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Abstract

The present paper concerns the study of the nonconservative bitem-
perature Euler system with transverse magnetic field. We firstly introduce
an underlying conservative kinetic model coupled to Maxwell equations.
The nonconservative bitemperature Euler system with transverse mag-
netic field is then established from this kinetic model by hydrodynamic
limit. Next we present the derivation of a finite volume method to ap-
proximate weak solutions. It is obtained by solving a relaxation system
of Suliciu type, and is similar to HLLC type solvers. The solver is shown
in particular to preserve positivity of density and internal energies. More-
over we use a local minimum entropy principle to prove discrete entropy
inequalities, ensuring the robustness of the scheme.

Keywords: BGK models, hydrodynamic limit, relaxation method, non-
conservative hyperbolic system, discrete entropy inequalities, discrete entropy
minimum principle
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1 Introduction

The present paper is devoted to the formal derivation and the approximation of
the nonconservative bitemperature Euler system with transverse magnetic field.

This fluid model consists of four conservation equations for mass, momen-
tum (two components), magnetic field, and two nonconservative equations for
energies. Physically, this model describes the interaction of a mixture of one
species of ions and one species of electrons in thermal nonequilibrium, subjected
to a transverse variable magnetic field. The pressure of each species is supposed
to satisfy a gamma-law with its own γ constant. Moreover the system owns a
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dissipative strictly convex entropy, closely related to the classical entropy for
the Euler sytem [?].

Solving nonconservative hyperbolic systems is a delicate problem because
the definition of weak solutions remains unclear. In order to define nonconser-
vative products, Dal Maso, Lefloch and Murat proposed in [?] a new theory
based on the definition of family of paths. In [?], path-conservative schemes
are defined by using the concepts developed in [?]. However, it is shown, in
[?], that even if the correct path is known, the numerical solution can be far
from the expected solution. Let us mention some works dealing with noncon-
servative Euler type system, where the magnetic fields are neglected. In [?], the
authors consider an hyperbolic system having n− p equations in a conservative
form, the remaining p equations being nonconservative. In [?], the authors use a
Roe solver, and an HLLC solver which neglects the nonconservative part of the
system. They validate the approach by comparing their results to theoretical
temperatures/pressures curves ( [?], [?]). In [?], the authors assume that the
electronic entropy is conserved by all weak solutions including shocks and the
system is approached by a system of conservation laws.

Despite these difficulties, the nonconservative formulation is physically rel-
evant. Indeed we show that the bitemperature MHD system admits an un-
derlying conservative kinetic model, which consists of a BGK model coupled
with Maxwell equation in the quasi-neutral regime. This result generalizes the
approach of [?] in the case of a transverse magnetic field. This BGK model
possesses different interspecies collision frequencies in order to take into account
discrepancies in the masses of the particles. This point has been in particular
mentioned in [?], where a conservative formulation is suggested. Hence fol-
lowing this idea we perform an hydrodynamic limit and we formally get the
nonconservative MHD system.

In another way, the present bitemperature MHD system is approached nu-
merically. An important issue in multidimensional simulations is to minimize
the numerical viscosity by using accurate solvers, in particular on contact dis-
continuities; while being robust, see for example [?, ?, ?].

If dependency is only one spatial variable x, the nonconservative two species
Euler equations with transverse magnetic field are given by:

∂tρ+ ∂xρu1 = 0, (1.1)

∂t(ρu1) + ∂x(ρu2
1 + pe + pi +B2

3/2) = 0, (1.2)

∂t(ρu2) + ∂x(ρu2u1) = 0, (1.3)

∂tEe + ∂x
(
u1

(
Ee + pe + ceB

2
3/2
))

−u1∂x (cipe − cepi) = S̃ei, (1.4)

∂tEi + ∂x
(
u1

(
Ei + pi + ciB

2
3/2
))

+u1∂x (cipe − cepi) = S̃ie, (1.5)

∂tB3 + ∂x(u1B3) = 0, (1.6)

where ρ = ρe + ρe is the total density of the plasma, ~u = (u1,u2) is the average
velocity of the plasma, B3 is the vertical component of the magnetic field. We
denote by Te, Ti the temperatures of electrons and ions, ρe = neme, ρi = nimi

the densities of the electrons and ions, ne, ni the concentrations of the electrons
and ions, me, mi, the masses of the electrons and ions particles. The source
terms for exchanges between electron and ion species Sei and Sie are defined by

