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1 Abstract 

This chapter describes experimental and modeling work aiming at describing gaze patterns 

that are mutually exchanged by interlocutors during situated and task-directed face-to-face 

two-ways interactions. We will show that these gaze patterns (incl. blinking rate) are 

significantly influenced by the cognitive states of the interlocutors (speaking, listening, 

thinking, etc.), their respective roles in the conversation (e.g. instruction giver, respondent) as 

well as their social relationship (e.g. colleague, supervisor). 

This chapter provides insights into the (micro-)coordination of gaze with other components 

of attention management as well as methodologies for capturing and modeling behavioral 

regularities observed in experimental data. A particular emphasis is put on statistical models, 

which are able to learn behaviors in a data-driven way. 

We will introduce several statistical models of multimodal behaviors that can be trained on 

such multimodal signals and generate behaviors given perceptual cues. We will notably 
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compare performances and properties of models which explicitly model the temporal structure 

of studied signals, and which relate them to internal cognitive states. In particular we study 

Semi-Hidden Markov Models and Dynamic Bayesian Networks and compare them to 

classifiers without sequential models (Support Vector Machines and Decision Trees). 

We will further show that the gaze of conversational agents (virtual talking heads, speaking 

robots) may have a strong impact on communication efficiency. One of the conclusions we 

draw from these experiments is that multimodal behavioral models able to generate co-verbal 

gaze patterns should be designed with great care in order not to increase cognitive load. 

Experiments involving an impoverished or irrelevant control of the gaze of artificial agents 

(virtual talking heads and humanoid robots) have demonstrated its negative impact on 

communication (Garau, Slater, Bee, & Sasse, 2001). 

2 Introduction 

The social relevance of the eyes has been largely investigated. If visually salient objects 

attract attention, cognitive demands of the visual search easily override contrastive properties 

– i.e. spatiotemporal multimodal salience – of the objects (Henderson, Malcolm, & Schandl, 

2009). This is particularly the case for faces (Bindemann, Burton, Hooge, Jenkins, & de Haan, 

2005) and notably of faces having direct eye contact – see Senju et al (Senju & Hasegawa, 

2005) for a review. Võ et al (Võ, Smith, Mital, & Henderson, 2012) argue for a functional, 

information-seeking use of gaze allocation during dynamic face viewing. 

The proper replication of the movement and appearance of the human eye is a challenging 

issue when building virtual agents or social robots able to engage into believable and smooth 

communication with human partners (Marschner, Pannasch, Schulz, & Graupner, 2015; 

Ruhland et al., 2014). We here review some key issues that pave the way towards context-
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aware gaze models. The chapter is organized as follows. We first argue for the importance of 

getting multimodal interactive motion capture data that will enable us to study multi-party 

interactions as dynamically coupled systems. We then review statistical models that can 

capture regularities and generate context-aware behaviors. We finally draw the reader's 

attention to the impact of the appearance of the avatar's eye on gaze perception by human 

viewers and the need for taking care of every processing stage of the perception-action loop, 

namely the active multimodal scene analysis and comprehension, the behavior planning and 

execution, as well as the final rendering of movements. 

3 Interactive gaze 

3.1 Eyes in the visual scene 

Since the seminal works of Yarbus (Yarbus, 1967), Langton (S. R. H. Langton, 2000) and Itti 

et al (Itti, Dhavale, & Pighin, 2003), numerous studies have questioned visual attention and 

proposed models to capture the lawful control parameters of scan paths of static images and 

videos. Visual saliency  – the set of perceptual quality which makes some regions of our 

visual field stand out from their neighborhood – and its interplay with other senses, such as 

audition (Coutrot, Guyader, Ionescu, & Caplier, 2012) or touch (Van der Burg, Olivers, 

Bronkhorst, & Theeuwes, 2009) – has drawn much of attention from disciplines such as 

experimental psychology, image and signal processing or machine vision (Duffner & Garcia, 

2015). Modeling bottom-up visual saliency has been the subject of numerous research efforts 

during the past 20 years, with many successful applications in computer vision and robotics. 

Recently, Borji et al (Borji, Sihite, & Itti, 2013) performed an exhaustive comparison of 35 

state-of-the-art saliency models over challenging synthetic and natural image vs. video 

datasets. Evaluation scores typically consist in comparing human heat maps ‒ computed by 
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pooling gaze data from several subjects watching the data ‒ with saliency maps computed by 

the competing models. Top-down factors driven by the cognitive demand (Goferman, Zelnik-

Manor, & Tal, 2012) – and notably the task – as well as the presence of agents (Schauerte & 

Stiefelhagen, 2014) do also strongly influence the scan paths. Borji et al notably evidence that 

eye fixations in video clips with many actors and moving objects get lowest scores and 

suggest that gaze patterns are often driven in this context by complex cognitive processes that 

necessitate a minimum understanding of what is going on in the (audio)visual scene. 

3.2 Conversational gaze 

Speaking faces are effectively salient and relevant regions of interest in a visual scene – in 

particular when the audio channel is available (Coutrot & Guyader, 2014; Li, Tian, & Huang, 

2014). The scan path to speaking faces mainly goes through the mouth, the eyes, the nose 

ridge and the forehead (Buchan, Paré, & Munhall, 2007; Vatikiotis-Bateson, Eigsti, Yano, & 

Munhall, 1998). The proportion of eye- vs. mouth-directed fixations has been shown to 

depend on cognitive demand: as an example, Lansing et al (Lansing & McConkie, 1999) have 

evidenced that observers spend more time looking at and direct more gazes toward the upper 

part of the talker's face when asked to make decisions about intonation patterns than about the 

words actually being spoken. 

