k2βk (Φ(xk+1)− Φ(xk))

+k2

2

(
‖wk+1‖2 − ‖wk‖2

)
+ 2k+1

2 ‖wk+1‖2

where the last inequality comes from assumption (Hβ).
On the other hand,

1
2‖wk+1‖2 − 1

2‖wk‖
2 = − 1

2‖wk+1 − wk‖2 + 〈wk+1 − wk, wk+1〉
= − 1

2‖xk+1 − 2xk + xk−1‖2 + 〈xk+1 − 2xk + xk−1, xk+1 − xk〉
= − 1

2‖xk+1 − 2xk + xk−1‖2 −
〈
α−1
k (xk+1 − xk) + 1

k (xk − xk−1) + βkξk, xk+1 − xk
〉

with ξk ∈ ∂Φ(xk+1), where the last equality comes from (12). After multiplying by k2, we obtain

k2

2 (‖wk+1‖2 − ‖wk‖2) = −k
2

2 ‖xk+1 − 2xk + xk−1‖2 − 〈(α− 1)(xk+1 − xk) + (xk − xk−1) + kβkξk, k(xk+1 − xk)〉
≤ −k

2

2 ‖xk+1 − 2xk + xk−1‖2 − (α− 1)k‖xk+1 − xk‖2 − k 〈xk+1 − xk, xk − xk−1〉 − k2βk (Φ(xk+1)− Φ(xk)) ,

where the last inequality follows from the convexity of Φ, and ξk ∈ ∂Φ(xk+1).
Combining the above inequality with (17), and after simplification, we obtain

(k + 1)2Wk+1 − k2Wk +
k2

2
‖xk+1 − 2xk + xk−1‖2

≤ (α− 1)kβk (Φ(xk+1)−m)− (α− 1)k‖xk+1 − xk‖2 − k 〈xk+1 − xk, xk − xk−1〉+
2k + 1

2
‖xk+1 − xk‖2.

Equivalently

(k + 1)2Wk+1 − k2Wk +

[
k2

2
‖wk+1 − wk‖2 + (α− 1)k‖wk+1‖2 + k 〈wk+1, wk〉 −

2k + 1

2
‖wk+1‖2

]
≤ (α− 1)kβk (Φ(xk+1)−m) .

By elementary algebraic operations

k2

2
‖wk+1 − wk‖2 + (α− 1)k‖wk+1‖2 + k 〈wk+1, wk〉 −

2k + 1

2
‖wk+1‖2

=
k2

2
‖wk+1 − wk‖2 + (α− 1)k‖wk+1‖2 +

k

2
‖wk+1‖2 +

k

2
‖wk‖2 −

k

2
‖wk+1 − wk‖2 −

2k + 1

2
‖wk+1‖2

=
k(k − 1)

2
‖wk+1 − wk‖2 +

(
(α− 3

2
)k − 1

2

)
‖wk+1‖2 +

k

2
‖wk‖2.
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For α > 3
2 , and k sufficiently large, all the above quantities are non-negative. Hence

(k + 1)2Wk+1 − k2Wk +
k

2
‖xk − xk−1‖2 +

k(k − 1)

2
‖xk+1 − 2xk + xk−1‖2 ≤ (α− 1)kβk (Φ(xk+1)−m) .

By condition (Hβ)+, as formulated in (16), we have ρ(α− 1)kβk ≤ Γk for some ρ > 0, and k sufficiently large. Hence

(18) (k + 1)2Wk+1 − k2Wk +
k

2
‖xk − xk−1‖2 +

k(k − 1)

2
‖xk+1 − 2xk + xk−1‖2 ≤

1

ρ
Γk (Φ(xk+1)−m) .

Let’s sum the above inequalities for k ≥ k1. According to the estimation
∑
k≥1 Γk (Φ(xk+1)−minH Φ) < +∞ (see

Theorem 3.1 (iii)), we obtain
∞∑
k=1

k‖xk − xk−1‖2 < +∞.

and
∞∑
k=1

k2‖xk+1 − 2xk + xk−1‖2 < +∞,

which gives the claim. �

Remark 3.4. In Proposition 3.3 above we proved that, under condition (Hβ)+,
∑∞
k=1 kβk (Φ(xk+1)−minHΦ) < +∞.

Let’s show that the following estimates holds too:

(19)

∞∑
k=1

kβk

(
Φ(xk)−min

H
Φ
)
< +∞.

This results from the following elementary majorizations. From (Hβ),

(k + 1)2βk+1 ≤ k(k + α− 1)βk ≤ 2k(k + 1)βk

where the last inequality is valid for k ≥ α− 2. After simplification we get (k + 1)βk+1 ≤ 2kβk. Hence
∞∑
k=1

(k + 1)βk+1

(
Φ(xk+1)−min

H
Φ
)
≤ 2

∞∑
k=1

kβk

(
Φ(xk+1)−min

H
Φ
)
< +∞,

which gives the result, after reindexation.

3.3. From O to o estimates. We rely on the following result from Attouch-Chbani-Peypouquet-Redont [11] and
May [34]. Suppose that α > 3. Given a trajectory x(·) of (AVD)α, the following rate of convergence of the values
holds:

(20) Φ(x(t))−min
H

Φ = o

(
1

t2

)
.

Hence, for the corresponding time rescaled dynamic (6), we have

(21) Φ(x(t))−min
H

Φ = o

(
1

τ(s)2

)
.

Based on the dynamical approach to the algorithm (IPA)αk,λk
, we can expect improving the rates of convergence in

Theorem 3.1, replacing O by o estimates. Precisely, we are going to prove the following result.

Theorem 3.5. Suppose α > 3
2 . Take αk =

k − 1

k + α− 1
, λk =

kβk
k + α− 1

. Suppose that the sequence (βk) satisfies the

growth condition (H+
β ). Then, for any sequence (xk) generated by the algorithm (IPA)αk,λk

, we have

Φ(xk)−min
H

Φ = o

(
1

k2

)
Proof. Let’s consider the sequence of global energies (Wk) introduced in the proof of Proposition 3.3

Wk := βk (Φ(xk)−m) +
1

2
‖xk − xk−1‖2.

By Proposition 3.3, we have
∑+∞
k=1 k‖xk − xk−1‖2 < +∞ and

∑∞
k=1 kβk (Φ(xk)−minHΦ) < +∞, see Remark 3.4

formula (19). Hence
∞∑
k=1

kWk < +∞.

On the other hand, returning to (18) we have

(k + 1)2Wk+1 − k2Wk ≤
1

ρ
Γk (Φ(xk+1)−m) .
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The nonnegative sequence (ak) with ak = k2Wk satifies the relation

ak+1 − ak ≤ ωk
with ωk = 1

ρΓk (Φ(xk+1)−m). According to
∑
k≥1 Γk (Φ(xk+1)−minH Φ) < +∞ (see Theorem 3.1 (iii)), we have

(wk) ∈ l1(N). By a standard argument, we deduce that the limit of the sequence (ak) exists, that is

lim
k→+∞

k2Wk exists.

