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3-d topology optimization of modulated and

oriented periodic microstructures by the

homogenization method

Perle Geoffroy-Donders∗ Grégoire Allaire† Olivier Pantz‡

November 13, 2018

Abstract. This paper is motivated by the optimization of so-called lattice
materials which are becoming increasingly popular in the context of additive
manufacturing. Generalizing our previous work in 2-d we propose a method
for topology optimization of structures made of periodically perforated ma-
terial, where the microscopic periodic cell can be macroscopically modulated
and oriented. This method is made of three steps. The first step amounts to
compute the homogenized properties of an adequately chosen parametrized mi-
crostructure (here, a cubic lattice with varying bar thicknesses). The second
step optimizes the homogenized formulation of the problem, which is a classical
problem of parametric optimization. The third, and most delicate, step projects
the optimal oriented microstructure at a desired length scale. Compared to the
2-d case where rotations are parametrized by a single angle, to which a confor-
mality constraint can be applied, the 3-d case is more involved and requires new
ingredients. In particular, the full rotation matrix is regularized (instead of just
one angle in 2-d) and the projection map which deforms the square periodic
lattice is computed component by component. Several numerical examples are
presented for compliance minimization in 3-d.

1 Introduction

The homogenization method is the ancestor of many popular and successful al-
gorithms for topology optimization of structures. Its main idea is to introduce
microstructures with a continuously variable material density as admissible de-
signs in the optimization process. This idea was first introduced by mathemati-
cians [19], [23], [25] (see the textbook [1] for more references), who motivated
the use of such composite materials by the notion of relaxation, i.e., making the
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optimization well-posed. The homogenization method became popular thanks
to the pioneering paper [9] which was the first one to numerically address a re-
alistic problem in the elasticity setting. Since then, the homogenization method
has been replaced by its much simplified version, the so-called SIMP method in-
troduced in [8], [35] (see the textbook [10] for a more complete account), which is
the most commonly used method in commercial topology optimization software,
as well as in many academic contributions. Compared to the homogenization
method, which relies on true composite materials, possibly anisotropic, SIMP
uses only fictitious isotropic materials. Since intermediate densities (between
full material and void) are penalized in the end, there is indeed no need to have
a detailed knowledge and optimization of microstructures.

Nevertheless, the recent progress of additive manufacturing techniques revive
the interest for the use of graded or microstructured materials since they are now
manufacturable. Their range of applications is very large, from standard light-
weighting mechanical structures [32], to the design of bone scaffolds [12, 18],
passing by heat exchangers [22].

Although homogenization theory applies to any kind of composite materials
(without any restriction on the geometry of their microstructure), in this work
we restrict ourselves to periodic homogenization and macroscopically modulated
periodic structures. The reason for this choice is the obvious manufacturabil-
ity of such periodic structures, although other choices would be possible, like
(stationary) random structures (see e.g. [24]). The optimization of periodic
microstructure for composite materials is an old topic, still very active, see e.g.
[5], [6], [7], [16], [21], [30], [31], [33], [34]. Typically, the properties of the mi-
crostructures are homogenized (or averaged), then parametrized in order to op-
timize only a few scalar fields. Very often, these microstructures are anisotropic.
However, their orientation is rarely taken into account and optimized, although
it is well-known that their orientation is a crucial and determining parame-
ter in topology optimization [1, 28]. Actually, if optimizing the microstructure
orientation is not difficult, reconstructing the oriented periodic structure is a
challenging issue. In particular, two neighbouring cells, if oriented differently,
either overlap or leave a small gap between their sides. Therefore, the periodic
structure might be not connected or would not respect an imposed volume con-
straint [36, 11]. Morphing approaches have been suggested [31], but they are
not effective as soon as the cell orientation varies in the structure. Another
method, developed in 2-d [27, 2, 15] alleviates this difficulty by deforming the
original periodic grid with a diffeormorphism, which ensures the cohesion be-
tween cells by slightly distorting them. This diffeormorphism is defined and
computed in such a way that, roughly speaking, its gradient is aligned with the
optimal orientation of the periodicity cell.

The goal of the present paper is to extend this approach from the 2-d setting
to the 3-d case. It is not a simple matter since many new difficulties appear,
which are not merely computational issues but also modeling and theoretical
issues. In particular, orientation in 2-d is easily parametrized by a single angle
which, furthermore, can satisfy a conformality condition, ensuring preservation
of angles upon deformation. Such a conformality condition is a too restrictive
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requirement in 3-d and there are several different ways of representing orienta-
tion. Here, orientation would be represented by a rotation matrix. There are
two main novelties in the present work. First, we propose a new method to reg-
ularize the orientation of the cells in 3-d, which avoids the sign indeterminacy
of a vector representing a direction (see Section 4.3). Second, we extend in 3-d
our 2-d projection method [2] in order to reconstruct a modulated and oriented
periodic structure with properties closed to the homogenized optimal design.
The key difference with respect to the 2-d setting is that the projection is made
direction by direction and not globally (see Section 5).

The content of this paper is the following. Section 2 introduces the optimal
design problem of compliance minimization in 3-d and its relaxation using the
homogenization approach.

Section 3 is devoted to the first or pre-processing step of our method. It
amounts to choose a parametrized periodicity cell, here a cube drilled from end
to end by three rectangular holes, and to compute its homogenized elasticity
properties, as well as their derivatives, with respect to the cell parameters. We
also discuss a representation of the cell orientation by a set of three orthogonal
unit vectors (in 3-d) in Section 3.3.

Section 4 focuses on the second step of our method, namely the optimization
of the homogenized formulation of the 3-d compliance problem, with respect to
the periodicity cell parameters. We rely on a gradient-based algorithm where
the gradient is classically computed by an adjoint approach. The optimal ori-
entation is found analytically [28], [26] since we consider single load compliance
minimization problem. However, for more general problems we could have used
a more standard, albeit less efficient, gradient algorithm for the orientation (see
Remark 2). The method differs from the one developed in 2-d [2] by the reg-
ularization of the cell orientation. Indeed, after optimization, the orientation
has to be slightly regularized in order to lead to reasonable results during the
post-processing step. The regularization method, presented in Section 4.3 is one
of the main novelties of the present work. It relies on the fact that the chosen
orientation representation is not unique: each three vectors can be replaced by
its opposite. Hence, the regularization approach has to take into account this
property. A symmetric matrix, with eigenvectors given by these three orienta-
tion vectors, is introduced. The regularization of this matrix is then preferably
chosen, rather than a direct regularization of the orientation vectors.

Section 5 deals with the third or post-processing step, namely the projection
of the homogenized design over genuine shapes. As in 2-d [2], a vector field ϕ(x),
which distorts a regular grid according to a given local orientation, is defined.
The main difference with 2-d is that the map ϕ is no longer a conformal map,
which would be a too restrictive requirement in 3-d. Section 5.2 introduces a
method to compute the map ϕ. Numerical implementation is detailed in Section
5.4. The numerical results are displayed in Section 5.5 for a cantilever test
case. We emphasize that the orientation regularization and the post processing
algorithm are completely general, meaning that they are not restricted to single
load compliance minimization, and that they can readily be implemented for
any other optimization problem [14].
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In Section 6 numerical examples of the whole process applied to a bridge
and to an electrical mast are displayed.

2 Setting of the problem

Let D ⊂ R3 be a fixed smooth bounded open set (the working domain) and
Ω ⊂ D the reference configuration of an isotropic elastic body. The structure Ω
is clamped on ΓD ⊂ ∂Ω, and submitted to surface loads g on ΓN ⊂ ∂Ω. For sim-
plicity these parts ΓD and ΓN of the boundary are assumed to be given subsets
of ∂D, independent of Ω. We assume that the solid is made of an homogeneous
isotropic linear elastic material of Hooke’s law A, with Lamé coefficients λ and
µ. The displacement u and the stress tensor σ are then solutions of the system

div(σ) = 0 in Ω,
σ = Ae(u) in Ω,
u = 0 on ΓD,
σ · n = g on ΓN ,
σ · n = 0 on Γ = ∂Ω \ (ΓD ∪ ΓN ),

where e(u) = 1
2 (∇u + ∇uT ) is the strain tensor (the symmetrized gradient of

the displacement). Shape and topology optimization consists in determining
the domain Ω that minimizes a given objective function J ,

min
|Ω| ≤ V,

ΓD ∪ ΓN ⊂ ∂Ω

J(Ω) (1)

where V ∈ R+ is the maximum admissible volume. A typical objective function
is the compliance

J(Ω) =

∫
ΓN

g · u ds .