While most of the work about gaze and attention has been performed using non interactive 

stimuli – individual minds and brains observing representations of other people through 

essentially pre-recorded natural or synthetic videos – several studies have been performed on 

interactive gaze, i.e. in situations of sensorimotor reciprocity, i.e. situated face-to-face 

conversations where speakers can see and hear each other. The fact that the observer's actions 

cannot influence the individuals when watching static images or movies has in fact a strong 

impact on joint behaviors. Gaze patterns are known to differ between in situ two-ways 
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interaction settings vs. video replay or video simulation. Foulsham et al. (2011) have shown 

that people were more likely to be gazed at in a video condition than in a live condition when 

they were close to the observer in the scene (e.g., were approaching in order to pass by). 

Using more intimate settings, Laidlaw et al. (2011; 2012) further demonstrated that 

participants sitting in a waiting room looked at a videotaped confederate more often and for a 

longer duration than at a live confederate: videotaping elicits unlimited screening while live 

interactions respect the elementary social ground rules. Risko et al (2016) give numerous 

examples showing that the presence of another person can substantially alter patterns of gaze 

in social contexts. Studies of social attention in the wild have been favored by the recent 

availability of light-weight ‒ and more and more discrete ‒ mobile eye trackers. 

When engaging in overt attention such as the one required during face-to-face interaction, 

the cognitive activity matters. Lee et al (2002) collected gaze data from one female speaker 

during informal face-to-face conversation. They showed that the distribution of the 

magnitudes of gaze shifts in listening mode is much narrower than that of talking mode, 

indicating that, when the subject is speaking, eye movements are more dynamic and active. 

Conversely, gaze of listeners is much more likely to be focused on the source of information, 

i.e. the speaker. Vertegaal et al (2001) measured subjects' gaze at the faces of their 

conversational partners during four-person conversations. They show that speakers gazed at 

their interlocutors about 1.6 times less than listeners. More recently, Otsuka et al (2014; 2011) 

have shown that conversational regimes – namely convergence, dyad-link, and divergence 

among multiparty conversations – as well as participants status – addressed/unaddressed 

participants, overhearing/eavesdropping bystanders – strongly influence gaze patterns and 

head directions between participants. 
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Most of these studies consider faces in the visual field as dynamic stimuli and potential 

regions of interest that can attract fixations of a target speaker according to his/her cognitive 

demand and his/her role in the conversation. Few studies have nevertheless considered gaze 

patterns has the by-product of a coordinated action, i.e. sensible consequences of an 

underlying coupled system in which the interlocutors play an active role and coordinate 

behaviors for sharing common grounds and goals (see notably the importance of the speech 

channel in Richardson, Dale, & Kirkham, 2007). 

 

 

Figure 1. First experimental setting used by Bailly et al (G. Bailly, Raidt, & Elisei, 

2010) to study mutual gaze patterns using computer-mediated face-to-face 

interactions. 

3.3 Mutual gaze patterns 

Settings where gaze patterns of all parties involved in the conversation are monitored in 

parallel with other modalities (e.g. voice, body, head, face and hand gestures) are rare. Several 

studies have of course examined mutual multimodal behaviors using synchronous videos 

(Cummins, 2012) and manual annotations, but the accuracy of gaze estimation by human 

viewers can hardly go beyond the basic contrast between eye contact vs. gaze aversion. Bailly 
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et al (G. Bailly et al., 2010; Raidt, Bailly, & Elisei, 2007) designed a computer-mediated face-

to-face interaction with two pinhole cameras and two Tobii eye-trackers both embedded 

onto two computer screens that displayed live videos of the interlocutors (see Figure 1). Using 

a similar setup, Barisic et al (2013) used dual eye-tracking to investigate real-time social 

interactions: they eliminated the problem of live video capture by tele-representing the 

interlocutors by virtual avatars (see also the experiment performed by Boker et al., 2009 

where they manipulate the control parameters of Active Appearance Models). The Barisic et 

al system was inspired by Carletta et al (2010) who demonstrated a dual-tracking system 

using an experimental paradigm for cooperative on-screen assembly of two-dimensional 

models. More recently, Brône and Oben (2015) recorded several face-to-face interactions with 

two head-mounted eye-trackers and associated scene cameras. 

In our experiments with dual videos and eye-trackers (G. Bailly et al., 2010), we analyzed 

the typical distributions of the fixations and blinking rates of one target female participant 

over the facial elements (eyes, mouth, nose ridge, other parts of the face) of the face of her 10 

different interlocutors and the mirror distributions of the interlocutors' gaze on her own facial 

parts. We showed that these distributions depend on their joint cognitive states, e.g. speaking 

turns are almost always associated with an eye contact and more specifically with a saccade of 

the speaker's gaze towards the right eye of the interlocutor, speakers mainly monitors the eyes 

of their interlocutor while listeners monitors their lips, etc. The interaction scenario was a 

speech game where interlocutors have to read, utter and repeat so called Semantically 

Unpredictable Sentences (SUS) (Benoît, Grice, & Hazan, 1996) such as "the hammer fires the 

cake that spikes". These utterances are quite difficult to recognize: when the speaker reads 

aloud a sentence for the first time, the speaker and the listener have respectively to speak 

clearly, lip-read and monitor the others’ gaze to ensure that the message is correctly passed 
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over. When the listener repeats back what he/she has understood, the respective speaking and 

listening conditions differ: the text giver knows the textual content and "only" listens to check 

if the text is correctly spelled out by the receiver. The role of the speaker or listener in the 

conversation has an impact on the a priori knowledge of what will be exchanged and we 

expect the role to influence the multimodal behaviors of the speakers. Each member of the 

dyad was thus text giver and receiver in alternation. We showed that their respective roles and 

a priori knowledge on the exchanged linguistic content both impact the gaze patterns and the 

blinking rate, e.g. blinking frequency is much higher while speaking (here an average of 0.6 

blinks per seconds) than while listening (0.1 blinks per seconds) and blinking frequency is 

almost null when receivers listen to the giver's first reading. Note that large head shifts (such 

as occurring when the text giver finishes reading the target sentence and gets ready to speak to 

the receiver) are also systematically accompanied by a blink. 