Let c := limk→+∞ k2Wk. Hence kWk ∼ c
k . According to

∑∞
k=1 kWk < +∞, we must have c = 0. Hence,

limk→+∞ k2Wk = 0, which gives the claim. �

3.4. On the condition (H)β and (H)+
β . According to the formula Φ(xk+1) − min Φ = O

(
1

k2βk

)
, we need to

take βk → +∞ to get an improved convergence rate compared to the classical situation. Let’s calculate the best
convergence rate we can expect on the sequence (βk), which is supposed to satisfy the growth condition (Hβ). For
simplicity of the presentation, we take k1 = 1, the extension to a general k1 is straightforward. Hence, for j = 1, 2, ..., k

βj ≤
(j − 1)(j + α− 2)

(j)2
βj−1.

By taking the product of the above inequalities when j varies from 2 to k, we obtain

βk ≤ β1

k∏
j=2

(j − 1)(j + α− 2)

j2
.

Equivalently, for any k ≥ 2

βk ≤ β1

k∏
j=2

(
1− 1

j

)(
1 +

α− 2

j

)
.

Taking the logarithm, we obtain the equivalent inequality

lnβk ≤ lnβ1 +

k∑
j=2

(
ln

(
1− 1

j

)
+ ln

(
1 +

α− 2

j

))
.

According to the inequality ln(1 + x) ≤ x for any x > −1, we deduce that

lnβk ≤ lnβ1 + (α− 3)

k∑
j=2

1

j
.

By a classical comparison argument between series and integral, we have
∑k
j=2

1
j ≤

∫ k
1

1
t dt = ln k. Hence

lnβk ≤ lnβ1 + (α− 3) ln k,

which gives

βk ≤ β1k
α−3.

Let us show that the above majorization is sharp and that, for βk = kδ with δ < α− 3, the condition (Hβ) is satisfied.
Indeed, for βk = kδ we have

(Hβ) ⇐⇒ (k + 1)δ ≤ k(k + α− 1)

(k + 1)2
kδ

⇐⇒ (k + 1)δ+2 ≤ kδ+1(k + α− 1)

⇐⇒ (1 +
1

k
)δ+2 ≤ 1 +

α− 1

k
.(22)

For k large, 1
k is close to zero. Then, the left member of the above inequality is equivalent to 1 + δ+2

k . So inequality

(22) is satisfied for k sufficiently large if δ + 2 < α− 1, that is δ < α− 3. Thus, if α > 3, we can take βk = kδ for any
δ < α− 3. In addition, we have

Γk = k(k + α− 1)βk − (k + 1)2βk+1 = kδ+1(k + α− 1)− (k + 1)δ+2 = (α− 3− δ)kδ+1 + ◦
(
kδ+1

)
Since we argue with strict inequalities, it is immediate to verify that (H+

β ) is also satisfied under the assumption α > 3.
Note that the condition δ < α− 3 allows us to take δ < 0, which corresponds to the case βk → 0. But for our purpose
of getting a fast convergent algorithm, the most interesting case is δ > 0, which corresponds to βk → +∞.

Let’s summarize the above results in the following statement.
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Corollary 3.6. Take α > 3, αk = 1 − α

k + α− 1
, λk =

kδ+1

k + α− 1
with 0 < δ < α − 3. Then, for any sequence (xk)

generated by the algorithm (IPA)αk,λk
, we have

Φ(xk)−min Φ = o

(
1

k2+δ

)
;∑+∞

k=1 k
2(1+δ)‖ξk‖2 < +∞ with ξk ∈ ∂Φ(xk+1);∑+∞

k=1 k
δ+1 (Φ(xk+1)−minHΦ) < +∞;∑+∞

k=1 k‖xk − xk−1‖2 < +∞.

3.5. Back to the dynamical interpretation. Let us show that the above results are consistent with the dynamic
interpretation of the algorithm, via temporal rescaling. For the rescaled inertial dynamic

(23) ẍ(t) +
αp
t
ẋ(t) + p2t2(p−1)∇Φ(x(t)) = 0,

we showed that, for α ≥ 3 and p > 1

(24) Φ(x(t))−min
H

Φ = O
(

1

t2p

)
.

By passing to the implicit discretized version, we expect to maintain the same convergence rate and thus obtain

(25) Φ(xk)−min
H

Φ = O
(

1

k2p

)
.

Let’s verify that this is the case. When β(t) = p2t2(p−1), we have βk = p2k2(p−1). By Theorem 3.1 and Corollary 3.6,
for the corresponding algorithm (IPA)αk,λk

, by taking βk = kδ with δ = 2p− 2, we have 2 + δ = 2p, so

(26) Φ(xk)−min Φ = O
(

1

k2+δ

)
= O

(
1

k2p

)
.

Thus, the continuous approach to the algorithm and its direct independent study by a Lyapunov argument are
consistent, and give the same convergence rates.

4. Convergence of the iterates

Let us now fix x∗ ∈ H, and define the sequence (hk) by hk = 1
2‖xk − x

∗‖2. The next result will be useful for
establishing the convergence of the iterates of (IPA)αk,λk

. The proof follows the line of [5, Proposition 4.1].

Proposition 4.1. We have

(27) hk+1 − hk − αk(hk − hk−1) =
1

2
(α2
k + αk)‖xk − xk−1‖2 − 〈yk − proxλkΦ(yk), yk − x∗〉+

1

2
‖yk − proxλkΦ(yk)‖2.

If moreover x∗ ∈ argmin Φ, then

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 − λk(Φ(xk+1)−min

H
Φ)− 1

2
‖yk − proxλkΦ(yk)‖2.

Proof. Observe that

‖yk − x∗‖2 = ‖xk + αk(xk − xk−1)− x∗‖2

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2 + 2αk〈xk − x∗, xk − xk−1〉

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2

+ αk‖xk − x∗‖2 + αk‖xk − xk−1‖2 − αk‖xk−1 − x∗‖2

= ‖xk − x∗‖2 + αk(‖xk − x∗‖2 − ‖xk−1 − x∗‖2) + (α2
k + αk)‖xk − xk−1‖2

= 2[hk + αk(hk − hk−1)] + (α2
k + αk)‖xk − xk−1‖2.

Setting briefly Ak = hk+1 − hk − αk(hk − hk−1), we deduce that

Ak =
1

2
‖xk+1 − x∗‖2 −

1

2
‖yk − x∗‖2 +

1

2
(α2
k + αk)‖xk − xk−1‖2

=

〈
xk+1 − yk,

1

2
(xk+1 + yk)− x∗

〉
+

1

2
(α2
k + αk)‖xk − xk−1‖2

= 〈xk+1 − yk, yk − x∗〉+
1

2
‖xk+1 − yk‖2 +

1

2
(α2
k + αk)‖xk − xk−1‖2.
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Using the equality xk+1 = proxλkΦ(yk), we obtain (27).

Let us now assume that x∗ ∈ argmin Φ. By definition of xk+1 = proxλkΦ(yk), we have 1
λk

(yk − xk+1) ∈ ∂Φ(xk+1).
Hence, by convexity of Φ

Φ(x∗) ≥ Φ(xk+1) +
1

λk
〈yk − xk+1, x

∗ − xk+1〉.