As is well known [1], for most cost functions J , problem (1) does not admit
a solution. This is due to the fact that composite shapes, made of very small
microstructures, can always outperform genuine shapes made of plain material.
A composite shape is described by the local density θ(x) of material and a
homogenized elasticity tensor A∗(x) that depends on the microstructure at the
point x ∈ D. The homogenized or macroscopic displacement u∗ of the structure
is then solution of the system

div(σ) = 0 in D,
σ = A∗e(u∗) in D,
u∗ = 0 on ΓD,
σ · n = g on ΓN ,
σ · n = 0 on Γ = ∂D \ (ΓD ∪ ΓN ).

We emphasize that the mechanical problem is now defined on the whole working
domain D and no longer on a shape Ω ⊂ D. Then, the minimization problem
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should be rewritten as a minimization problem of a relaxed cost function J∗

with respect to the homogenized elasticity tensor A∗ and the density θ

min∫
D
θ(x) dx ≤ V,

A∗(x) ∈ Gθ(x) a.e. x ∈ D

J∗(θ,A∗) , (2)

where Gθ(x) is the set of effective or homogenized Hooke’s laws for microstruc-
tures of density θ(x). The main difficulties in solving the homogenized formu-
lation (2) are, first, to compute the relaxed cost function J∗ (which may be
different from the original cost function J), second and more importantly, to
give a complete and explicit description of the set of admissible Hooke’s laws
Gθ. It is only for special cases (like compliance minimization) that (2) can be
made fully explicit [1]. Furthermore, composite shapes are only ideal mathe-
matical objects. Very often, optimal composites are multi-scale microstructures
(like sequential laminates) which cannot be actually built as they are made of
infinitely small details. To circumvent these obstacles, we restrict the set of ad-
missible composites to periodic microstructures for which the Hooke’s law can
be numerically computed and, furthermore, which can be explicitly projected
on a so-called lattice structure as in [2], [27]. Of course, optimizing periodic
composites is an old idea that goes back at least to [9]. The new idea here is
that this periodic microstructure will be projected to build a sequence of gen-
uine non composite shapes with increasing levels of detail that converges toward
the optimal periodic composite.

3 Preprocessing : homogenized Hooke’s laws of
the microstructures

3.1 Set of admissible microstructures

From now on, we limit our analysis to a simple class of periodic composites,
which is a natural extension to 3-d of the one used in the seminal paper [9].
The periodic cell is the unit cube drilled from face to face by three cylindrical
holes with rectangular cross sections (see Figure 1). Hence this class of com-
posites is parametrized by its geometric parameters m = (m1,m2,m3), where
(mi−1,mi+1) denotes the size of the holes rectangular cross sections perpendicu-
lar to direction ei. We emphasize the fact that we only have three geometric pa-
rameters, since each hole has a common dimension with each of the two remain-
ing holes. The periodic cell with geometric parameters m is denoted Y (m). The
solid volume fraction in Y (m) is θ(m) = 1−m1m2−m1m3−m2m3 +2m1m2m3.
A mathematically more precise definition of the cell Y (m) is given in Section
5.1. Moreover, the cubic cell can be freely oriented in the space. This orienta-
tion is denoted by ω (an explicit definition of ω will be given later in Section
3.3).

Rank 3-laminates are known to reach the optimum for single-load compliance
minimization problems [1]. The directions of lamination are given by the prin-
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cipal direction of the stress tensor and, consequently, form an orthogonal basis.
There are two regimes for the optimal proportions of lamination. First, where
the stress tensor is quite isotropic, the optimum laminate is a non degenerate
rank-3 laminate. This microstructure features closed holes. Second, where the
stress tensor is strongly anisotropic (the principal stress in one direction is much
larger than in the orthogonal plane), the optimum is reached by a degenerate
rank-3 laminate, namely a rank-2 laminate. Such a microstructure looks like
tubular holes in the direction of the largest principal stress. In any case, those
laminates feature up to three well separated microscopic scales and thus they
are far from being manufacturable, even by additive manufacturing processes.
Hence we have to choose a simpler microstructure, featuring a single microscopic
scale, probably sub-optimal but manufacturable. Another reason for choosing
the periodic cell of Figure 1 is that it does not contain closed holes (contrary to
rank-3 laminates) and thus the metal powder can be recovered after the building
process. Indeed, another possible periodic cell, which would be more similar to
a rank-3 laminate, is a cubic cell with solid walls and a closed hole. However it is
not manufacturable since the metal powder would be trapped in the closed hole
and could not be removed Hence, our choice of periodic cell is not the union
between three orthogonal planes, but their intersection, resulting in through
holes. Obviously, this microstructure is not optimal, and could be improved
(for example, by rounding its corners and edges to avoid local stress concen-
trations), possibly at the detriment of the manufacturability. Possibly, other
manufacturable microstructures could be considered. For example a generaliza-
tion of a rank-2 laminate (from the second regime), namely a material featuring
through tubular holes, may be relevant, although not optimal, in the single-load
compliance minimization problem. Other manufacturable orthotropic materi-
als, dedicated to additive manufacturing are developed [24] and could be good
candidates too. We emphasize that orthotropic periodic materials whose elas-
tic properties can be modulated through cell parameters in three orthogonal
directions separately, like rank-3 laminates, are the best candidates for single-
load compliance minimization problems. Indeed, in our numerical experiments,
see [2], compliance minimization with isotropic cells, like Kelvin foams [20], or
orthotropic cells modulated only by density, leads to black and white designs
(with almost no composite zones of intermediate densities), less optimal than the
structures computed by the present method. In other words, these microstruc-
tures are self-penalizing (a feature already remarked for isotropic materials in
[4]). In any case, the present optimization method could be implemented for
other orthotropic composites without any additional work.

Remark 1. Recall that we focus here on single-load compliance minimization
problems (see Remark 2). For other objective functions, suitable microstructures
are not discussed here and should be investigated.
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Figure 1: Periodicity cell Y (m).

3.2 Cell problem and homogenized elasticity tensor

The periodic cell Y (m) is the unit cube perforated by holes, the boundary of
which is denoted by Γint. It defines a composite material which has a macro-
scopic of effective behavior characterized by an homogenized elasticity tensor
A∗. In other words, the local geometry of the cell Y (m) is enough to describe
the elastic properties of the composite material. More detailed explanations
about the homogenization method could be found in [1].

To compute this homogenized tensor A∗, one needs so-called correctors wij ,
corresponding to the local displacements in the cell Y (m), defined for each pair
(i, j) ∈ {1, 2, 3}2 as the solutions of the following cell problem div(A(eij + e(wij))) = 0 in Y (m)

A(eij + e(wij))n = 0 on Γint
y 7→ wij(y) (0, 1)3-periodic

(3)

where eij = 1
2 (ei ⊗ ej + ej ⊗ ei) is a basis of the symmetric tensors of order 2

and n is the normal to the hole boundaries Γint. This problem admits a unique
solution, up to an additive translation. The variational formulation of the cell
problem (3) consists in finding wij ∈ H1

#(Y (m),R3) such that

∀φ ∈ H1
#(Y (m),R3)

∫
Y (m)

Ae(wij) : e(φ) +

∫
Y (m)

Aeij : e(φ) = 0 . (4)

The tensor A∗ is then given in terms of the solutions wij of the cell problems by

A∗ijkl =

∫
Y (m)

A(eij + e(wij)) : (ekl + e(wkl))dy ∀i, j, k, l ∈ {1, 2, 3}. (5)
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The above equation defines indeed a coercive fourth order tensor with the suit-
able symmetric properties of an elasticity tensor.

Since the geometry of the cell Y (m) depends on the parameter m, the corre-
sponding homogenized elastic tensor depends on the parameters m too, and it is
denoted A∗(m). The sensitivity of the homogenized tensor A∗(m), with respect
to m, is given by the same formula than in 2-d, (see [2], equation (6)). Since,
by virtue of its definition (5), A∗ijkl is an energy, computing the sensitivity of
A∗(m) is a self-adjoint problem (no adjoint are necessary) and the derivative
formula is easily obtained by differentiating (5) with respect to the shape.