4 Learning & generating gaze patterns 

4.1 Grounding gaze patterns 

Several generative models of gaze patterns have been proposed. The most long-winded 

line of research has been initiated by Itti et al (Itti et al., 2003; Itti, Dhavale, & Pighin, 2006) 

who proposed a photorealistic attention-based gaze animation that is grounded on a model of 

saliency and a biological model of the eye/head saccade subsystem. Itti et al propose a 

winner-takes-all strategy for allocating the current fixation to the most salient region of a map 

that combines bottom-up saliency with top-down task-relevance and attention guidance. Sun 

(Sun, 2003) proposed a hierarchical saliency model that first decomposes the scene into a 

pyramid of regions of interest and further constraints the fixations to first exhaust salient sub-

regions of an image before switching to another region. Raidt et al (Picot, Bailly, Elisei, & 
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Raidt, 2007) augmented the Inhibition of Return (IoR) mechanism proposed by Itti et al for 

attention guidance with a stack of attention – in which are stored the position and local 

appearance of the most recent N (=4) regions of interest that have been fixated – and added an 

object recognizer that triggers object-specific scrutinization mechanism, in particular when 

detecting a face. A priori knowledge about important regions of interest (objects, faces, etc.) 

is then easily recruited and ad hoc gaze patterning can be triggered. 

Note that generation of gaze patterns can also be grounded on speech signals. A number of 

systems use speech as an input from which to generate facial expressions involving the 

mouth, head, eyes, and eyebrows (Albrecht, Haber, & Seidel, 2002) – for a review of data-

driven mapping techniques addressing this problem see (Ruhland et al., 2014). 

We mentioned in section 3.2 that the structure of conversation has a strong impact on gaze 

patterns. The generation of gaze paths should thus benefit from an incremental estimation of 

the cognitive, psychological and physiological state of the interlocutor(s) as well as the 

locutionary and illocutionary contents of the speech acts. Several authors have proposed 

statistical models that generate gaze patterns in context. Lee et al (Lee et al., 2002) proposed a 

statistical eye movement synthesis model for gazing at faces that exploits empirical 

distributions of durations of fixations and amplitudes of saccades depending on the 

talking/listening mode of the speaker. Vinayagamoorthy et al (Vinayagamoorthy, Garau, 

Steed, & Slater, 2004) and Gu et al (Gu & Badler, 2006) further refined the model for virtual 

characters. There is a rich set of models that exploit empirical distributions for various 

mechanisms related to the conversational structure (e.g. topic-signaling, turn-taking, etc.) or 

participant characteristics (e.g. roles, social status, etc.) Gaze patterns are typically described 

as automata (Mutlu, Kanda, Forlizzi, Hodgins, & Ishiguro, 2012) or belief networks 
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(Pelachaud & Bilvi, 2003) and trigger saccades according to empirical means and standard 

deviations of spatial and temporal gaze parameters. 

Gaze is thus both conditioned by both bottom-up information (i.e. multimodal input) and 

top-down cognitive demands, especially for establishing and monitoring socio-communicative 

relations. 

4.2 Learning joint behaviors 

If several researchers have studied the conversational dynamics (Cummins, 2012; Dale, 

Fusaroli, Duran, & Richardson, 2013; Fusaroli & Tylén, 2016; Schmidt, Morr, Fitzpatrick, & 

Richardson, 2012), few works have tried to actually model the links between multimodal 

behaviors of interlocutors mediated by the structure of their conversation and use these 

models to predict multimodal joint behaviors. The seminal work of Pentland and colleagues 

on social signal processing (Pentland, 2004, 2007) has opened the route to both the inference 

of paralinguistic information from raw signals exchanged during social interaction but also to 

the generation of such social signals for recommendation systems or autonomous agents. 

They built a computational model based on Coupled Hidden Markov Models (CHMMs) to 

characterize the dynamics of dyadic interactions. The degree of coupling was shown to 

correlate with the success of the intended goals. The work of Otsuka et al (2011; 2005) is also 

a very inspiring landmark: they proposed to use a Dynamic Bayesian Network (DBN) to 

estimate addressing and turn taking ("who responds to whom and when?") and predict gaze 

shifts between participants of a multi-party conversation. Speech activity, head and gaze shifts 

across participants were here mediated by the conversational regime (see section 3.2). 

The progress of machine learning techniques offers very powerful tools to mine 

multimodal scores. They offer elegant and efficient ways to perform decision or regression 
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tasks. It is quite tempting to use regression tools to perform a direct mapping between input 

features (observed behaviors, a priori contextual knowledge) and desired output behaviors. 

Thus, Ishii et al. (2014) proposed a support vector machine (SVM) to establish a direct 

mapping between gaze transition patterns and the timing of speech turns in multi-party 

meetings. In this context, interaction sequences are represented as temporal sequences where 

one temporal unit is often the "frame", i.e. one instant of time in an (audio-)visual sequence 

whose duration depends on the acquisition frequency, typically around 40ms. Frame-based 

classifiers are very sensitive to the placement of the analysis window and often exhibit noisy 

temporal output sequences when the window is sliding over the input. These drawbacks are 

also exhibited by non-deterministic mapping techniques such as Gaussian Mixture Regressors 

(GMR). 

Sequential models such as Hidden Markov Models (HMM) or Dynamic Bayesian 

Networks (DBN) partially resolve these issues by mediating the correspondence between 

input/output observations via hidden states or latent variables. These elementary temporal 

units segment the interaction into homogenous spatio-temporal patterns that can be then 

combined into larger interaction units. These interaction units can then combine these 

elementary patterns according to a task-specific syntax and model complex joint sensorimotor 

behaviors by splitting the regression problem into task-dependent subspaces. 