Equivalently

Φ(x∗) ≥ Φ(xk+1) +
1

λk
〈yk − xk+1, x

∗ − yk〉+
1

λk
‖yk − xk+1‖2.

Returning to (27), by using the above inequality, we obtain

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 − λk(Φ(xk+1)− Φ(x∗))− 1

2
‖yk − proxλkΦ(yk)‖2,

which completes the proof of Proposition 4.1. �

Theorem 4.2. Assume (Hβ)+. Then, any sequence (xk) generated by algorithm (IPA)αk,λk
converges weakly, and its

limit belongs to argmin Φ.

Proof. We apply the Opial lemma, see Lemma 8.3.

(i) By Theorem 3.5 we have Φ(xk)−minHΦ = o

(
1

k2

)
, and hence limk→+∞ Φ(xk) = minHΦ. Assume that there

exist x ∈ H and a sequence (kn) such that kn → +∞, and xkn ⇀ x weakly as n→ +∞. Since the convex function Φ
is lower semicontinuous, it is lower semicontinuous for the weak topology, hence satisfies

Φ(x) ≤ lim inf
n→+∞

Φ(xkn) = lim
k→+∞

Φ(xk) = min
H

Φ.

It ensues that x ∈ argmin Φ, which shows the first point.

(ii) Let us now fix x∗ ∈ argmin Φ, and show that limk→+∞ ‖xk − x∗‖ exists. For that purpose, let us set hk =
1
2‖xk − x

∗‖2. From Proposition 4.1, the sequence (hk) satisfies the following inequalities

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2

≤ ‖xk − xk−1‖2 since αk ∈ [0, 1].

Taking the positive part, we find

(hk+1 − hk)+ ≤ αk(hk − hk−1)+ + ‖xk − xk−1‖2.

From Proposition 3.3, we have
∑+∞
k=1 k‖xk − xk−1‖2 < +∞. By applying Lemma 8.4 (given in the appendix) with

ak = (hk − hk−1)+ and ωk = ‖xk − xk−1‖2, we obtain

+∞∑
k=1

(hk − hk−1)+ < +∞.

Since (hk) is nonnegative, this classically implies that limk→+∞ hk exists. The second point of the Opial lemma is
shown, which ends the proof. �

5. Comparaison with Güler’s results

In a founding work for the study of proximal algorithms, based on the Nesterov accelerated scheme for convex
optimization, Güler, see [30, Theorem 2.2], introduced algorithms that accelerate the classical proximal point algorithm.
He obtained the convergence rate of values

f(xk)−min
H

f = O

(
1

(
∑k
i=1

√
λi)2

)
,

where (λi) is the sequence of proximal parameters. Our dynamic approach to accelerating proximal algorithms and
Güler’s proximal algorithms find their roots in the Nesterov acceleration gradient method. So, they provide comparable
but, as we will see, significantly different results. We will list below some advantages of our approach. Recall first
Güler’s proximal algorithm, where we slightly modify the notations of his seminal paper [30] to fit our framework.

Güler’s proximal algorithm:
a) Initialization of ν0 and A0.
b) Step k:
• Choose λk > 0, and calculate γk > 0 by solving the second-order algebraic equation

(28) γ2
k + γkAkλk −Akλk = 0.
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• Define

yk = (1− γk)xk + γkνk;(29)

xk+1 = proxλkΦ(yk);(30)

νk+1 = νk +
1

γk
(xk+1 − yk);(31)

Ak+1 = (1− γk)Ak.(32)

Let us show that the above Güler’s proximal algorithm can be written as an inertial proximal algorithm (IPA)αk,λk
.

First prove that, for all k ≥ 1

(33) νk = xk−1 +
1

γk−1
(xk − xk−1) .

For this, we use an induction argument. Suppose (33) is satisfied at step k, and then show that it will be at step k+1.
Using successively (31), (33), (29), and (33) again, we obtain

νk+1 = νk +
1

γk
(xk+1 − yk)

= xk−1 +
1

γk−1
(xk − xk−1) +

1

γk
(xk+1 − yk)

=
1

γk
xk+1 + xk−1 +

1

γk−1
(xk − xk−1)− 1

γk
((1− γk)xk + γkνk)

=
1

γk
xk+1 + xk−1 +

1

γk−1
(xk − xk−1)− 1− γk

γk
xk − xk−1 −

1

γk−1
(xk − xk−1)

=
1

γk
xk+1 −

1− γk
γk

xk

= xk +
1

γk
(xk+1 − xk) ,

which shows that (33) is satisfied at step k + 1. Then, combining (29) with (33) we obtain

yk = (1− γk)xk + γkνk

= (1− γk)xk + γk

(
xk−1 +

1

γk−1
(xk − xk−1)

)
= xk +

(
γk
γk−1

− γk
)

(xk − xk−1) .

Hence, Güler’s proximal algorithm can be written as the algorithm (IPA)αk,λk

(34)

{
yk = xk + αk(xk − xk−1)

xk+1 = proxλkΦ(yk),

where

(35) αk = γk

(
1

γk−1
− 1

)
.

By construction of the γk, we have 0 ≤ γk ≤ 1, which gives αk ≥ 0. From (28) and (32), we have

γ2
k = Akλk(1− γk) = λkAk+1,

which gives the following relation between λk and γk:

(36) λk =
γ2
k

A0

∏k
j=0(1− γj)

.

Let’s come to the comparison of the convergence rates obtained by the two methods. If (λk)k is nondecreasing, we

have (
∑k
i=1

√
λi)

2 ≤ k2λk. In our construction, λk ∼ βk. As a result, in the setting of Theorem 3.1, our convergence
rates are at least as good as those obtained by Güler. In the setting of Theorem 3.5 they are better. The comparison
in the general case is a non-trivial question, which requires further studies.

Some advantages of our approach are listed below.

• Based on the dynamic approach of the Nesterov method recently discovered by Su-Boyd-Candès [45], the time
rescaling technique developed in this paper gives much simpler results. It also provides a valuable guide for
the proofs, which result from standard Lyapunov analysis.
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• The convergence of iterates is obtained (see section 4), which is not known by either the Nesterov method or
the Güler algorithm. We rely on the recent progress of Chambolle-Dossal [25] on this subject. Based on the
related results concerning the o rate of convergence results of Attouch-Peypouquet [13], in Theorem 3.5 we

obtain the convergence rate o

(
1

k2βk

)
, which slightly improves the convergence rates, as mentioned above.

Note that Güler result, which is in line with the seminal Nesterov method, is based on taking γk equal to the
positive root of the second order equation (28). Indeed, the above mentioned progress simply relies on the
fact that one can argue with an inequality instead of the equality in (28).

• The flexibility of our approach allows us to provide a large family of inertial proximal algorithms with similar
convergence rates (see section 7).