3.3 Cell orientation

The periodic cells Y (m) may be oriented and their orientation can vary in the
working domain D. Indeed, they are orthotropic: they feature three orthogonal
planes of symmetry. Therefore, their elastic behavior depends also on their 3-d
orientation, denoted ω. The homogenized elastic tensor will be denoted A∗ω(m)
(the orientation is in subscript in the chosen notation). Indeed, thanks to a ro-
tation operator, the homogenized tensor A∗ω(m) can easily be computed for any
orientation ω from A∗ω0

(m), where ω0 is an arbitrary orientation. Consequently,
if the orientation is fixed, the homogenized tensor can be seen as depending only
on the geometric parameters. On the contrary, the geometric parameter m is
an intrinsic variable of the elasticity tensor.

The modeling of the cell orientation in 3-d is a delicate problem: one could
use Euler angles or quaternions for example. However our choice is dictated by
the optimization method. Indeed, the optimal orientation in a compliance mini-
mizing problem with orthotropic cells is given by the three principal directions of
the stress tensor (see Section 4.1). Hence, we view the orientation ω as the set of
three unit vectors aligned with the principal directions: ω = (ω1, ω2, ω3). Those
vectors form an orthonormal basis, since they are eigenvectors of a symmetric
matrix, here the stress tensor.

The reference orientation of the cell is the canonical basis ω0 = (e1, e2, e3),
as in Figure 1. For simplicity, we set A∗ω0

(m) = A∗(m).
Let SO(3) be the special orthogonal group, and let Q(ω) ∈ SO(3) be the

rotation matrix, whose columns are respectively the unit vectors ω1, ω2 and
±ω3. We emphasize that in order to define a rotation matrix (i.e. an element
of SO(3)), we have to ensure that its determinant is equal to 1, and not to −1:
this defines the sign of ±ω3. Eventually Q(ω) is the rotation matrix between
the orientations ω0 and ω.

Let R(ω) be the fourth-order tensor defined by :

∀ξ ∈Ms
3 R(ω)ξ = Q(ω)T ξQ(ω) ,

where Ms
3 is the set of 3 × 3 symmetric matrices. The dependency of A∗ω(m)

with respect to the orientation ω can be made explicit as follows:

A∗ω(m) = R(ω)TA∗(m)R(ω) . (6)
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We emphasize that the knowledge of R(ω) does not define uniquely ω, since the
vectors ωi are chosen arbitrarily up to their sign. This particularity is inherited
from the principal directions of the stress tensor. However, the signs of the
vectors ωi have no impact on the result of equation (6).

3.4 Numerical implementation

The set of effective elasticity tensors {A∗(m) such that m ∈ [0, 1]3} has to be
characterized. The proposed strategy consists in computing the material prop-
erties for a discrete sample of parameters values and using the collected data to
construct a surrogate model for the constitutive law (by a simple interpolation).

A few remarks lead to a massive reduction of the cost of this characterization.
First, the considered cells are orthotropic, hence only 9 coefficients (out of 36)
of the homogenized tensor A∗ω0

(m) have to be computed in order to characterize
it. Second, the homogenized tensor does not have to be computed on the whole
admissible set [0, 1]3 of the geometric parameters m. Indeed, a permutation
s of the parameters mi is equivalent to a rotation of R(s(ω0)), where s(ω) =
(ωs(1), ωs(2), ωs(3)). Hence, we run the characterization of A∗ω0

(m) only on the
subset {m ∈ [0, 1]3 |m1 ≤ m2 ≤ m3}, dividing by a factor 6 the number of
samples.

The computations of A∗(m) are performed with FreeFem++ [17]. We used
a regular discretization of parameters values, with 20 elements in each direction.
The homogenized tensor is numerically represented as a P1 function over the
domain [0, 1]3. Hence the interpolation giving the homogenized tensor on the
whole domain is automatically computed by FreeFem++. The Young modu-
lus of the isotropic material used to design those cells is E = 15GPa and its
Poisson’s ratio is ν = 0.35.

Results for A∗(m) can not be easily displayed since it would involve 3-d
plots. Therefore we content ourselves in displaying only two slices of A∗(m) in
Figures 2(a) and 2(b). The parameter m3 is fixed to 0.5 and the parameters m1

and m2 vary from zero to one. The coefficient A∗1111 (respectively A∗3333) and its
gradient are displayed on Figure 2(a) (respectively 2(b)). Those coefficients are
smooth functions of m1 and m2. Moreover they decrease when m1 (respectively
m2) increases, as is expected. The entry A∗1111 is more sensitive to a variation
of m2 when m1 is fixed than the opposite. Indeed, the larger the m2 × m3

rectangular hole, the weaker the cell is in the direction x1. Moreover, when
m2 = 0 (resp. m1 = 0), the cell features a crack of normal e2 (resp. e1):
the homogenized properties do not reach the ones of the full material. The
entry A∗3333 is a symmetric function of the parameters m1 and m2. Indeed, in
the direction x3, the more significant source of loss of rigidity comes from the
m1 ×m2 rectangular hole, no matter its orientation. When m1 = m2 = 0, the
cell features a crack line in the direction x3. For a load in the same direction,
the crack line has no impact: the homogenized coefficient A∗3333 is equal to the
same coefficient of the full material: A3333.
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(a) A∗1111(m1,m2, 0.5) with A1111 = 25.58 (b) A∗3333(m1,m2, 0.5) with A3333 = 25.58

Figure 2: Isolines of the entries of the homogenized coefficients A∗1111 (left) and
A∗3333 (right) and their gradients (small arrows) according to the parameters m,
with m3 = 0.5. The x-axis is m1, the y-axis is m2

4 Processing: optimization among the set of pe-
riodic composite materials

4.1 Settings of the homogenized problem

In this paper, only compliance minimization problems, as defined in Section 2,
are considered. Recall that its relaxed version for composite designs amounts
to minimize the cost function

J∗(θ,A∗) =

∫
ΓN

g · u∗ ds,

which is also equal to the minimum of complementary energy

J∗(θ,A∗) = min
τ ∈ H0

∫
D

A∗−1τ : τ dx,

where

H0 =

τ ∈ L2(D;Ms
3) such that

div(τ) = 0 in D
τn = g on ΓN
τn = 0 on Γ

 .

Thus, this compliance minimization problem can be recast as a double mini-
mization problem over the stress field and the admissible microstructures [1].
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Namely, it is equivalent to:

inf
σ ∈ H0

m ∈ L∞(D; [0, 1]2)
ω ∈ L∞(D;W )∫
D
θ(m) dx ≤ V

∫
D

A∗−1
ω (m)σ : σ dx,

where
θ(m) = 1−m1m2 −m1m3 −m2m3 + 2m1m2m3

is the local density of the periodic microstructure of parameters m and

W = {(ω1, ω2, ω3) ∈ (S2)3 such that ∀i, j ∈ {1, 2, 3} ωi · ωj = δij} (7)

where S2 is the unit sphere in R3 and δij is the Kronecker symbol.
In order to solve this problem, we use an alternate minimization algorithm

[1], minimizing successively with respect to the stress field σ, the cell parameters
m and the orientation ω of the cell. We introduce the corresponding Lagrangian

L(m,ω, σ, `) =

∫
D

A∗−1
ω (m)σ : σ dx +`

(∫
D

θ(m) dx−V
)
, (8)

where ` is the Lagrange multiplier associated to the volume constraint.
To minimize with respect to the geometric parameters m, we use a projected

gradient algorithm. Minimizing with respect to the stress field σ amounts to
solve the elasticity problem with a material of elasticity tensor equal to A∗ω(m)
in D. For more details on both minimizations, which are completely similar in
3-d to the 2-case, we refer to our previous work [2]. However the minimization
with respect to the orientation ω is different in 3-d, compared to 2-d, and is
presented in full details.

Recall that there are various representations for 3-d orientation, like Euler
angles or quaternions. They could be valid choices if a gradient descent method
was used to compute the optimal orientation. However, this strategy may not
be very efficient due to the occurrence of possible local minima. Besides, as
proved by Pedersen [28] in 2-d and Norris [26] in 3-d, the optimal orientation of
an orthotropic cell is given by the principal directions of the stress tensor. This
result motivates our choice of modeling the orientation as the set of three unit
vectors forming an orthonormal basis: ω = (ω1, ω2, ω3). Then the rotation ma-
trix Q(ω) is simply the change-of-basis matrix from (e1, e2, e3) to (ω1, ω2,±ω3),
the sign ± being chosen so that detQ(ω) = 1 (see Section 3.3 for more details).