For an introduction to these regression techniques that link input to output observations, 

see the I/O HMM proposed by Bengio & Frasconi two decades ago (Bengio & Frasconi, 

1996). Semi-Hidden Markov Models (Mihoub, Bailly, & Wolf, 2014) have interesting 

properties for modeling and controlling the durations of these joint sensorimotor states – i.e. 

the hidden states of the Markov chains that link input observations with desired output 
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features. Moreover, Dynamic Bayesian Networks combine time dependency and structural 

constraints (with latent variables) with direct causal relations between multimodal features. 

4.3 A sample interactive game 

We illustrate these concepts through results of recently performed experiments on 

multimodal face-to-face interaction (Mihoub, Bailly, Wolf, & Elisei, under revision), where 

gaze was studied together with other signals, such as gesture and speech. Gestural deixis 

usually involves the combination of “what” information – using deictic words (this, that,…) 

or the name of the object/agent – and “where” information – using deictic gestures such as 

head, gaze, body or finger pointing. For that purpose, we designed a game inspired by the 

famous "put that there" paradigm (Bolt, 1980). This interactive scenario – simple as it can 

appear at first sight – is a very interesting benchmark for studying and learning human 

strategies used to maintain mutual attention and coordinate multimodal deixis of objects and 

places – similar to the visual worlds used by Tanenhaus and colleagues (Allopenna, 

Magnuson, & Tanenhaus, 1998) and Clark (2003). 

The interaction consists in a cube game involving an instructor and a manipulator (Fig. 2), 

the latter following orders of the former, which are typically formulated like "Put the red 

dotted cube at the left of the one with the green cross". The task is collaborative: the instructor 

is secretly informed (via a sketch displayed on a tablet) about the pattern to be reproduced by 

asking the manipulator to move cubes from a source manipulator space to a target chessboard 

(see Figure 2). The objective of the statistical model is to learn and reproduce the instructor’s 

coverbal behaviors in terms of gaze and gesture given his/her speech and behavior of the 

interlocutor. This statistical model may be then transferred to a conversational agent (virtual 

avatar, lamp avatar or humanoid robot) capable of instructing a human manipulator. 
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Figure 2: ego-centric view as seen from the instructor and extracted from the cube 

game experiment. The current fixation point of the right eye – monitored by a 

Pertech® head-mounted eyetracker – is cued by a back circle (here surrounding 

the red cube pointed by the hand of the instructor). Time stamps are used to 

synchronize multimodal streams. 

The signal flow between the two participants is modeled by capturing several social 

signals: the manipulator gestures (MP), instructor speech (SP), instructor gesture (GT) and 

instructor gaze (FX). In order to learn generic behaviors, all signals are discrete and refer to a 

limited set of possible references: 

 manipulator gestures are distinguished as: rest, grasp, manipulate, end, none 

 instructor gestures are discretized through a dictionary of 5 regions of interest: rest, 

cube to be displaced, position of target tile, position of the reference cube, none 

 gaze also refers to one of 8 possible regions of interest: manipulator’s face, source 

manipulator space, chessboard, cube to be displaced, position of target tile, position 

of the reference cube, tablet, none 
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 verbal instructions are discretized into 5 elements corresponding to the key lexical 

elements: cube to be displaced, position of target tile, position of the reference 

cube, else, none 

These discrete variables were annotated semi-automatically by only one expert: FX and 

GT were segmented automatically but labelled by-hand in order to avoid the unnecessary 

development of target identification algorithms; SP was first aligned with speaker-

independent phonetic models and further checked by hand; MP strokes are completely 

segmented and annotated by hand. Consistency of this multi-stream labelling is essentially 

post-hoc checked using so-called coordination histograms (Mihoub, Bailly, Wolf, & Elisei, 

2016). Modality-specific micro-controllers are then supposed to generate continuous segment-

specific (i.e; arm, eye, head) movements as well as speech from these discrete instructions 

(see our recent evaluation of such a framework in Nguyen, Duc-Anh, Bailly, Gérard, & Elisei, 

Frédéric, 2016). 

We also suppose that the underlying cognitive task follows a specific syntax, which is 

related to the structure of the interactive task. This syntax is modeled through an intermediate 

layer, mediating between low-level observations, called interaction unit (IU) in line with Ford 

et al (Ford, 2004), which takes 6 values in our experiments: getting instructions, seeking cube, 

pointing the cube, pointing the destination position, verification, validation. 

In the following, we analyzed a set of 30 game plays in which the instructor interacted with 

3 different partners (10 game plays with each one). Each game play consists in placing 10 

cubes given an entirely filled manipulator space (16 cubes) and an empty task space. The first 

cube should be placed in the center tile of the chessboard. The mean duration of a single game 

is around 1 minute and 20 seconds (~2000 frames, 40ms per frame). 
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4.4 Learning joint behaviors with dynamic Bayesian networks 

Given this experimental setting, the question arises how these different – observed or latent 

– variables interact and whether causal relations exist between them. The motivation for this 

analysis is twofold. First, the derivation of a relational graph is an interesting scientific result 

in itself, which can provide valuable insights into the underlying cognitive process. Secondly, 

with respect to the goal of this study, causality graphs can be used as a modeling tool for the 

design of efficient inference algorithms capable of predicting desired variables (here coverbal 

actions) given observed quantities (here verbal actions). 

Of course, the contingent causality relations between the underlying cognitive processes 

are hidden and as such cannot be retrieved with absolute certainty. Statistical models provide 

estimations for these relations, which are derived using different mathematical concepts such 

as correlation and mutual information. The resulting so-called causality graphs provide 

information on conditional independence properties of the variables of the system. In 

particular, for each variable A of the model, the graph provides the so-called Markov 

blanket 𝜕A, defined as the set of variables which, when conditioned on it, make all other 

variables independent of A. 