6. Stability with respect to perturbations, errors

Consider the perturbed version of the evolution equation (AVD)α,β

(37) ẍ(t) +
α

t
ẋ(t) + β(t)∇Φ(x(t)) = g(t),

where the second member of (37), denoted by g(·), can be interpreted as an external action on the system, a pertur-
bation, or a control term. By following a parallel approach to the time discretization procedure described in section
2.3, we obtain

(38) (xk+1 − 2xk + xk−1) +
α− 1

k
(xk+1 − xk) +

1

k
(xk − xk−1) + βk∂Φ(xk+1) 3 gk.

From the algorithmic point of view, the sequence (gk) of elements ofH takes into account the presence of perturbations,

approximations, or errors. Setting αk =
k − 1

k + α− 1
, λk =

kβk
k + α− 1

, ek =
k

k + α− 1
gk, we obtain the inertial proximal

algorithm

(IPA)αk,λk,ek

{
yk = xk + αk(xk − xk−1)

xk+1 = proxλkΦ(yk + ek).

Note that gk and ek are asymptotically equivalent, which makes them play a similar role as perturbation variables.
The following result extends Theorem 3.1 to the perturbed case.

Theorem 6.1. Suppose α ≥ 1. Take αk =
k − 1

k + α− 1
, λk =

kβk
k + α− 1

, and assume that the sequence (βk) satisfies

the growth condition (Hβ). Suppose that the sequence (ek) satisfies the summability property∑
k≥1

k‖ek‖ <∞.

Then, for any sequence (xk) generated by the algorithm (IPA)αk,λk,ek
, we have

(39) Φ(xk)−min
H

Φ = O
(

1

k2βk

)
and

∑
k≥1

Γk

(
Φ(xk+1)−min

H
Φ
)
< +∞,

where Γk := k(k + α− 1)βk − (k + 1)2βk+1 is non-negative by (Hβ).

Proof. We use the same energy function as in the unperturbed case, namely

Ek := k2βk (Φ(xk)−m) +
1

2
‖vk‖2,

where vk is defined by

vk := (α− 1)(xk − z) + (k − 1)(xk − xk−1).

A computation similar to that of the proof of Theorem 3.1 gives

(40)
Ek+1 − Ek =

[
(k + 1)2(βk+1 − βk) + (2k + 1)βk

]
(Φ(xk+1)−m) + k2βk (Φ(xk+1)− Φ(xk))

+ 1
2‖vk+1‖2 − 1

2‖vk‖
2.

Let’s majorize the last above expression 1
2‖vk+1‖2 − 1

2‖vk‖
2 with the help of the convex inequality

1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ 〈vk+1 − vk, vk+1〉.

According to the formulation (38) of the algorithm, we have

vk+1 − vk = (α− 1)(xk+1 − xk) + (xk − xk−1) + k(xk+1 − 2xk + xk−1)

= −kβkξk + kgk.
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Hence
〈vk+1 − vk, vk+1〉 = (α− 1)kβk〈ξk, z − xk+1〉+ k2βk〈ξk, xk − xk+1〉+ 〈kgk, vk+1〉

≤ (α− 1)kβk (Φ(z)− Φ(xk+1)) + k2βk (Φ(xk)− Φ(xk+1)) + 〈kgk, vk+1〉,
where the last inequality follows from α ≥ 1, the convexity of Φ, and ξk ∈ ∂Φ(xk+1). As a consequence,

1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ (α− 1)kβk (Φ(z)− Φ(xk+1)) + k2βk (Φ(xk)− Φ(xk+1)) + 〈kgk, vk+1〉.

Combining the above inequality with (40), and after simplification, we obtain

Ek+1 − Ek ≤
[
(k + 1)2βk+1 − kβk(k + α− 1)

]
(Φ(xk+1)− Φ(z)) + 〈kgk, vk+1〉.

Hence

Ek+1 − Ek + Γk (Φ(xk+1)− Φ(z)) ≤ ‖kgk‖‖vk+1‖.(41)

By assumption (Hβ), Γk is non-negative. Hence

Ek+1 − Ek ≤ ‖kgk‖‖vk+1‖.

Summing up the above inequalities obtained for j = 1, ..., k − 1, and after reindexing, we obtain

Ek ≤ E1 +

k∑
j=2

‖(j − 1)gj−1‖‖vj‖.(42)

By definition of Ek, we have 1
2‖vk‖

2 ≤ Ek. Therefore, according to (42), we deduce that

‖vk‖2 ≤ 2E1 + 2

k∑
j=2

‖(j − 1)gj−1‖‖vj‖.(43)

Let’s apply the Gronwall Lemma 8.5 with ak = ‖vk‖ and bk = (k − 1)‖gk−1‖. We obtain

‖vk‖ ≤ C :=
√

2E1 + 2

∞∑
j=1

‖jgj‖

From the condition
∑
k k‖ek‖ < +∞, and ek =

k

k + α− 1
gk, we have

∑
k k‖gk‖ < +∞, and hence C is finite.

Returning to (42), we obtain

Ek ≤ E1 + C

∞∑
j=1

‖jgj‖ < +∞.

Hence, (Ek) is bounded from above, which gives the claim. Precisely,

Φ(xk)−min
H

Φ ≤

(
E1 + (

√
2E1 + 2

∑∞
j=1 ‖jgj‖)

∑∞
j=1 ‖jgj‖

k2βk

)
.

By arguing as in Theorem 3.1, we complete the proof of (39). �

7. A general class of proximal algorithms with fast convergence properties

One can of course wonder if the fast convergence results obtained in the previous sections are specifically based
on the type of discretization chosen in the section 2.3. We will show that there is some flexibility, and will present
a whole family of proximal algorithms (IPA)αk,λk

for which similar results are valid. They can be obtained by time

discretization of (AVD)α,β , implicit with respect to the potential term, and semi-implicit with respect to the damping
term according to a real parameter θ.
Precisely, consider the following discretization of (AVD)α,β where we take directly a general convex lower semicontin-
uous proper function Φ: for k ≥ 1,

(44) (xk+1 − 2xk + xk−1) +
α− θ
k

(xk+1 − xk) +
θ

k
(xk − xk−1) + βk∂Φ(xk+1) 3 0.

Equivalently,

(1 +
α− θ
k

)(xk+1 − xk) + βk∂Φ(xk+1) 3 (1− θ

k
)(xk − xk−1),

which gives

xk+1 +
kβk

k + α− θ
∂Φ(xk+1 3 xk +

k − θ
k + α− θ

(xk − xk−1).
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Setting αk = k−θ
k+α−θ and λk =

kβk
k + α− θ

, we end up with the inertial proximal algorithm

(IPA)αk,λk

{
yk = xk + αk(xk − xk−1)

xk+1 = proxλkΦ(yk).

Note that when θ = 1 we recover the previous scheme where the coefficients were taken equal to αk =
k − 1

k + α− 1
and

λk =
kβk

k + α− 1
. But, for a general θ, we must make an independent study of the algorithm.

7.1. Rate of convergence of the values. We will use the following equivalent formulation of the algorithm:

(45) k(xk+1 − 2xk + xk−1) + (α− θ)(xk+1 − xk) + θ(xk − xk−1) + kβkξk = 0,

with ξk ∈ ∂Φ(xk+1).