At each iteration n of the optimization algorithm, the updated orientation
ωn+1(x) is then given by the three normalized (i.e. unit) eigenvectors of the
stress tensor σn+1(x). Moreover the vectors (ω1, ω2, ω3) are labelled according
to their associated eigenvalue (taken with their sign): from the smaller one to
the larger one. Of course, unit eigenvectors are defined only up to their sign:
they are not uniquely defined and only their direction is unambiguously defined.
However, this sign ambiguity has no influence on the rotation operator R(ω),
defined by (6).
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Remark 2. This approach is more efficient than the gradient descent method,
mainly because it is a global minimization method, providing an optimal orien-
tation at each iteration. However it works only for compliance minimization
problem. For other objective functions, other methods should be implemented.

The complete optimization algorithm is the same as in 2-d [2]. It is an
iterative method, structured as follows :

1. Initialization of the design parameters (m,ω), for example we take m1 =
m2 = m3, constant satisfying the volume constraint, and ω = ω0 =
(e1, e2, e3).

2. Iteration until convergence, for n ≥ 0 :

(a) Computation of the stress σn through a problem of linear elasticity
with A∗ωn(mn) as elasticity tensor.

(b) Updating the orientation ωn+1, using Norris formula.

(c) Updating the cell parameters mn+1 by one step of a projected gradi-
ent algorithm where the descent direction is given by the derivative
according to m of the Lagrangian (8) evaluated at σn and ωn.

This topology optimization algorithm was implemented in the finite element
software FreeFem++ [17] (see [3] for the use of FreeFem++ in optimal design).
All unknown fields are discretized using P1-functions.

At each iteration and for each node of the mesh, the principal directions
of the stress tensor σn+1 are computed thanks to the library lapack. They are
ordered according to their respective eigenvalue. In practice, Mandel notations
are used, in order to replace tensors product by matrix product. Hence, the
fourth-order tensor R(ω) is represented by a 6 × 6 matrix. Its expression in
terms of ω is given in the appendix.

4.2 Numerical results and discussion

The previous optimization algorithm is discussed and illustrated for a cantilever
problem, for which the boundary conditions are displayed on Figure 3. Other
examples are performed in Section 6. The domain size is 15 × 10 × 5 and it
is discretized by a tetrahedral mesh with 3604 elements and 959 vertices. This
mesh is coarse, a parallel implementation would enable the use of finer meshes.
Decomposition domain methods [13] are available in FreeFem++, hence our
algorithms could be parallelized with only few additional work. This has to be
investigated.

The volume constraint is fixed at 35% of the working domain. The conver-
gence history is displayed on Figure 4 : the algorithm converges smoothly and
quickly.

The optimized density θ and cell parameter m displayed on Figure 5. As
usual, 3-d results are difficult to display clearly because only external borders
are represented. Therefore, in Figure 6 various iso-surfaces of the density field
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Figure 3: Boundary conditions for the cantilever problem

are plotted. The optimized structure is clearly not a black and white design.
High densities are reached only around where Dirichlet and Neumann boundary
conditions are applied. The major part of the domain is filled with intermediate
or grey densities. Similarly, the optimized geometric parameters (m1,m2,m3)
vary in their full range from 0 to 1 and they are not equal in a large region of the
domain. The obtained optimal composite is clearly not isotropic. Moreover, the
optimal orientation is displayed on Figures 7(a), 7(c) and 7(e). It is not constant
in the whole domain : the obtained optimal composite takes advantage of the
anisotropy of the cells.

For the sake of comparison, the same test case has been performed with
different homogenized properties. Since minimal compliance for a single load-
case is known to be reached by rank-3 laminates [1], the optimal design for such
laminates has also been computed. For the sake of brevity, the resulting design
is not displayed here. The rank-3 laminate compliance is equal to 14.802 and is
indeed lower than the compliance reached by our periodic optimal homogenized
structure, which is 20.933. Such a large gap in performance is obviously due to
our constraint of choosing a periodic cell with connected holes (see Figure 1) for
manufacturability reasons, while the rank-3 laminates feature closed holes which
are definitely better for structural performance. Another comparison is made
with the Solid Isotropic Material with Penalization (SIMP) method, including a
sensitivity filter (in order to avoid checkerboards). The homogenized tensor A∗

is replaced by θpA where A is the pure material Hooke’s law and the maximal
exponent is p = 3 in the power law of the density. The result is displayed in
Figure 8 since it is a black and white design, more suitable to be displayed. The
optimal compliance reached by this method is 22.401, which is 7% greater than
the compliance reached by the optimal periodic homogenized structure. The
discretized mesh was the same for all test cases, as well as the ersatz material
(0.1% of the elastic tensor of the isotropic material).

4.3 Regularization of the orientation

The orientation might be not very smooth in some regions, in particular in the
areas of either full or zero density, in which the material is isotropic. It is possible
to regularize the orientation field without changing too much the performance
of the final structure. The interest in regularizing the orientation is crucial for
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Figure 4: Convergence history of the objective function (compliance) for the
bridge

(a) m1 (b) m2

(c) m3 (d) density

Figure 5: Optimized geometric parameters m and density of the cantilever

(a) θ ≥ 10% (b) θ ≥ 25% (c) θ ≥ 50% (d) θ ≥ 75% (e) θ ≥ 90%

Figure 6: Threshold of the domain according to the optimized density θ for the
cantilever case
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(a) Optimized ω1 (b) Regularized ω1

(c) Optimized ω2 (d) Regularized ω2

(e) Optimized ω3 (f) Regularized ω3

Figure 7: Optimized (left) and regularized (right) orientation for the cantilever
case

Figure 8: Optimized design of the cantilever with penalized SIMP method
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the post-processing stage to lead to reasonable results. The orientation in those
black and white areas has no influence on the performances of the homogenized
structure. However, they may sensibly degrade the computation of the grid map
ϕ, which distorts a regular grid in order to align the cells along a given local
orientation, see Section 5.

Classically, in order to regularize the orientation, we would like to minimize
a function:

3∑
i=1

||∇ωi||2L2(D) ,

where || · ||2L2(D) denotes the integral over D of the (squared) Frobenius norm

(the same notation shall be used for tensors of order 3 and 4 too).
However, since the orientation vectors ωi are the principal directions of the

stress tensor, they are defined locally up to their sign and can feature disconti-
nuities. Then, there is no hope to compute directly their gradient. A possible
approach would be to introduce a manifold, like in [2] in order to evaluate the
gradients. This approach is doable but since we use an iterative algorithm in
order to regularize the orientation, we should recompute interpolation operators
at each iteration, which is too time-consuming.

Regularized cost function. We present here another approach, based on the
fact that the ωi are computed as the principal directions of a symmetric matrix.
The main idea amounts not to regularize directly the orientation ω but rather
a symmetric matrix M(ω), independent of the arbitrary chosen sign for the
orientation vectors ωi. Recall that Q(ω) is the rotation matrix from (e1, e2, e3)
to (ω1, ω2,±ω3). Let D(λ) be the diagonal matrix, with entries λ1 = −1, λ2 = 1
and λ3 = 0. We define a symmetric matrix M by

M(ω) = Q(ω)TD(λ)Q(ω) , (9)

whose eigenvalues are λi and associated eigenvectors are ωi. Since we want
to regularize the orientation without degrading the compliance, we introduce a
new cost-function to minimize:

Jreg(m,ω) =

∫
D

A∗−1
ω (m)σ : σdx+ η2

reg||∇M(ω)||2L2(D) ,

with σ the stress tensor solution of the elasticity problem and ηreg > 0, a small
coefficient. In practice, ηreg = 0.1 works well.

Approximate minimization. We now describe a SQP type algorithm to
minimize this cost function Jreg with respect to ω. The optimization process
with respect to m is unchanged. At each iteration n, we approximate Jreg at
second order in δω, around the current state, by

Japprox(m,ω+δω) = Jreg(m,ω)+ < J ′reg(m,ω), δω > +
1

2
< J ′′reg(m,ω)δω, δω > .