In the case of time series, where each considered variable is present for each time instant of 

a sequence, dynamic Bayesian networks (DBN) have been established as an important tool for 

modeling structured problems, for learning and inference. They are particularly attractive and 

useful for modeling the dynamics of multimodal behaviors in face-to-face interactions (Huang 

& Mutlu, 2014). DBNs are directed acyclic graphs in which nodes represent random variables 

and edges represent conditional dependencies. Semantically and intuitively an edge from a 

parent node X to a child node Y means that node X has influence over node Y. An exact 

description of how independence statements can be derived from the graph is beyond the 
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scope of this chapter. The interested reader is referred to (Koller & Friedman, 2009) and (K. 

Murphy, 2002). 

In some situations and depending on the application, this dependency structure may be 

manually provided by an expert of the target domain. Alternatively, several statistical 

methods have been introduced to learn the graphical structure of a DBN automatically from 

data (Trabelsi, Leray, Ben Ayed, & Alimi, 2013). In our application, our DBN structure (see 

Figure 3) has been entirely learned from training data. The intra-slice structure is learnt using 

the K2 algorithm (Cooper & Herskovits, 1992). The inter-slice structure is learned using the 

REVEAL algorithm (Liang, Fuhrman, Somogyi, & others, 1998). We employed the Bayes 

Net Toolbox (K. P. Murphy, 2001) for training and inference. The resulting causality network 

(see Figure 3) presents very interesting intra-slice properties such as: 

• The interaction units influence both perception and action streams (black arrows), and 

thus paces the joint behaviors 

• The instructor reacts to the manipulator actions (MP impacts SP, GT and FX) (blue 

arrows) 

• The speech activity (SP) of the instructor influences his co-verbal behavior (GT and 

FX) (green arrows). This is consistent with co-verbal contingency (McNeill, 1992) 

• Each random variable (slice t+1) is influenced by its history (slice t) (gray arrows) 

… as well as inter-slice properties that cue the causal relations within the perception-action 

loop, notably: 

 The deictic chain that chains gaze, pointing gesture and verbal indexing (FX → GT→ 

SP) leads to an effective manipulation (→ MP) 
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Figure 3. The DBN model learned from training data. Variables in gray circles are 

to be predicted in the inference stage. 

The second goal of our work is to be able to infer desired hidden quantities from observed 

quantities, in particular in a real-time setting with low latency (i.e. limited look-ahead 

observations) so that these behavioral models can be used to control artificial agents engaged 

in effective interactions with humans. To this end, the proposed models should be able (1) to 

estimate the interaction units from perceptual observations (speech activity/ manipulation of 

the partner); when the two partners cooperate, the sequential organization of the interaction 

units should ideally reflect the shared mental states of the conversation partners at that 

particular moment; (2) to generate suitable actions (hand gestures of the instructor and his 

own gaze fixations) that reflect his current awareness of the evolution of the shared plan. We 

used the junction tree algorithm (Jensen, Lauritzen, & Olesen, 1990) to perform offline 

estimation by computing the MPE (most probable explanation) of IU, GT and FX given the 

whole sequence of MP and SP. The junction tree algorithm gives an exact solution of the 

estimation problem, i.e. the inferred variable is the most probable one according the 

probabilistic formulation. 
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Table 1 gives the results of the proposed method compared to a more classical setting with 

Hidden Markov Models (HMMs). For all models, 30-fold cross validation was applied. The 

Levenshtein distance (Levenshtein, 1966) is adopted for the evaluation because it computes a 

warped distance between predicted and original signals, which is tolerant to minor 

misalignments. In particular, this avoids getting extremely low scores (near zero) in presence 

of small latencies. 

While the graphical structure was entirely learned in the DBN setting, HMMs are 

characterized by an imposed structure consisting of (i) hidden variables satisfying the Markov 

property and (ii) observed variables, which are conditionally independent from each other 

given the hidden variables. Relaxing these restrictions translates into higher classification 

rates, as can be seen in table 1. While the improvement of the estimation of instructor deixis 

(direction of finger) is minor, large gains are obtained with respect to the estimation of the 

interaction unit, and the gaze direction. In particular, this shows that gaze is a complex 

phenomenon whose estimation can be significantly improved if the conditional dependencies 

on other variables are taken into account correctly. The fixed dependency structures of 

classical HMMs seem to be too restrictive in this context. 

 

Table 1. Estimation performance of the DBN model compared to classical hidden 

Markov models. 

 IU GT FX 

DBN 85% 87% 71% 

HMM 72% 85% 60% 

 



Gaze and face-to-face interaction  Page 20 

 

Because of the Levenshtein distance, these results neglect minor misalignments between 

the reference and the generated scores. We also compared inter-modal synchronization 

patterns using so-called coordination histograms (Mihoub et al., 2016). We showed that DBN 

also better reproduce the natural micro-coordination between multimodal streams. In fact, 

HMM impose to model all transitions between discrete observations at onsets of hidden 

states. 

HMM and DBN may be improved to cope with interactive and highly rhythmical patterns. 

We have shown (Mihoub, Bailly, & Wolf, 2015) that semi-HMM that explicitly model the 

duration of hidden units – so called state occupancy – better capture sensorimotor loops. 

Similar proposals have been recently done for DBN (Donat, Bouillaut, Aknin, & Leray, 

2008). Note finally that Deep Neural Networks (DNN) able to cope with highly structured 

sequences such as Long Short-Term Memory (LSTM) or Clockwork Recurrent Neural 

networks (CW-RNN). DNN (Hochreiter & Schmidhuber, 1997) (Sak et al., 2014) offer 

performative alternatives to Graphical models when large training data is available. 