Theorem 7.1. Suppose α ≥ 1. Take αk =
k − θ

k + α− θ
and λk =

kβk
k + α− θ

. Suppose that the sequence (βk) satisfies

the growth condition: there exists k1 ∈ N such that for all k ≥ k1

(Hβ,θ) βk+1 ≤
k(k + α− θ)

(k + 1)(k + 2− θ)
βk.

Then, for any sequence (xk) generated by the algorithm (IPA)αk,λk
, we have

(i) Φ(xk)−minH Φ = O
(

1

k2βk

)
,

(ii)
∑
k≥1 k

2β2
k‖ξk‖2 < +∞, with ξk ∈ ∂Φ(xk+1),

(iii)
∑
k≥1 Γk,θ (Φ(xk+1)−minH Φ) < +∞

where Γk,θ := k(k + α− θ)βk − (k + 1)(k + 2− θ)βk+1 is non-negative by (Hβ,θ).

Proof. Let us denote briefly m := minHΦ. Fix z ∈ argmin Φ, that is Φ(z) = minH Φ = m, and consider, for k ≥ 1,
the energy function:

Ek,θ := k(k + 1− θ)βk (Φ(xk)−m) +
1

2
‖vk‖2,

with
vk,θ := (α− 1)(xk − z) + (k − θ)(xk − xk−1).

Let’s look for conditions on (βk)k so that the sequence (Ek,θ)k is non-increasing. To this end, we evaluate the term
Ek+1,θ−Ek,θ. Unambiguously, we write vk for vk,θ in the following computation, but note that vk,θ is slightly different
from the vk used in Theorem 3.1. By a similar computation as in Theorem 3.1, we have
(46)

Ek+1,θ − Ek,θ = (k + 1)(k + 2− θ)βk+1 (Φ(xk+1)−m)− k(k + 1− θ)βk (Φ(xk)−m) + 1
2‖vk+1‖2 − 1

2‖vk‖
2

= (k + 1)(k + 2− θ)(βk+1 − βk) (Φ(xk+1)−m) + (k + 1)(k + 2− θ)βk (Φ(xk+1)−m)

−k(k + 1− θ)βk (Φ(xk)−m) + 1
2‖vk+1‖2 − 1

2‖vk‖
2

= [(k + 1)(k + 2− θ)(βk+1 − βk) + (2k + 2− θ)βk] (Φ(xk+1)−m)

+k(k + 1− θ)βk (Φ(xk+1)− Φ(xk)) + 1
2‖vk+1‖2 − 1

2‖vk‖
2

where, to obtain the last relation, we used the relation (k+ 1)(k+ 2− θ) = k(k+ 1− θ) + (2k+ 2− θ). Let’s evaluate
the last term of the equality above 1

2‖vk+1‖2 − 1
2‖vk‖

2 using the elementary algebraic equality

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = 〈vk+1 − vk, vk+1〉 −

1

2
‖vk+1 − vk‖2.

We have

vk+1 − vk = (α− 1)(xk+1 − xk) + (k + 1− θ)(xk+1 − xk)− (k − θ)(xk − xk−1)

= (α− 1)(xk+1 − xk) + k(xk+1 − 2xk + xk−1) + (1− θ)(xk+1 − xk) + θ(xk − xk−1)

= k(xk+1 − 2xk + xk−1) + (α− θ)(xk+1 − xk) + θ(xk − xk−1)

= −kβkξk,
with ξk ∈ ∂Φ(xk+1), where the last equality comes from (45). Combining the above formula with the definition of vk,
we obtain

〈vk+1 − vk, vk+1〉 = 〈−kβkξk, (α− 1)(xk+1 − z) + (k + 1− θ)(xk+1 − xk)〉
= (α− 1)kβk〈ξk, z − xk+1〉+ k(k + 1− θ)βk〈ξk, xk − xk+1〉
≤ (α− 1)kβk (Φ(z)− Φ(xk+1)) + k(k + 1− θ)βk (Φ(xk)− Φ(xk+1)) ,
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where the last inequality follows from the convexity of Φ, and ξk ∈ ∂Φ(xk+1). As a consequence,

1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ (α− 1)kβk (Φ(z)− Φ(xk+1)) + k(k + 1− θ)βk (Φ(xk)− Φ(xk+1)) .

Combining the above inequality with (46), and after simplification, we obtain

Ek+1,θ − Ek,θ ≤ [(k + 1)(k + 2− θ)(βk+1 − βk) + (2k + 2− θ)βk − (α− 1)kβk] (Φ(xk+1)− Φ(z))

≤ [(k + 1)(k + 2− θ)βk+1 − kβk(k + α− θ)] (Φ(xk+1)− Φ(z)) .

Hence

Ek+1,θ − Ek,θ + Γk,θ (Φ(xk+1)− Φ(z)) ≤ 0,(47)

where
Γk,θ := k(k + α− θ)βk − (k + 1)(k + 2− θ)βk+1.

By assumption (Hβ,θ), we have Γk,θ ≥ 0 for all k ≥ k1, and hence Ek+1,θ ≤ Ek,θ. The sequence (Ek,θ)k≥k1 is
non-increasing and minorized by zero. Consequently, it is convergent. By definition of Ek,θ, we obtain, for all k ≥ k1

k(k + 1− θ)βk
(

Φ(xk)−min
H

Φ
)
≤ Ek,θ ≤ Ek1,θ.

Consequently,

Φ(xk)−min
H

Φ = O
(

1

k2βk

)
,

that’s item i). The end of the proof is similar to Theorem 3.1. �

7.2. Rate of convergence of the velocities. To obtain fast convergence of velocities to zero, we need to introduce
the following slightly strengthened version of (Hβ).

Definition 7.2. We say that the sequence (βk) satisfies the growth condition (H+
β,θ) if there exists k1 ∈ N and ρ > 0

such that for all k ≥ k1

(H+
β,θ) βk+1 ≤

k(k + α− θ − ρ(α− 1))

(k + 1)(k + 2− θ)
βk.

Note that (Hβ,θ) corresponds to the case ρ = 0. Let’s give an equivalent form of (H+
β,θ) convenient for calculation:

(48) ρ(α− 1))kβk ≤ Γk,θ.

We can now establish the following rate of convergence for the velocities, and the acceleration.

Proposition 7.3. Suppose that α > 1 + θ
2 . Under condition (Hβ,θ)

+ we have

+∞∑
k=1

k‖xk − xk−1‖2 < +∞ and

∞∑
k=1

k2‖xk+1 + 2xk − xk−1‖2 < +∞.

Moreover
∞∑
k=1

kβk

(
Φ(xk+1)−min

H
Φ
)
< +∞.