(10)
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In theory, ω+δω should belong toW , defined by (7). Since the sign of the vectors
of the orientation does not matter, we can impose without loss of generality that
ω and ω + δω have the same determinant. In other words, ω and ω + δω are
both either direct triads or indirect triads and we have:

∀i ∈ {1, 2, 3} ωi + δωi = Sωi, where S = Q(ω+ δω)Q(ω)T ∈ SO(3) , (11)

where SO(3) is the special orthogonal group. First, we change the unknown,
from δω to S, in the minimization of Japprox. Second, we write the necessary
and sufficient optimality condition of this minimization problem as the varia-
tional problem consisting in finding Sn ∈ H1(D,SO(3)) such that for all test
functions T ∈ H1(D,SO(3)):

< J ′reg(m,ωn), ((T − Id3)ωn) >

+ < J ′′reg(m,ωn)((Sn − Id3)ωn), ((T − Id3)ωn) >= 0
(12)

The orientation is then updated with:

ωn+1 = Snωn.

Nevertheless, problem (12) is still too complex. So, we approximate it by
another variational problem whose unknown is no longer a field of orthogonal
matrices in SO(3), but a field of vectors in R3. This approximation is based
on the following idea: since an iterative method is used for regularizing the ori-
entation, between two iterations the orientation should not change drastically.
This means that the rotation matrix Sn should be close to the identity Id3.
Hence the variational formulation (12) is approximated in a neighbourhood of
Id3, which is not a subset of SO(3) (the numerical approximation of a neigh-
bourhood of Id3 in SO(3) is too complicated). In what follows we explain how
to construct this neighbourhood. First, the set of admissible rotation matrices
S in the variational problem (12) is parametrized. Second, this parametrization
allows us to build a neighborhood of Id3.

Since the unknown matrix Sn in (12) is close to the identity, −1 is not
one of its eigenvalues. The Cayley transform ensures there exists an involution
between the set of skew-symmetric matrices and the set of orthogonal matrix,
for which no eigenvalue is equal to −1. Hence, the set of admissible rotation
matrices SO(3) in the variational problem (12) can be restricted to:

{(Id3 −N)−1(Id3 +N) | N ∈M3(R) such thatNT = −N} . (13)

Using again that Sn is close to the identity Id3, by an asymptotic expansion,
we approximate (13) by the following neighbourhood of Id3

VId = {Id3+2N | N ∈M3(R) such thatNT = −N and ||N || << 1} . (14)

Skew matrices inM3(R) can be parametrized by a vector in δs ∈ R3 as follows

F (δs) =

 0 −δs3 −δs2

δs3 0 −δs1

δs2 δs1 0

 .
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Then (14) can be rewritten as:

VId = {Id3 + F (δs) | δs ∈ H1(D,R3) such that ||δs|| << 1} .

Under the hypothesis that Sn is close to Id3, the variational problem (12) is
approximated by a variational problem where H1(D,SO(3)) is replaced by VId.
We take this opportunity to further add a penalization term on the norm of δs
in order to ensure that δs is indeed small. The final approximate variational
formulation is: find δsn ∈ H1(D,R3) such that, for any test function δτ ∈
H1(D,R3),

< J ′reg(m,ωn), (F (δτ)ωn) >

+ < J ′′reg(m,ωn)(F (δsn)ωn), (F (δτ)ωn) >

+
1

η2
pen

< δsn, δτ >= 0 , (15)

where ηpen > 0 is a coefficient, small enough to ensure the stability of the
gradient algorithm. In practice, we take ηpen = 1.

Finally, to update the orientation, we compute the matrix:

Sn = Id3 + F (δsn) ,

which is not a rotation matrix, as already said. Hence ωn+1 is not equal to Snωn

but rather is given by a Gram-Schmidt orthonormalization process, applied to
the set of vectors (Snωn1 , S

nωn2 , S
nωn3 ). Several approximations have been used,

and their combination is not guaranteed to work well. However, in practice the
algorithm converges and its implementation is rather simple.

Derivatives of Jreg. To make (15) fully explicit, we now give formulas for
the derivatives of Jreg(m,ω) with respect to ω. From the definitions (9) of M
and (11) of S, we get:

M(ω + δω) = M(ω) +
(
FT (δs)M(ω) +M(ω)F (δs)

)
+ F (δs)M(ω)F (δs)T .

Eventually, it leads to

< J ′reg(m,ω), (F (δτ)δω) >=

∫
D

(A∗−1
ω0

(m)R(ω)σ) : (R′(F (δτ)ω)σ)dx

+η2
reg

∑
1≤i,j≤3

∫
D

2∇Mi,j(ω) · ∇(FT (δτ)M +M F (δτ))i,jdx ,

and

< J ′′reg(m,ω)(F (δτ)δω), (F (δs)δω) >= 2

∫
D

A∗−1
ω0

(m)R′(F (δs)ω)σ : R′(F (δτ)ω)σdx

+2η2
reg

∑
1≤i,j≤3

∫
D

2∇Mi,j(ω) · ∇(FT (δs)M F (δτ))i,jdx

+2η2
reg

∑
1≤i,j≤3

∫
D

∇(FT (δs))M +M F (δs))i,j · ∇(FT (δτ)M +M F (δτ))i,jdx ,
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Figure 9: Convergence history of the regularization cost function Jreg for the
bridge

where R′(v) is the directional derivative of R(ω) in the direction v, and A∗ω0
is

the homogenized elasticity tensor in the reference orientation ω0.

Numerical results. The above algorithm has been implemented in FreeFem++,
using again P1 functions for all the unknown fields. Recall that λ1 = −1, λ2 = 1
and λ3 = 0. Hence the three vector fields ωi are equally regularized. Indeed ω1

and ω2 have the same regularization coefficient since |λ1| = |λ2|, and the last one
is fully determined by the others thanks to the orthogonality of the eigenvectors
for a symmetric matrix. For the cantilever case, the regularized vector fields
are displayed on Figures 7(b), 7(d) and 7(f). The orientation vectors are not
changed much by the regularization step, except in the black and white design
regions. As can be checked in Figure 9, during the regularization process, the
compliance is only slightly increasing while the regularization term undergoes a
strict decrease.

5 Post-Processing : projection of the optimized
microstructure

The last step is to construct a sequence of classical or genuine shapes that
approximates the computed optimal composite. This sequence is indexed by
a small positive parameter ε > 0 which is the characteristic size of the period
of the periodic composite. In practice, the parameter ε is set to a value freely
chosen by the user. Of course, the smaller ε, the more detailed will be the
resulting genuine shape.
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The main ideas are roughly the same as in 2-d [2] except for the following
crucial points. In 2-d, we took advantage of conformal maps in 2-d in order to
compute a distortion map. We can no longer make this assumption in 3-d and
we present a different approach here. Moreover, the treatment of the orientation
in 3-d is quite different as in 2-d, which implies to adapt our algorithms. The
fact that the distortion map is not a conformal map implies that the sequence of
genuine shapes does not converge exactly to the computed optimal composite,
but only to a close approximation.

5.1 Sequences of shapes

Similarly to the 2-d case, we introduce a map ϕ = (ϕ1, ϕ2, ϕ3) from D into R3,
in order to properly orient each cell locally, without connectivity failures in the
final structure. This map distorts a regular grid, such that each bar in direction
ei is locally oriented along ωi.

For all i ∈ {1, 2, 3}, let Yi be defined by:

Yi(m) =

{
y ∈ [0, 1]3 such that cos(2πyi) ≥ cos(π(1−mi))

}
. (16)

Yi is the unit cube, cut by a central slice of normal ei, and thickness mi, see
Figure 10. Our unit cells Y0(m) can then be analytically defined by:

Y0(m) = ∪1≤i<j≤3 (Yi(m) ∩ Yj(m)) (17)

In order to compute a sequence of genuine shapes approximating the op-
timized homogenized structures, we introduce ε the reference size of the cells,
which is going to 0. The elements of this sequence are denoted by Ωϕ,ε(m), since
they depend on the map ϕ that gives the proper orientation. We give details
about its computation further.
In periodic homogenization, we have two systems of coordinates : x, the macro-
scopic coordinates, and y the microscopic coordinates, indicating the position
into the periodic cell. Classically, we take y = x

ε − E(xε ) to describe a homoge-
nized periodic structure, where E(·) is the floor function.
Thanks to the map ϕ, that distorts the regular grid, the new macroscopic co-
ordinates to be considered are then ϕ(x). The sequence of genuine shapes is
then built according to the exact same scheme as the unit cell Y0(m). Let us
introduce the counterparts of Yi(m) :

Ωi,ϕ,ε(m) =

{
x ∈ D such that cos

(
2πϕi(xi)

ε

)
≥ cos

(
π(1−mi)

ε

)}
. (18)

Hence, the sequence of genuine shapes is given by:

Ωϕ,ε(m) = ∪1≤i<j≤3 (Ωi,ϕ,ε(m) ∩ Ωj,ϕ,ε(m)) (19)

We emphasize that thanks to the periodicity of the cosine function, there is
no need to consider the integer part of xε in the approximation of the microscopic
coordinates.
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Figure 10: Construction of the cell Y0(m) from Yi(m).