4.5 Adapting joint behaviors 

One challenge of the original proposal of Pentland et al. (Pentland, 2004) was to observe 

and characterize the dynamics of the social glue – i.e. activities or interactions that strengthen 

the relational ties in a group of people (Lakin, Jefferis, Cheng, & Chartrand, 2003) – via 

dynamical models of multimodal joint behaviors. We have shown (Mihoub, Bailly, Wolf, & 

Elisei, 2015) that models of mutual gaze patterns can in fact implicitly capture social features 

that are encoded via very shallow signals that may escape to human expertise. For instance, 

for the speech game described in section 3.3 where a female speaker interacted with 10 

different interlocutors, we computed distances between datasets and models of gaze behaviors 

of different dyads (i.e. applying model trained on interlocutor A to the dataset of interlocutor 
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B). We then performed multidimensional scaling (MDS) on the distance matrix. Analysis 

evidenced the significant impact of pre-existing social relationships (colleagues vs. students) 

between interlocutors. Such data mining techniques can be used to detect meaningful 

dimensions that structure the interactive human behaviors. By using repertoires of behavioral 

models – or more comprehensive statistical models – trained on multiple dyads or social 

groups, one may expect to faithfully select and adapt autonomous systems to their audience, 

notably the role it has to play in the conversation and the social relationship it wants to 

establish. As an example, De Kok et al (2013) used so-called "speaker descriptors" (mean and 

standard deviation of pitch and energy, speech rate and average gaze shift per minute) to 

select an appropriate model of back channeling ‒ trained as Conditional Random Fields 

(CRF) models ‒ amongst a collection of pre-analyzed dyadic interactions. 

4.6 Effective gaze tracking and generation 

Note that the behavioral models proposed above rely on (1) an active visual scene analysis 

that should deliver estimations of the gaze direction of the conversational partners as well as 

track the positions of potential objects of interest and (2) a faithful gaze generator that 

effectively direct the agent’s gaze towards the intended targets. Section 5 sketches the current 

state of the art concerning non-invasive gaze estimation. Section 6 further underlines the 

importance of accurate gaze control and rendering. 
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5 Active gaze estimation from images and videos: gaze patterns and 

interaction models 

If behavioral models can be trained using data collected on interlocutors with invasive 

motion capture systems – such as head-mounted eyetrackers or other wearable sensors – 

autonomous agents should rely on egocentric sensors such as embedded cameras. 

The direct estimation of gaze direction from images or videos can be a hard challenge 

according to the chosen experimental setup. The best standard solutions use special hardware 

with multiple head-mounted cameras often operating in the infrared spectrum. Although 

complex, these solutions can now be miniaturized enough to be integrated into mobile 

devices, and latest technologies allow eye-tracking to be integrated into head-mounted gears 

like the Google® or SMI® glasses. 

Gaze estimation in the wild tries to solve this problem from RGB images or images taken 

from RGB-D (consumer depth) cameras. A major challenge here is to be able to generalize to 

different head poses and to different individuals. Calibration to the subject at hand is a 

preponderant methodology, although auto-calibration and calibration free methods are on the 

rise. Estimation in the wild requires preliminary face detection or head tracking. This 

estimation is greatly enhanced by depth information such as provided by RGBD sensors such 

as the Kinect®. As an example, Funes-Mora and Odobez (2014) learn a user-specific 3D head 

model in an off-line stage. During on-line estimation, the 3D head pose is tracked by aligning 

new 3D data with the model using iterated closest points (ICP) initialized with a Viola-Jones 

face detector. 

Methods on gaze estimation itself can roughly be classified into two families of 

approaches.  Geometric methods fit a 2D or 3D model of the eye to data, as for instance in 
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(Valenti & Gevers, 2012). These methods are often chosen when specific hardware is 

available in a multi-camera setup and/or when data quality is high. Appearance based 

methods, on the other hand, use direct regression of gaze from appearance features learned 

from training samples. Issues are the quality of training data in terms of the resolution of the 

input eye images, and in terms of number of subjects; the ability to generalize; and the 

problem of obtaining reliable training labels in the case of supervised learning. As an 

example, Sugano et al (Sugano et al. 2014) proposed a regression plus synthesis approach, 

where random forests are trained in an offline stage on a mixture of real and synthetic data, 

which has been created by 3D reconstruction from multiple cameras. In Funes-Mora and 

Odobez (2014), gaze direction is estimated in the head coordinate system (after head tracking) 

using regression from histogram of oriented gradient (HoG) features and then mapped back to 

the global coordinate system. In Duffner and Garcia (2015), visual focus of attention (VFOA, 

i.e. discrete gaze information restricted to a set of chosen focal points) is inferred with an 

HMM. In a sequential setting, particle filtering tracks faces and VFOA jointly. Again, the 

observation model resorts to image primitives such as HoG features or color histograms. 

Note that recent methods augment image-based information with contextual cues, such as 

multimodal contingency, visual saliency, learned gaze patterns and other interaction models. 

The objective is to leverage the strong linkage between gaze and other verbal and non-verbal 

signals in human interactions. These contextual features are exploited to improve the quality 

of gaze estimation or, alternatively, to contextualize training labels. 

In Sugano et al (2013), gaze is estimation is combined with visual saliency, i.e. a priori 

information on the attractiveness of certain locations in the image. Saliency is extracted 

through face detection, as faces are more likely to be looked at, and additional low-level 

information calculated from texture. The saliency information is accumulated into Gaze 
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probability maps, which are used as input (soft targets) to train Gaussian process regressors. 

Alnajar et al (2013) exploit human gaze patterns, which are learned in an offline stage. The 

goal is to perform gaze estimation in an uncalibrated setting: initial gaze sequences are first 

estimated through classical regression and then aligned with known template gaze patterns. 

Such signal-dependent bottom-up information are often complemented with a priori top-

down information such as the possible regions of interest (RoI) in the scene, the dialog 

structure, the respective roles of the speakers, the possible conversational regimes, etc. As an 

example, Sheiki and Odobez (Sheiki and Odobez, 2014) modeled gaze patterns during multi-

party meetings and exploit the very properties of these interaction scenarios, notably speaking 

activity – i.e. people tend to look at speakers –, verbal content – i.e. people tend to look at 

verbally referenced objects, with a mean delay of 2s (Richardson, Dale, & Shockley, 2008) – 

and topic  – gaze mirrors mental state (Teufel, Alexis, Clayton, & Davis, 2010). 