Proof. Consider, for k ≥ 1, the global energy function

Wk := βk (Φ(xk)−m) +
1

2
‖wk‖2,

with m = infH Φ and wk := xk − xk−1.
Let’s evaluate the term (k + 1)(k + 2− θ)Wk+1 − k(k + 1− θ)Wk. A similar computation as in Theorem 7.1 gives

(49)

(k + 1)(k + 2− θ)Wk+1 − k(k + 1− θ)Wk

= (k + 1)(k + 2− θ)βk+1 (Φ(xk+1)−m)− k(k + 1− θ)βk (Φ(xk)−m)

+ (k+1)(k+2−θ)
2 ‖wk+1‖2 − k(k+1−θ)

2 ‖wk‖2

= [(k + 1)(k + 2− θ)(βk+1 − βk) + (2k + 2− θ)βk] (Φ(xk+1)−m) + k(k + 1− θ)βk (Φ(xk+1)− Φ(xk))

+ k(k+1−θ)
2

(
‖wk+1‖2 − ‖wk‖2

)
+ 2k+2−θ

2 ‖wk+1‖2

≤ k(α− 1)βk (Φ(xk+1)−m) + k(k + 1− θ)βk (Φ(xk+1)− Φ(xk))

+ k(k+1−θ)
2

(
‖wk+1‖2 − ‖wk‖2

)
+ 2k+2−θ

2 ‖wk+1‖2

where, to obtain the last relation, we used the hypothesis (Hβ,θ). On the other hand,

1
2‖wk+1‖2 − 1

2‖wk‖
2 = − 1

2‖wk+1 − wk‖2 + 〈wk+1 − wk, wk+1〉
= − 1

2‖xk+1 − 2xk + xk−1‖2 + 〈xk+1 − 2xk + xk−1, xk+1 − xk〉
= − 1

2‖xk+1 − 2xk + xk−1‖2 −
〈
α−θ
k (xk+1 − xk) + θ

k (xk − xk−1) + βkξk, xk+1 − xk
〉
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with ξk ∈ ∂Φ(xk+1), where the last equality comes from (45). After multiplying by k(k + 1− θ), we obtain

k(k+1−θ)
2 (‖wk+1‖2 − ‖wk‖2)

= −k(k+1−θ)
2 ‖xk+1 − 2xk + xk−1‖2 − 〈(α− θ)(xk+1 − xk) + θ(xk − xk−1) + kβkξk, (k + 1− θ)(xk+1 − xk)〉

≤ −k(k+1−θ)
2 ‖xk+1 − 2xk + xk−1‖2 − (α− θ)(k + 1− θ)‖xk+1 − xk‖2 − θ(k + 1− θ) 〈xk+1 − xk, xk − xk−1〉

− k(k + 1− θ)βk (Φ(xk+1)− Φ(xk)) ,

where the last inequality follows from the convexity of Φ, and ξk ∈ ∂Φ(xk+1).
Combining the above inequality with (49), and after simplification, we obtain

(k + 1)(k + 2− θ)Wk+1 − k(k + 1− θ)Wk +
k(k + 1− θ)

2
‖xk+1 − 2xk + xk−1‖2

≤ (α− 1)kβk (Φ(xk+1)−m)

−(α− θ)(k + 1− θ)‖xk+1 − xk‖2 − θ(k + 1− θ) 〈xk+1 − xk, xk − xk−1〉+
2k + 2− θ

2
‖xk+1 − xk‖2.

Equivalently

(k + 1)(k + 2− θ)Wk+1 − k(k + 1− θ)Wk +Ak ≤ (α− 1)kβk (Φ(xk+1)−m) ,

where

Ak :=
k(k + 1− θ)

2
‖wk+1 − wk‖2 + (α− θ)(k + 1− θ)‖wk+1‖2 + θ(k + 1− θ) 〈wk+1, wk〉 −

2k + 2− θ
2

‖wk+1‖2.

By elementary algebraic operations

Ak =
k(k + 1− θ)

2
‖wk+1 − wk‖2 + (α− θ)(k + 1− θ)‖wk+1‖2

+
1

2
θ(k + 1− θ)‖wk+1‖2 +

1

2
θ(k + 1− θ)‖wk‖2 −

1

2
θ(k + 1− θ)‖wk+1 − wk‖2 −

2k + 2− θ
2

‖wk+1‖2

=
(k + 1− θ)(k − θ)

2
‖wk+1 − wk‖2 +

(
(α− 1− θ

2
)k + α− θα+

θ2

2
− 1

)
‖wk+1‖2 +

1

2
θ(k + 1− θ)‖wk‖2.

For α > 1 + θ
2 , and k sufficiently large, all the above quantities are non-negative. Hence

(k + 1)(k + 2− θ)Wk+1 − k(k + 1− θ)Wk +
(

(α− 1− θ
2 )k + α− θα+ θ2

2 − 1
)
‖xk+1 − xk‖2

+ (k+1−θ)(k−θ)
2 ‖xk+1 + 2xk − xk−1‖2 ≤ (α− 1)kβk (Φ(xk+1)−m) .

By condition (Hβ,θ)
+, as formulated in (48), we have ρ(α − 1)kβk ≤ Γk,θ for some ρ > 0, and k sufficiently large.

Hence

(k + 1)(k + 2− θ)Wk+1 − k(k + 1− θ)Wk +
(

(α− 1− θ
2 )k + α− θα+ θ2

2 − 1
)
‖xk+1 − xk‖2

+ (k+1−θ)(k−θ)
2 ‖xk+1 + 2xk − xk−1‖2 ≤ 1

ρΓk,θ (Φ(xk+1)−m) .(50)

Let’s sum the above inequalities for k ≥ k1. According to the estimation
∑
k≥1 Γk,θ (Φ(xk+1)−minHΦ) < +∞ (see

Theorem 7.1 (iii)), we obtain
∞∑
k=1

k‖xk+1 − xk‖2 < +∞.

and
∞∑
k=1

k2‖xk+1 + 2xk − xk−1‖2 < +∞,

which gives the claim. �

Remark 7.4. In Proposition 7.3 we proved that, under condition (Hβ,θ)
+,
∑∞
k=1 kβk (Φ(xk+1)−minHΦ) < +∞.

Let’s show that the following estimates holds too:

(51)

∞∑
k=1

kβk

(
Φ(xk)−min

H
Φ
)
< +∞.

This results from the following elementary majorizations. From (Hβ,θ),

(k + 1)βk+1 ≤ kβk
k + α− θ
k + 2− θ

≤ 2kβk

where the last inequality is valid for k ≥ α− 4 + θ. Hence
∞∑
k=1

(k + 1)βk+1

(
Φ(xk+1)−min

H
Φ
)
≤ 2

∞∑
k=1

kβk

(
Φ(xk+1)−min

H
Φ
)
< +∞,
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which gives the result, after reindexation.

7.3. From O to o estimates. In a parallel way to Theorem 3.5, we are going to prove the following result.

Theorem 7.5. Take αk =
k − θ

k + α− θ
and λk =

kβk
k + α− θ

with α > 1 + θ
2 , θ ∈ R. Suppose that the sequence (βk)

satisfies the growth condition (H+
β,θ). Then, for any sequence (xk) generated by the algorithm (IPA)αk,λk

, we have

Φ(xk)−min
H

Φ = o

(
1

k2

)
.