Remark 3. The map ϕ is introduced in order to take into account the optimal
orientation of the cell. Hence, ϕ depends only on the orientation ω. In partic-
ular, ϕ does not depend on the size ε of the cells. Once ϕ has been computed, it
could be used for any value of this scale parameter.

5.2 Computation of the projection map ϕ

We are looking for a map ϕ = (ϕ1, ϕ2, ϕ3) from D into R3 such that its gradients
∇ϕi are aligned with ωi. Hence, we impose for the map ϕ to satisfy:

∀i ∈ {1, 2, 3} ∇ϕi = eriωi, (20)

where ri is a scalar field, given the local dilation of the cubic cell in the
direction ωi.

Unlike the 2-d case, we can not assume here that the three fields ri are the
same field. Indeed, if the values of ri are locally equal to each other, infinitesimal
cubes is distorted into cubes. If the fields ri were equal everywhere to each
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other, then the map ϕ would be a conformal map. However, there is only a few
conformal maps in 3-d, thanks to Liouville’s theorem [29]. Hence, it would be
too restrictive to impose such a condition on the map ϕ.

Taking the rotational of (20) leads to:

∀i ∈ {1, 2, 3} (∇ri ∧ ωi +∇∧ ωi) = 0 (21)

Those equations do not define uniquely the dilation factors ri: they give the
gradient of ri in only two directions, the orthogonal ones to ωi. We then penalize
the third component by minimizing :

∀i ∈ {1, 2, 3} min
si

∫
D

|∇si ∧ ωi +∇∧ ωi|2 + η2
1 |∇si · ωi|2 . (22)

Hence, the dilations factors are defined up to a constant, that we can fix, by
small penalization of the L2 norm of ri.

∀i ∈ {1, 2, 3} min
si

∫
D

|∇si ∧ ωi +∇∧ ωi|2 + η2
1 |∇si · ωi|2 + η2

2 |si|2. (23)

The minimizer r̂i is the solution of the variational formulation consisting in
finding r̂i ∈ H1(D,R) such that for all t ∈ H1(D,R):∫

D

(∇r̂i ∧ ωi +∇∧ ωi) · (∇t ∧ ωi) + η2
1 (∇r̂i · ωi)(∇t · ωi) + η2

2 r̂i t = 0. (24)

We emphasize that the solution r̂i of the above variational formulation does
not verify the equation (21). Indeed, r̂i is an approximation of a theoretically
perfect dilation factor ri. In the following, we will no longer make the distinction
between them, and we will indifferently write ri.

Once the dilation factors ri are computed for each direction, the computation
of the distortion map is reduced to the following minimization problem:

min
ψ

3∑
i = 1

∫
D

|∇ψ − eriωi|2 (25)

which can be separated in three independent minimization problems over the
three components of ϕ. The minimizers ϕi are respectively the solutions of
the variational problems consisting in finding ϕi ∈ H1(D,R) such that for all
ψ ∈ H1(D,R): ∫

D

(∇ϕi − eriωi) · ∇ψ = 0 (26)

5.3 Coherent orientation

We compute separately the three components ϕi of the map ϕ. First, we have
to compute the dilation factor ri. We see from the variational formulation (24)
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over the dilation factor that it depends on only one of the orientation vectors,
namely ωi. Likewise, we can see from the variational formulation (26) over ϕi,
that only the orientation vector ωi is involved. Hence, we can consider each
vector field separately.

We recall here that the representation of the optimal orientation using the
vectors ω· is not unique, since it is independent of their sign.

Numerically, we only compute the principal directions of the stress tensors,
without any constraint about the regularity of the fields ωi. It might features
discontinuities, coming from an uncontrolled change of sign. Because of their
sign indetermination, the rotational of the vectors ωi, like in the above varia-
tional formulation (24) can not be directly computed.

A first approach amounts to reorientate each vector field by looking over the
mesh, which is not efficient in the presence of singularities in the orientation
field. Therefore, we prefer a second approach, similar to the one developed in
[2]. We introduce a manifold, defined as a two-fold covering space of the working
domain. On each of those subsets the orientation vector fields are coherent and
have opposed signs. Defining an atlas over those manifolds, we are now able
to address this sign problem. We will give more details in the following. We
do not consider the possible presence of singularities in the orientation ω in the
present work.

For each i, we introduce a covering space of the working domain D:

Di = {(x, T ) ∈ D × S2 such that T ∧ ωi(x) = 0} ,

where S2 is the unit sphere in R3 (in other words, Di is a submanifold of D×S2).
Let U be a covering of D by open sets U . Since we assume that the optimal
orientation does not feature any singularity, for each open set U there exists a
continuous map TU,i ∈ C(U,S2) such that for all x ∈ U , TU,i(x) = ±ωi(x). Two
charts g+

U,i and g−U,i of Di are then defined:

g+
U,i :

U → Di
x 7→ (x, TU,i(x))

and g−U,i :
U → Di
x 7→ (x,−TU,i(x))

. (27)

If the domain D is simply connected and ωi does not feature any singularity,
the manifold Di consists of two disconnected copies of the working domain D,
on which the vector field ωi is coherently oriented. Those two copies are only
distinguished by the sign of T .

Integrals on the manifold Di. We introduce here the notion of integrals
on the manifold Di.

Let U be a finite family of disjoint open subsets U covering D, and f ∈
C(Di,R), a continuous map. We define the integral of f over Di by:∫

Di

f(x, T )dx =
∑
U∈U

∫
U

f ◦ g+
U,i(x)dx+

∫
U

f ◦ g−U,i(x)dx , (28)
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where the charts g±U,i are defined by (27). This definition does not depend on
the family U of disjoint subsets.

Differential operators on the manifold Di. The manifold Di can be
endowed with a differential structure: a gradient operator and a rotational
operator are induced on Di as follows.

Let x ∈ D and U be an open subset of D containing x, we define the gradient
operator by:

∇f(x, T ) = ∇(f ◦ gU,i)(x) ,

where f ∈ H1(Di,R) and gU,i is a chart of the neighborhood of (x, T ), and the
rotational operator by:

∇∧W (x, T ) = ∇∧ (W ◦ gU,i)(x) ,

where W ∈ H1(Di,R3).
Those operators do not depend of the choice of the open subset U .

Symmetric and antisymmetric maps on the manifold Di. We intro-
duce the subset of symmetric maps on Di:

Vsi = {f ∈ H1(Di,R) such that: ∀(x, T ) ∈ Di f(x,−T ) = f(x, T )}

and of antisymmetric maps on Di:

Vai = {f ∈ H1(Di,R) such that: ∀(x, T ) ∈ Di f(x,−T ) = −f(x, T )} .

Remark 4. The integral of a symmetric map over the manifold Di can be simply
rewritten. Let U be a finite family of disjoint open subsets U covering D, and
f ∈ Vsi . We have:∫

Di
f(x, T ) dx =

∑
U∈U

(∫
U
f ◦ g+

U,i(x) dx+
∫
U
f ◦ g−U,i(x) dx

)
= 2

∑
U∈U

(∫
U
f ◦ g+

U,i(x)dx
)
.

We now have all the requirements to change our working space from D to
Di: we are looking for a dilation map ri from Di into R and a grid map ϕi from
Di into R3.

Dilation map ri. The dilation map ri satisfied (21) on D. Therefore it also
satisfies on Di:

∇ri ∧ T +∇∧ T = 0.