Furthermore, gaze estimation may benefit from other modalities. The kinematic chain of 

attention involves the whole body, from the orientation of feet and body to the orientation of 

head and eyes. Conversely, the orientation of all these segments contribute to gaze estimation 

(Hietanen, 1999) (S. R. Langton, Honeyman, & Tessler, 2004). Thus, the so-called Midline 

effect (Fuller, 1992) (Hanes & McCollum, 2006) rules the relation between gaze and head 

orientation. 

Finally, gaze estimation should be linked to action and scene comprehension. Active 

perception refers to the ability of agents to act to better perceive (see Bajcsy, 1988 for a 

general theoretical framework for active perception). Such actions comprise self-motion (e.g. 

moving away from interfering sources or near to sources of interest), verbal (e.g. asking 

interlocutors to play again) as well as nonverbal communication (e.g. displaying facial 

expressions expressing doubt or surprise) so that to renew percepts. Ferreira et al (2013) have 
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notably proposed a Bayesian framework for multimodal perception through an active 

attentional and behavioral exploration of the environment. Optimal exploration can be then 

expressed in terms of various criteria such as entropy minimization or maximization of reward 

such as a posteriori probability of given events. 

Active visual perception also refers to the fact that humans should move eyes to perform a 

fine-grained analysis of a given region of interest (RoI). In fact, the 6 to 7 million cones that 

provide the eye's color sensitivity are much more concentrated in the central spot known as 

the macula. In the center of that region is the "fovea centralis", a 0.3 mm diameter rod-free 

area with very thin, densely packed cones. Saccades are performed to bring the RoI into the 

fovea. There are thus major consequences: (1) the input vision stream that delivers 

information on the actual state of possible ROI is full of missing data since this information is 

only renewed by overt attention shifts: estimation of the gaze of others is thus performed on 

demand of behavioral models (see early work conducted by Yarbus, 1967), i.e. when such 

information is necessary to keep track of another’s intentions; (2) this action-for-perception is 

one of the basic mechanism for shared attention mechanisms and, more generally, theory of 

mind models (ToM) (Baron-Cohen, Jollife, Mortimore, & Robertson, 1997) that conversely 

enable others to infer our own intentions. Mutual gaze reading is thus a perquisite for 

effective intelligent interaction. Easing gaze reading for the conversational partners is a key 

issue for the development of social avatars and androids. 

6 Easing gaze reading 

The generation of task-relevant and interlocutor-adaptive gaze patterns is of course a 

crucial step towards building credible human-agent interactions. These high-level control 

strategies should not conceal the low-level control and embodiment issues. The embodiment 

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/retina.html#c2
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of the artificial agent matters and may bias the perception of the intended movements by 

human viewers. 

As outlined previously, the estimation of the gaze direction of others is a complex by-

product of multiple cues that involve eye-related features – notably the position of the iris in 

the eyelid opening – as well as features related to other deictic features including low-level 

cues such as body and head posture and high-level cues such as a priori information on 

potential targets. We demonstrate below that several eye-related features impact the gaze 

reading. 

 

 

 

Figure 4. Photogrammetric data showing the deformation of eyelids according to 

gaze direction (from Gérard Bailly, Elisei, Raidt, Casari, & Picot, 2006) 

6.1 Eye appearance 

Trutoiu et al (Trutoiu, Carter, Matthews, & Hodgins, 2011) studied temporal and spatial 

deformations of eyelids when blinking and showed that viewers are quite sensitive to the 

dynamics of eye blinking. Elisei et al (Elisei, Bailly, & Casari, 2007) showed empirically that 

gaze shifts are accompanied with eyelids movements (see Figure 4). Oyekoya et al (Oyekoya, 
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Steed, & Steptoe, 2010) confirmed that eyelid movements play an important part both in 

conveying accurate gaze direction and improving the visual appearance of virtual characters. 

In a series of books (M. Tomasello, 2009; Michael Tomasello, 2008), Tomasello and his 

colleagues notably propose that the phylogenetic specificity of humankind rests in its species-

specific adaptation for sociability. The account offered by Tomasello contrasts human 

cooperation and altruism with nonhuman primate competition, and proposes that human 

altruism leads to shared intentionality (the ability to share attention to a third party – object or 

agent – and, more generally, to share beliefs and intentions). Tomasello (Michael Tomasello, 

Hare, Lehmann, & Call, 2007) further proposed the cooperative eye hypothesis (CEH). The 

CEH suggests that the eye's visible characteristics evolved to ease gaze following. Kobayashi 

& Kohshima (Kobayashi & Kohshima, 2001) have notably shown that humans have the 

smallest iris proportion in the eye opening and the largest contrast between iris and sclera 

colors among the primate and non-primate species with eyes. 

Conversely in HAI, humans expect social agents to offer back cooperation, altruism and 

share goals and plans. Such cooperative behavior will also be favored by the agents' gaze 

readability. This readability is both a control and a design issue: the eyes should be controlled 

and move in an appropriate and predictive way but should also be designed so that the eye's 

visible characteristics are similar to those that humans have developed for the sake of social 

interaction. 

6.2 Estimating gaze direction of avatars 

Several studies have shown that multiple cues influence the estimation of gaze direction. 