S̃ei = ν̃1,ei(Ti−Te)+ ν̃2,ei(∂xB3)2, S̃ie = −ν̃1,ei(Ti−Te)+ ν̃2,ie(∂xB3)2, (1.7)

2



where ν̃1,ei ≥ 0 is the frequency exchange between temperatures, ν̃2,ei, ν̃2,ie ≥ 0
are frequencies due to the drift velocity u2 ± ∂xB3. These quantities we will be
defined later. The concentrations ne and ni are related by the average ionization
number Z = ne/ni ≥ 1 which is considered here constant. This implies that the
mass fractions cα = ρα/ρ, α = e,i are also constant and ce and ci write

ce =
Zme

mi + Zme
, ci = 1− ce.

The electrons and ions pressures and temperatures are related by

pe = nekBTe, pi = nikBTi,

where kB is the Boltzmann constant. The internal energies are given by

εe =
kBTe

me (γe − 1)
, εi =

kBTi
mi (γi − 1)

,

where γe, γi are constant numbers belonging to the interval [1,3]. The quantity

Eα = ραεα +
1

2
ρα(u2

1 + u2
2) + cαB

2
3/2

is the total energy associated to each species α = e, i. This model is closely
related to the model derived in [?], the novelty here is to take as an additional
variable the vertical component of the magnetic field B3.

The homogeneous system associated to (??) - (??) is endowed with an en-
tropy inequality:

∂t (−ρ (se + si)) + ∂x (−ρu (se + si)) ≤ 0, (1.8)

where sα, α = e,i is the classical specific entropy

sα(ρ, εα) =
cα

mα(γα − 1)
ln

(
(γα − 1)εα
ρ(γα−1)

)
+ C. (1.9)

Here C is a nonnegative constant.
The homogeneous system associated to (??) - (??) is an hyperbolic system.

The three eigenvalues of the system are u, u −
√

(γepe + γipi +B2
3) /ρ and

u+
√

(γepe + γipi +B2
3) /ρ of multiplicity four, one and one, respectively. The

eigenvalue u is linearly degenerate and the associated contact discontinuities is
called a material contact. The jump relation associated is as follows. Across a
material contact, the quantities u1 and pe + pi + B2

3/2 are constant. We note
here that unlike the 7-wave full MHD system [?] or the 5-wave shallow water
MHD system [?], the transverse magnetic system has a 3-wave structure and
does not admit Alfven waves.

A finite volume scheme for this homogeneous quasilinear system is classically
built following Godunov’s approach, by considering piecewise constant approx-
imation of

U =
(
ρ, ρu1, ρu2,Ee + ceB

2
3/2,Ei + ciB

2
3/2, B3

)
∈ R6 (1.10)

and invoking an approximate Riemann solver at the interface between two cells,
see for example [?] or [?, Section 2.3]. A difficulty is however that the system is

3



not conservative. In this paper we apply the relaxation approach of [?, ?, ?, ?, ?]
to the bitemperature transverse MHD system, in order to get an approximate
Riemann solver that is entropy preserving, ensuring robustness, while being
exact on isolated material contacts. The relaxation system is of Suliciu type as
introduced in [?], and the approximate Riemann solver belongs to the family of
HLLC solvers, as in [?, ?, ?, ?, ?, ?, ?].

Let us emphasize that the discrete entropy inequalities are established by
arguing a suitable extension of technique introduced in [?], also used in the
context of solving the ten moment equations [?]. Put in other words, at the
discrepancy with the previous works [?, ?], an entropy extension is obtained
implicitly and thus the entropy dissipation is not evaluated in the proposed
discrete entropy inequalities.

This work is organized as follows. In the next section we present the kinetic
model involved in this paper. Firstly we consider the Vlasov-BGK model from
which the MHD system is derived. Starting from an ad-hoc scaling the con-
struction of the MHD system is performed. In section 3 we derive a relaxation
scheme. In section 4 we establish the stability of our scheme. Numerical tests
are performed in section 5 to illustrate both accuracy and robustness of the
proposed scheme in 1D.