A solution of the above equation is also solution of the same equation where
−T replaces T . We emphasize that there is no unicity of the solution, since
we can create a new solution from a previous one simply by adding a constant
to it. Then, we assume that ri satisfies a symmetric property on Di, meaning
that ri ∈ Vsi , without loss of generality. Hence, from (23), we compute ri as the
minimizer of:

min
si∈Vs

i

∫
Di

|∇si ∧ T +∇∧ T |2 + η2|∇si · T |2 + η2
N |si|2 dx.
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Grid map ϕi. The grid map ϕi satisfies on Di :

∇ϕi = eriT .

The opposite of a solution of the above equation is also solution of the same equa-
tion where −T replaces T . As previously for the dilation maps, we emphasize
there is no unicity of the solution. We assume that ϕi satisfies an antisymmetric
property on Di, meaning that ϕi ∈ Vai , without loss of generality. Hence, ϕi is
the minimizer of:

min
ψi∈Va

i

∫
Di

|∇ψi − eriT |2dx .

5.4 Implementation

We present here briefly the numerical implementation using the manifolds Di.
More details can be found in our previous 2-d work [2].

Let T be the mesh of D used during the optimization process, and Tk, its kth

element (a tetrahedron). We recall that we use P1 finite elements to discretize
all fields, including the vector fields ωi, see figure 12(a).

The difficulty is to represent the manifold Di, which is equivalent to two
copies of D, using finite elements in a classical finite element solver. However,
all the maps involved in this problem are either symmetric or antisymmetric
on Di. Hence, they are completely determined by their values at (x, T ), from
which the other values at (x,−T ) are deduced by symmetry. As a consequence,
a possibility would be to use only one copy of D to represent Di. However, this
requires to compute a coherent orientation on the whole domain D, a solution
we previously declined.

Instead, we subdivide the working domain D into open subsets U whose
closures covers D. In practice, the tetrahedra Tk of T are natural candidates
for such purpose. Then, we work independently on each tetrahedron and com-
pute a coherent orientation on each tetrahedron, meaning to have a continuous
orientation vector field, featuring no change of sign. Hence, on each tetrahedron
we can compute the rotational of the orientation vector field. The key point is
that we do not require the orientation on each tetrahedron to be coherent with
one another. We give more details about coherent orientation in the following.

Recall that standard P1 conforming finite elements are used for discretiza-
tion during the optimization process. However, since we work now on each
tetrahedron separately, P1 discontinuous Galerkin elements on T are now used
for this post-processing projection. Furthermore symmetry (or antisymmetry)
of the considered maps have to be taken into account, which is explained in the
following.

Coherent orientation on a tetrahedron. In the whole paragraph, vector
fields are discretized by their values at each vertex of the mesh. For a tetrahe-
dron Tk of the mesh T , its four vertices are denoted by (xj)1≤j≤4. The vector
field ωi on Tk is defined by four vectors.
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(a) ωi (b) ω̃i (c) ω̃i

Figure 11: Optimized orientation field ωi (a) on a tetrahedron and the both
possible coherent orientation fields ω̃i from ωi : the coherent orientation when
the first vertex x1 is the upper one (b) and the coherent orientation when the
first vertex x1 is the vertex on the right (c)

A vector field admits a coherent orientation over the tetrahedron Tk if there
exists an affine map ω̃i from Tk to R3 such that:

∀j ∈ {1, 2, 3, 4} ‘ω̃i(xj) = ±ωi(xj) and ∀x ∈ Tk ω̃i(x) 6= 0 .

Such a coherent orientation does not necessarily exists on each tetrahedron.
If not, the orientation field is said singular. In the present work, we do not treat
such cases and assume that a coherent orientation does indeed exists on every
element of the mesh.

In practice, for each tetrahedron, we pick a first vertex x1, where the value
ωi(x1) will be the reference orientation of the tetrahedron : ω̃i(x1) = ωi(x1).
For the three other vertices xj , we choose the orientation ω̃i(xj) = ±ωi(xj) in
order to have :

ω̃i(xj) · ω̃i(x1) ≥ 0 .

Hence two coherent orientations could be defined on each tetrahedron, see figure
(11), depending of the choice of the first vertex x1 : one for each copy of D into
D.
By iterating this over the whole mesh T we define a P1 discontinuous finite el-
ement on D. The different steps to construct a coherent orientation ω̃i are rep-
resented on the Figures 12(a), 12(b) and 12(c). To avoid unnecessary complex
figures, that would have undermined their readability, this process is illustrated
in a 2-d setting, which is perfectly similar to the 3-d case.

Interpolation of symmetric maps. The value of a symmetric map ψ ∈ Vsi
at a vertex does not depend on its second variable, since ψ(x, T ) = ψ(x,−T ).
Hence, it can be represented by a standard conformal P1 finite element function
over D.
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Interpolation of antisymmetric maps. We explain here how to repre-
sent an antisymmetric map of Di using a standard conformal P1 finite element
function on D.

Let ψ ∈ Vai be an antisymmetric map. Let xj be a vertex, and xj,k its copies
in all tetrahedra featuring xj . The value of ψ in each vertex xj,k depends on
the current coherent orientation: ω̃i(xj,k) = ±ωi(xj). We can order the vertices
xj,k in two sets, X+

j and X−j , according to this sign.

All the elements of X+
j (resp. of X−j ) are the same points of the manifold

D: (xj , ωi(xj)) (resp (xj ,−ωi(xj))). Hence ψ is constant on X+
j (resp. on X−j ).

Moreover, we have ψ(X+
j ) = −ψ(X−j ).

We now have all the requirements to represent the antisymmetric maps by
standard P1 finite element functions on D. Let I be the projection operator
from P1 elements to P1 discontinuous elements. Let g be a P1 discontinuous
finite element, see figure 12(d) defined by:

g(xj,k) =

{
+1 if ω̃i(xj,k) = ωi(xj)
−1 if ω̃i(xj,k) = −ωi(xj)

Define Ia, the interpolation operator for antisymmetric maps, from P1 finite
elements on D to P1 discontinuous finite element on D by Ia = g × I, meaning
that Ia(ϕ)(xj,k) = g(xj,k)ϕ(xj). We emphasize that this operator is uniquely
defined, but depends on the previously computed field ω̃i, the coherent orienta-
tion on each tetrahedron.

Computation of r and ϕ. In order to compute the dilation factors and
the distortion map, as seen previously, we work on each tetrahedron separately,
using P1 Galerkin discontinuous finite elements. However, as just seen, the
three dilation factors ri and the three components of the distortion map ϕ are
represented by standard P1 finite elements functions, composed with projection
operators I and Ia.

Let V be the set of P1 finite elements on T . The dilation factor ri ∈ V is the
minimizer of:

mins∈V
∑
TkT

∫
Tk |∇(I(s)) ∧ ω̃i +∇∧ ω̃i|2

+η2
1 |∇(I(s) · ω̃i|2

+η2
2 |(I(s)|2dx .

We emphasize that the P1 finite element functions ri is continuous on T .
The ith-component ϕi ∈ V of the distortion map, is the minimizer of:

min
ψ∈V

∑
Tk∈T

∫
Tk
|∇(Ia(ψ))− eI(ri)ω̃i|2dx .

Although Ia(ϕi) is a P1 discontinuous finite element function, its absolute value
|Ia(ϕi)| = ϕi| is continuous on the whole mesh. Since the genuine shapes are
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(a) Optimized orientation ωi, defined up to
its sign

(b) Local possible orientations of the cells
ωi and −ωi, leading to the same final
structure

(c) Coherent orientation ω̃i as a P1 dis-
continuous finite elements

+

-

+

-

+
-

-

-

-
-

-

+ +

+

+

+

+

+

(d) ω̃i and the interpolation map g for an-
tisymmetric maps

Figure 12: Complete process to represent the manifold D using classical finite
elements
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built using the even function cos, the projection is smoothly defined by using
ϕi.

Both preceding problems can be classically solved by writing the first order
optimality condition, which is a standard variational formulation featuring a
linear form and a bilinear form.

5.5 Numerical results

The above algorithm for the computation of the diffeomorphism is implemented
in Freefem++ [17]. The projection step has been scripted in Paraview. Hence,
stl files of the deshomogenized structures are straightforwardly generated and
are ready to be printed using additive manufacturing machines. We emphasizing
that the size ε of the chosen periodic cells is editable on line in order to adapt the
resolution of the deshomogenized structures without any supplementary actions.