Proof. Let’s consider the sequence of global energies (Wk)

Wk := βk (Φ(xk)−m) +
1

2
‖xk − xk−1‖2.

By Proposition 7.3, we have
∑+∞
k=1 k‖xk − xk−1‖2 < +∞ and

∑∞
k=1 kβk (Φ(xk)−minHΦ) < +∞, see Remark 7.4

formula (51). Hence
∞∑
k=1

kWk < +∞.

On the other hand, returning to (50) we have

(k + 1)(k + 2− θ)Wk+1 − k(k + 1− θ)Wk ≤
1

ρ
Γk,θ (Φ(xk+1)−m) .

The nonnegative sequence (ak) with ak = k(k + 1− θ)Wk satifies the relation

ak+1 − ak ≤ ωk
with ωk = 1

ρΓk,θ (Φ(xk+1)−m). According to
∑
k≥1 Γk,θ (Φ(xk+1)−minH Φ) < +∞ (see Theorem 7.1 (iii)), we have

(wk) ∈ l1(N). By a standard argument, we deduce that the limit of the sequence (ak) exists, that is

lim
k→+∞

k(k + 1− θ)Wk = lim
k→+∞

k2Wk exists.

Let c := limk→+∞ k2Wk. Hence kWk ∼ c
k . According to

∑∞
k=1 kWk < +∞, we must have c = 0. Hence,

limk→+∞ k2Wk = 0, which gives the claim. �

7.4. Convergence of iterates. Fix x∗ ∈ argmin Φ, and define the sequence (hk) by hk = 1
2‖xk − x

∗‖2. The result
of Proposition 4.1

(52) hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 − λk(Φ(xk+1)−min

H
Φ)− 1

2
‖yk − proxλkΦ(yk)‖2,

is valid for any algorithm (IPA)αk,λk
, and hence it is valid in our setting, αk =

k − θ
k + α− θ

and λk =
kβk

k + α− θ
. From

this result, in parallel to Theorem 4.2, we will deduce the convergence of the iterates.

Theorem 7.6. Take αk =
k − θ

k + α− θ
and λk =

kβk
k + α− θ

with α > 1 + θ
2 , θ ∈ R. Assume (Hβ,θ)

+. Then, any

sequence (xk) generated by algorithm (IPA)αk,λk
converges weakly, and its limit belongs to argmin Φ.

Proof. We apply the Opial lemma, see Lemma 8.3.

(i) By Theorem 7.5 we have Φ(xk)−minHΦ = o

(
1

k2

)
and hence limk→+∞ Φ(xk) = minHΦ. Assume that there

exist x ∈ H and a sequence (kn) such that kn → +∞, and xkn ⇀ x weakly as n→ +∞. Since the convex function Φ
is lower semicontinuous, it is lower semicontinuous for the weak topology, hence satisfies

Φ(x) ≤ lim inf
n→+∞

Φ(xkn) = lim
k→+∞

Φ(xk) = min Φ.

It ensues that x ∈ argmin Φ, which shows the first point.
(ii) Let us now fix x∗ ∈ argmin Φ, and show that limk→+∞ ‖xk − x∗‖ exists. For that purpose, let us set hk =

1
2‖xk − x

∗‖2. From (52), the sequence (hk) satisfies the following inequalities

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2

≤ ‖xk − xk−1‖2 since αk ∈ [0, 1].

Taking the positive part, we find

(hk+1 − hk)+ ≤ αk(hk − hk−1)+ + ‖xk − xk−1‖2.
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From Proposition 3.3, we have
∑+∞
k=1 k‖xk − xk−1‖2 < +∞. By applying Lemma 8.4 (given in the appendix) with

ak = (hk − hk−1)+ and ωk = ‖xk − xk−1‖2, we obtain

+∞∑
k=1

(hk − hk−1)+ < +∞.

Since (hk) is nonnegative, this classically implies that limk→+∞ hk exists. The second point of the Opial lemma is
shown, which ends the proof. �

7.5. The case βk = µkλ. According to the formula Φ(xk+1)−min Φ = O
(

1

k2βk

)
, we need to take βk → +∞ to get

an improved convergence rate compared to the classical situation. For simplicity of the presentation, we take k1 = 1,
the extension to a general k1 is straightforward. As a model situation, take βk = µkδ with µ > 0. Then,

(Hβ,θ) ⇐⇒ (k + 1)δ ≤ k(k + α− θ)
(k + 1)(k + 2− θ)

kδ

⇐⇒ (k + 1)δ+1(k + 2− θ) ≤ kδ+1(k + α− θ)

⇐⇒ (1 +
1

k
)δ+1(1 +

2− θ
k

) ≤ 1 +
α− θ
k

.(53)

For k large, 1
k is close to zero. Then, the left member of the above inequality is equivalent to 1 + δ+3−θ

k . So inequality
(53) is satisfied for k sufficiently large if δ + 3 − θ < α − θ, that is δ < α − 3. As a striking prpoerty, note that the
condition is independent of θ. It is the same as the one obtained in the case θ = 1. Thus, if α > 3, we can take
βk = kδ for any 0 ≤ δ < α− 3. In addition, we have

Γk,θ = k(k+α−θ)βk−(k+1)(k+2−θ)βk+1 = µkδ+1(k+α−θ)−µ(k+1)δ+1(k+2−θ) = µ(α−3−δ)kδ+1 +◦
(
kδ+1

)
.

Once more we can observe that the result is indepent of θ. Thus, with δ < α− 3, the condition (Hβ,θ) is satisfied, and
we have the following results:

Corollary 7.7. Let θ ∈ R, and µ > 0 arbitrarily chosen. Given α > 3, take αk = 1 − α

k + α− θ
, λk = µ

kδ+1

k + α− θ
with 0 ≤ δ < α− 3. Then, for any sequence (xk) generated by the algorithm (IPA)αk,λk

, we have

Φ(xk)−min Φ = o

(
1

k2+δ

)
;∑+∞

k=1 k
2(1+δ)‖ξk‖2 < +∞ with ξk ∈ ∂Φ(xk+1);∑+∞

k=1 k
δ+1 (Φ(xk+1)−minHΦ) < +∞.;∑+∞

k=1 k‖xk − xk−1‖2 < +∞.

7.6. Some examples. Depending on the choice of θ, we obtain a specific algorithm. It is worth noticing that the
corresponding convergence rates do not depend on θ, and therefore of the type of discretization chosen for the damping
term. This is a new result compared to the classical situation (considered below) where the explicit discretization of
the damping term is used. Let’s consider the following cases of particular interest:

a) Case θ = α: it corresponds to the classical explicit discretization of the damping term

(54) (xk+1 − 2xk + xk−1) +
α

k
(xk − xk−1) + βk∂Φ(xk+1) 3 0,

which gives the algorithm (IPA)αk,λk
with αk = 1− α

k
and λk = βk: yk = xk + (1− α

k
)(xk − xk−1)

xk+1 = proxβkΦ(yk),

As a particular case, take βk ≡ µ > 0. This corresponds to δ = 0 in the above model example, which fits the condition
0 ≤ δ < α− 3, since α has been supposed strictly greater than 3. Doing so, we recover the classical results concerning
the proximal method based on Nesterov’s accelerated scheme, see [13], [20], [25], [45]. In particular, when α > 3, we

have Φ(xk)−min Φ = o

(
1

k2

)
.

b) Case θ = 1: it corresponds to the semi-implicit discretization of the damping term

(55) (xk+1 − 2xk + xk−1) +
α− 1

k
(xk+1 − xk) +

1

k
(xk − xk−1) + βk∇Φ(xk+1) = 0.