Gaze direction is a complex by-product of body, head and eye orientation. Contextual features 

combine with these bottom-up cues to direct attention. There is surprisingly few works 
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assessing the perception of the gaze of virtual or robotic agents by human observers (see 

however Cuijpers & van der Pol, 2013 experiments with the Nao). Remarkable experiments 

have been conducted by Al Moubayed et al (S. Al Moubayed, Edlund, & Beskow, 2012; 

Samer Al Moubayed, Skantze, & Beskow, 2012) with a lamp avatar called Furhat. They 

notably compared the estimation by human observers of the gaze of Furhat, its virtual model 

and the video of its performance both displayed on screen. They showed that Furhat is the 

only display escaping from the Mona Lisa effect
1
 (Gregory, 1997) and delivering very 

accurate gaze direction, independently of the observer’s viewing angle. Similar experiments 

have been conducted by Delaunay et al. (Delaunay, Greeff, & Belpaeme, 2010). Onuki et al. 

(Onuki, Ishinoda, Kobayashi, & Kuno, 2013) compared the impression given by mechanical 

eyes and a lamp avatar: they concluded that eyes with a round outline shape and a large iris 

were most suitable for precision and subjective agreement. 

 

Figure 5. The robot's and human's eyes and robot's eyelids used for the eye 

direction experiment, accordingly to our hypotheses. [A]: eyes with no iris; [B] 

eyes with large colored iris caps; [C] eyes with human-sized colored iris caps; [D] 

human eyes; [E] robot's eye gaze without adjustment of eyelids position; [F] 

                                                 

1
 A person depicted in portrait paintings does not appear slanted even when observers move around. 

Moreover its gaze seems to follow you when its gaze is facing the original view. 
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robot's eye gaze with eyelids position adjusted. Right: the interaction set-ups 

where the participants are either faced to a robot with 3 different iris sizes or a 

human informer gazing at given tile of a chessboard that they were asked to guess. 

We also performed (Foerster, Bailly, & Elisei, 2015) a comparative evaluation of the 

impact of the iris size and the coordination between eye direction and eyelid aperture for the 

estimation of gaze direction of our iCub humanoid robot Nina by human viewers (see above). 

We show that the coordination between eye direction and eyelid aperture significantly 

contribute in reducing estimation errors. We confirmed the findings of Onuki et al. for the 

benefit of endowing avatars with large irises. We also compared the performance of the robot 

with that of a human informer: surprisingly the robot outperformed the human challenger! 

7 Future trends 

We addressed the challenge of endowing avatars with social gaze. We have demonstrated 

that these avatars should pay attention to the analysis of audiovisual scene they step in but 

also to the overt behaviors and estimated intentions of the other agents sharing the 

environment and conversing with them. We argue for the benefits of building statistical 

models of multimodal behaviors from human demonstrations, i.e. by collecting traces of 

exemplary interactions comprising gaze tracks and behavioral signals of all interlocutors 

together with the estimation of underlying organization of conversational structure and goals. 
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Figure 6. Beaming the GIPSA-Lab iCub: the human tutor (left) monitors the head 

and eyes of the iCub robot (right) while perceiving (viewing and listening) the 

remote scene via a head mounted display that plays back the audiovisual streams 

captured by the cameras and microphones embedded into its eyes and ears. This 

cognitive gift artificially provides the robot with situated social skills. 

Such a supervised training faces numerous issues. When performing off-line on collected 

traces, the performance of current statistical models – even on simple and controlled scenarios 

involving a reduced set of conversational units – is still far from perfect. Big data is certainly 

required to inspect the multiple factors that may influence behaviors, along the ever-changing 

linguistic, paralinguistic and nonlinguistic dimensions of social interactions. But the use of 

such off-line models for monitoring one-line interactions is still an issue. Moreover the 

retargeting of human behavior on artificial embodiments faces two main challenges: (a) the 

source and target degrees of freedom have different properties in terms of dynamics, 

kinematics and appearance; (b) the expected behaviors of human interlocutors – that are 

heavily conditioning the input features of predictive behaviors – will be impacted in an 

unpredictable way by the retargeted behavior and appearance of the avatar. We are presently 

exploring an original way of coping with this double challenge by immersive teleoperation 

(Gérard Bailly, Elisei, & Sauze, 2015): the human tutor provides a robot with social behaviors 
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by perceiving and acting in the scene though its robotic effectors (see figure above). The 

human tutor provides the cognitive abilities and the robot the sensorimotor affordances. The 

robot stores these passively-experienced behaviors into a behavioral memory it will then mine 

to build socially-effective models. More autonomous strategies – such as developmental 

learning or learning by curiosity – should take over such a human bootstrapping procedure 

and replace direct supervision with indirect reward. 

We believe that off-line learning of behavior models from massive amounts of data (big-

data) will further boost the recognition and predictive performance of the discussed data-

driven methodologies. Recently, deep neural networks have been rediscovered in computer 

vision and machine learning and proven to be extremely efficient, in particular for sequential 

data (Karpathy et al., 2014) . Handling multi-modality is increasingly shown to be important 

in these models, where combining and modeling audio and video channels can provide 

significant gains in applications like audio-visual speech recognition (Ngiam et al., 2011) and 

audio-visual gesture recognition (Neverova, Wolf, Taylor, & Nebout, 2016). 

While the availability of massive amounts of training data has been beneficial to various 

fields of research, it can be argued that supervised learning using annotated data had most 

impact in a majority of cases, e.g. in visual object recognition trained on >1 million annotated 

images (Krizhevsky, Sutskever, & Hinton, 2012). These amounts of data are currently 

unavailable in face-to-face interaction, and it might be argued that a large effort by the 

community is necessary in order to create a corpus of sufficient size. 

In scientific terms, we conjecture that research in data-driven learning of behavior models 

from massive amounts of data will require tackling the task of learning hierarchical models 

capable of learning interactions in several layers of abstraction: high level components 

addressing the important cognitive aspects we also dealt with in this chapter (turn taking, 
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back-channeling etc.), low level components modeling information related to the scene, which 

is often of geometric nature (spatial arrangements between the actors in the scene and their 

body parts, positions of various objects of interest in the scene etc.), as well as intermediate 

levels of representations between these two extremes. We believe that semi-supervised 

learning and weakly-supervised learning of DNN will bring advances to this field. 
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