The cantilever case is chosen in order to assess our method.
The several steps of the whole process of building the distortion of a regular

periodic grid are displayed on Figure 13. The regular grid is defined by constant
geometric parameters over the whole domain D : mreg = (0.9, 0.9, 0.9). Note
the definition of the grid is independent of the mesh.

Several shapes Ωε(ϕ,m) for various values of the characteristic size ε of the
cells are displayed in Figure 14. The smaller ε, the closer from the homogenized
optimal design the shape Ωε(ϕ,m).

We emphasize that small non connected components have been removed
from the displayed final shapes. The final shapes are therefore connected.

On Figure 14, we displayed several shapes Ωε(ϕ,m) for various values of ε.

6 Other numerical examples

We applied the whole method to a bridge case and to an electrical mast. In
both cases, the volume constraint is fixed to 30% of the working domain and
the number of iterations during the optimization – before regularization – is set
to 200. The optimized geometric parameters and densities are not displayed for
both cases. Indeed, as seen in the cantilever case, such 3-d results are difficult to
displayed in 2-d, or required too many figures to be explicit. The main novelties
of the present work are the regularization of the orientation and the projection
step. Hence we privileged Figures for those parts.

For the bridge (Figure 15) the domain size is 22×10×12 and a unit vertical
load is applied at the middle of the bottom border on a square of length 2.
The Dirichlet boundary condition is applied on two symmetric rectangles, of
length 1 and of width 1, on the bottom border. The resulting compliance for
the homogenized design is 1.017.

The applied loads and the boundary conditions are displayed on Figure 15,
the optimal orientation of the periodicity cells before and after regularization
on Figure 16. The distortion of a regular grid is displayed on Figure 17. The
sequence of final shapes is displayed on Figure 18.
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(a) Ω1 = Ω1,ϕ,0.2(mreg) (b) Ω2 = Ω2,ϕ,0.2(mreg) (c) Ω3 = Ω3,ϕ,0.2(mreg)

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3

(g) Ω12 ∪ Ω13 (h) Ω12 ∪ Ω23 (i) Ω13 ∪ Ω23

(j) Ω12 ∪ Ω13 ∪ Ω23

Figure 13: Distortion of a regular grid through the map ϕ from the cantilever
case
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(a) ε = 0.275 (b) ε = 0.225

(c) ε = 0.125 (d) ε = 0.05

Figure 14: Ωε(ϕ,m) for several ε in the case of the cantilever
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Figure 15: Boundary conditions for the bridge case

For the electrical mast (Figure 19), the domain size of the pillar is 2× 2× 8,
and the domain size of the upper part is 9× 9× 3.5. We took advantage of the
symmetry, by running the algorithm just on the quarter of a complete working
domain : the domain in bold on Figure 19. Then the structure is allowed to
slide on its two intern sides. The Dirichlet boundary condition is applied on
the bottom border. A unit vertical load is applied on a square of size 1 on
the external corner of the bottom face of the upper part of the domain. The
resulting compliance for the homogenized design on the quarter of the whole
domain is 4.288.

The optimal orientation of the periodicity cells before and after regulariza-
tion is displayed on Figure 20. The distortion of a regular grid is displayed
on Figure 20. The sequence of final shapes is displayed on Figure 21, for the
quarter of the domain and for the whole domain : the second ones are obtained
by reflections of the first ones. The pillar is not completely full, but feature thin
holes: central slices of final structures and of normal x1 are displayed on Figure
22. We emphasize that nothing ensures that the phase of ϕ is the same for each
value of ε: on a given slice, the density could seem to be not the same according
to the value of ε, but it is not the case.

Appendix

In numerical practice, we use the normalized Voigt notations. Hence a symmet-
ric tensor s of order 2, like the stress or strain tensor, is represented by a vector
{s} of size 6 with same norm:

{s} =



s11

s22

s33√
2s12√
2s13√
2s23

 .

32



(a) Optimized ω1 (b) Regularized ω1

(c) Optimized ω2 (d) Regularized ω2

(e) Optimized ω3 (f) Regularized ω3

Figure 16: Optimized (left) and regularized (right) orientation for the bridge
case
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(a) Ω1 = Ω1,ϕ,0.2(mreg) (b) Ω2 = Ω2,ϕ,0.2(mreg) (c) Ω3 = Ω3,ϕ,0.2(mreg)

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3

(g) Ω12 ∪ Ω13 (h) Ω12 ∪ Ω23 (i) Ω13 ∪ Ω23

(j) Ω12 ∪ Ω13 ∪ Ω23

Figure 17: Distortion of a regular grid through the map ϕ from the bridge case
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(a) ε = 0.5 (b) ε = 0.4

(c) ε = 0.2 (d) ε = 0.1

Figure 18: Ωε(ϕ,m) for several ε in the case of the bridge

Figure 19: Boundary conditions for the bridge case
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(a) Optimized ω1 (b) Optimized ω2

hh
(c) Optimized ω3

(d) Regularized ω1 (e) Regularized ω2 (f) Regularized ω3

Figure 20: Optimized (up) and regularized (down) orientation for the electrical
mast case
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(a) Ω1 = Ω1,ϕ,ε(mreg) (b) Ω2 = Ω2,ϕ,ε(mreg) (c) Ω3 = Ω3,ϕ,ε(mreg)

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3
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(g) Ω12 ∪ Ω13 (h) Ω12 ∪ Ω23 (i) Ω13 ∪ Ω23

(j) Ω12 ∪ Ω13 ∪ Ω23

Figure 20: Distortion of a regular grid through the map ϕ from the electrical
mast test case
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(k) ε = 1. (l) ε = 0.4 (m) ε = 0.2 (n) ε = 0.1

(o) ε = 1. (p) ε = 0.4 (q) ε = 0.2 (r) ε = 0.1

Figure 21: Ωε(ϕ,m) for several ε in the electrical mast test case on the quarter
of the whole domain (up), and on the whole domain (down).

(a) ε = 1. (b) ε = 0.4 (c) ε = 0.2 (d) ε = 0.1

Figure 22: Slices of normal x1 of Ωε(ϕ,m) for several ε for the electrical mast
test.
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The rotation operator R(ω), as any fourth-order tensor, is then represented by
a 6× 6 matrix, which is precisely defined by

{R(ω)} =

(
R11(ω) R12(ω)
R21(ω) R22(ω)

)
, (29)

where the four sub-matrices Rij of size 3× 3 are respectively given by:

R11(ω) =

ω2
1,1 ω2

2,1 ω2
3,1

ω2
1,2 ω2

2,2 ω2
3,2

ω2
1,3 ω2

2,3 ω2
3,3

 , (30)

R12(ω) =

√2ω1,1 ω2,1

√
2ω1,1 ω3,1

√
2ω2,1 ω3,1√

2ω1,2 ω2,2

√
2ω1,2 ω3,2

√
2ω2,2 ω3,2√

2ω1,3 ω2,3

√
2ω1,3 ω3,3

√
2ω2,3 ω3,3

 , (31)

R21(ω) =

√2ω1,1 ω1,2

√
2ω2,1 ω2,2

√
2ω3,1 ω3,2√

2ω1,1 ω1,3

√
2ω2,1 ω2,3

√
2ω3,1 ω3,3√

2ω1,2 ω1,3

√
2ω2,2 ω2,3

√
2ω3,2 ω3,3

 , (32)

R22(ω) =

ω1,1 ω2,2 + ω1,2 ω2,1 ω1,1 ω3,2 + ω1,2 ω3,1 ω2,1 ω3,2 + ω2,2 ω3,1

ω1,1 ω2,3 + ω1,3 ω2,1 ω1,1 ω3,3 + ω1,3 ω3,1 ω2,1 ω3,3 + ω2,3 ω3,1

ω1,3 ω2,2 + ω1,2 ω2,3 ω1,3 ω3,2 + ω1,2 ω3,3 ω2,3 ω3,2 + ω2,2 ω3,3

 .

(33)
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319–369. Eyrolles, Paris, 1985.

[26] A. N. Norris. Optimal orientation of anisotropic solids. The Quarterly
Journal of Mechanics and Applied Mathematics, 59(1):29–53, 2005.

[27] O. Pantz and K. Trabelsi. A post-treatment of the homogenization method
for shape optimization. SIAM Journal on Control and Optimization,
47(3):1380–1398, 2008.

[28] P. Pedersen. On optimal orientation of orthotropic materials. Structural
Optimization, 1(2):101–106, 1989.
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