It provides the algorithm studied in the previous sections with αk = 1− α

k + α− 1
and λk =

kβk
k + α− 1

.
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c) Case θ = 0: it corresponds to the implicit discretization of the damping term

(56) (xk+1 − 2xk + xk−1) +
α

k
(xk+1 − xk) + βk∂Φ(xk+1) 3 0.

This gives the algorithm (IPA)αk,λk
with αk = 1− α

k + α
and λk =

kβk
k + α

:

8. Auxiliary results

8.1. Continuous dynamics. Recall the continuous evolution system (AVD)α,β defined in (10), that served as a guide

for the introduction of the inertial proximal algorithms (IPA)αk,λk
:

(AVD)α,β ẍ(t) +
α

t
ẋ(t) + β(t)∇Φ(x(t)) = 0.

In the following theorem, we specify the hypotheses on the parameters α and β that guarantee the existence and
uniqueness of global trajectories for the Cauchy problem associated with (AVD)α,β . Moreover, we provide a conver-
gence rate of the values which is parallel to the one obtained in Theorem 3.1.

Theorem 8.1. Let Φ : H → R be a continuously differentiable function such that ∇Φ is Lipschitz continuous on the
bounded subsets of H, and such that argmin Φ 6= ∅. Take α ≥ 3. Assume that β(t) : [t0,+∞[→ R+ is a continuously
differentiable function such that, for all t ≥ t0 > 0

(Hβ) β̇(t) ≤ (α− 3)
β(t)

t
.

Then, for any x0 and v0 in H, the (AVD)α,β system has a unique twice continuously differentiable global solution

x : [t0,+∞[→ H verifying the Cauchy data x(t0) = x0, ẋ(t0) = v0. Moreover, the trajectory is bounded and satisfies
the convergence rate: as t→ +∞,

(57) Φ(x(t))−min
H

Φ = O
(

1

t2β(t

)
.

Proof. First write (AVD)α,β as a first-order system, for example

(58)

{
ẋ(t) = y(t)

ẏ(t) = −αt y(t)− β(t)∇Φ(x(t)).

Local existence and uniqueness follows classically from the Cauchy-Lipschitz theorem. Then, passing from local to
global existence will result from global estimates on the trajectory. Just like for the algorithm, a key point is to prove
that the trajectory remains bounded. We follow a parallel argument to the algorithmic case. Given z ∈ argmin Φ, we
introduce the energy function

(59) E(t) := t2β(t) (Φ(x(t))−min Φ) +
1

2
‖(α− 1)(x(t)− z) + tẋ(t)‖2 ,

that will serve as a Lyapunov function. By classical differential calculus, using equation (AVD)α,β , and a convex
differential inequality, we obtain

Ė(t) + Γ(t) (Φ(x(t))−min Φ) ≤ 0,

where

Γ(t) := (α− 3)tβ(t)− t2β̇(t).

By assumption (Hβ), we have Γ(t) ≥ 0, which implies that E(·) is non-increasing on [t0,+∞[. Therefore, it is bounded

from above, which gives (57). In addition, ‖(α− 1)(x(t)− z) + tẋ(t)‖2 is bounded above by a constant which, after
development, gives

(α− 1)2 ‖x(t)− z‖2 + 2(α− 1)t 〈x(t)− z, ẋ(t)〉 ≤ C.

Setting h(t) := 1
2 ‖x(t)− z‖2, we have

(α− 1)h(t) + tḣ(t) ≤ C

2(α− 1)
:= C1.

Equivalently d
dt (t

α−1h(t)) ≤ C1t
α−2. Integration of this inequality immediately gives that h(·), and hence the tra-

jectory x(·), is bounded. Then the solution does not blow up in any finite time interval. By a standard argument
we deduce that (58), and hence (AVD)α,β , has a unique maximal solution on [t0,+∞[ verifying the Cauchy data

x(t0) = x0, ẋ(t0) = v0. �
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Remark 8.2. Recall the growth condition on the sequence (βk) that has been used in Theorem 3.1

(Hβ) βk+1 ≤
k(k + α− 1)

(k + 1)2
βk.

It can be equivalently written as

βk+1 − βk ≤
(α− 3)k − 1

(k + 1)2
βk,

which can be viewed as a discretized version of the condition used in the continuous evolution system

(Hβ) β̇(t) ≤ (α− 3)
β(t)

t
,

This justifies the use of the same terminology (Hβ) for continuous and discrete cases.

8.2. Discrete case. Let us state the discrete version of Opial’s lemma.

Lemma 8.3. Let S be a non empty subset of H, and (xk) a sequence of elements of H. Assume that

(i) every weak sequential cluster point of (xk), as k →∞, belongs to S.
(ii) for every z ∈ S, limk→+∞ ‖xk − z‖ exists.

Then xk converges weakly as k →∞ to a point in S.

The following result allows us to establish the summability of a nonnegative sequence (ak) satisfying some suitable

inequality. Let’s recall that in our setting αk =
k − 1

k + α− 1
.

Lemma 8.4. Suppose αk =
k − θ

k + α− θ
with α > 1, θ ∈ R. Let (ak) and (ωk) be two sequences of nonnegative numbers

such that, for all k ≥ 0,

(60) ak+1 ≤ αkak + ωk.

If
∑+∞
k=0 kωk < +∞, then

∑+∞
k=0 ak < +∞.

Proof. Inequality (60) writes

ak+1 ≤ k − θ
k + α− θ1

ak + ωk.

Equivalently
(k + α− θ)ak+1 ≤ (k − θ)ak + (k + α− θ)ωk,

which gives
(k + α− θ)ak+1 + (α− 1)ak ≤ (k + α− θ − 1)ak + (k + α− θ)ωk.

By summing from k = 0 to n, we deduce that

(n+ α− θ)an+1 + (α− 1)

n∑
k=0

ak ≤ (α− θ − 1)a0 +

n∑
k=0

(k + α− θ)ωk

≤ (α− θ − 1)a0 +

+∞∑
k=0

(k + α− θ)ωk < +∞ by assumption.

The conclusion follows by letting n tend to +∞. �

Lemma 8.5 ([11, Lemma 5.14]). Let (ak) be a sequence of nonnegative numbers such that a2
k ≤ c2 +

∑k
j=1 bjaj for

all k ∈ N, where (bj) is a summable sequence of nonnegative numbers, and c ≥ 0. Then, ak ≤ c+

+∞∑
j=1

bj for all k ∈ N.
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