2 Kinetic model

Kinetic models are described by the distribution function fα of each species
depending on the time variable t ∈ R+, on the positions x ∈ R3 and on the
velocity v ∈ R3. The macroscopic quantities can be obtained by extracting
moments on these distribution function w.r.t. the velocity variable. Indeed
density, velocity and total energy of the species α can be defined as

nα =

∫
R3

fαdv, uα =
1

nα

∫
R3

vfαdv,

Eα =
3

2
ρα

kB
mα

Tα +
1

2
ραu

2
α =

∫
R3

mα
|v|2

2
fαdv,

where mα is the mass particle, ρα = mαnα, and Tα is the temperature of species
α. The current in the plasma j and the total charge ρ̄ are defined by

ρ̄ =

∫
R3

(qefe + qifi)dv = neqe + niqi, (2.1)

j =

∫
R3

v(qefe + qifi)dv = neqeue + niqiui. (2.2)

2.1 Kinetic model for a transverse magnetic field

In this section, we present the BGK model developed in this paper describing
a plasma interacting with an electric field E = (E1, E2, 0) ∈ R3 and a magnetic
field B = (0, 0, B3) ∈ R3. The model writes

∂tfα + v1∂xfα +
qα
mα

(E1 +B3v2)
∂fα
∂v1

+
qα
mα

(E2 −B3v1)
∂fα
∂v2

=
1

τα
(Mα(fα)− fα) +

1

ταβ

(
Mα(fα, fβ)− fα

)
, (2.3)
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with τα > 0, ταβ > 0. We denote by 1
τα

the collision frequency for the inter-

action between α particles and 1
ταβ

the collision frequency for the ion/electron

interaction. The frequencies τei and τie being of order of the mass ratios, [?]
suggested to take τei 6= τie. The quantity qα is the charge of the species α.
Moreover we define the velocity and the temperature of the mixture by

u =
ρeue + ρiui
ρe + ρi

, T =
1
2

∑
α ρα(u2

α − u2) + 3
2

∑
α nαkBTα

3
2nkB

. (2.4)

Let us highlight that one can check that the temperature of the mixture satisfies
T ≥ 0. Here fictitious velocity and temperature u#, T# introduced in [?] are
defined by

u# =

ρe
τei
ue +

ρi
τie
ui

ρe
τei

+
ρi
τie

, T# =

1
2

∑
α
ρα
ταβ

(u2
α − (u#)2) + 3

2kB
∑
α
nα
ταβ

Tα

3
2kB

(
ne
τei

+ ni
τie

) . (2.5)

The two Maxwellian distribution functions Mα and Mα are defined by:

Mα(fα) =
nα

(2πkBTα/mα)3/2
exp

(
− (v1 − u1,α)2 + (v2 − u2,α)2 + v2

3

2kBTα/mα

)
, (2.6)

and

Mα(fα) =
nα

(2πkBT#/mα)3/2
exp

(
− (v1 − u#

1 )2 + (v2 − u#
2 )2 + v2

3

2kBT#/mα

)
. (2.7)

The two Maxwellian distributions satisfy the constraints

∫
R3

(Mα − fα)

 mα

mαv

mα
v2

2

 dv = 0,

∫
R3

(Mα − fα)dv = 0 (2.8)

and∫
R3

(
1

τei
(Mα − fα)

[
mαv

mα
v2

2

]
+

1

τie
(Mα − fα)

[
mαv

mα
v2

2

])
dv = 0. (2.9)

This model is coupled with the Maxwell equations which write in the transverse
magnetic field

∂xE1 =
ρ̄

ε0
, ∂tE1 = − j1

ε0
,

∂tB3 + ∂xE2 = 0, ∂tE2 − c2∂xB3 = − j2
ε0
, (2.10)

where j = (j1,j2) has been defined in (??), c represents the speed of light and
ε0 is the vacuum permittivity.
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2.2 Hydrodynamic limit

2.2.1 Scaling on the one dimensionnal BGK model

In order to use a Chapman-Enskog procedure, we introduce a small parameter
κ and the BGK model (??) is rescaled as:

∂tfα + v1∂xfα +
qα
mα

(E1 +B3v2)
∂fα
∂v1

+
qα
mα

(E2 −B3v1)
∂fα
∂v2

=
1

κ
(Mα(fα)− fα) +

1

ταβ

(
Mα(fα, fβ)− fα

)
. (2.11)

Moreover this model is coupled with Maxwell equations (??), which are rescaled
as:

∂xE1 =
ρ̄

κ2
, ∂tE1 = − j1

κ2
,

∂tB3 + ∂xE2 = 0, ∂tE2 +
1

ε2
∂xB3 =− j2

κ2
. (2.12)

2.2.2 Derivation of Euler equations

In a previous work [?], the nonconservative bitemperature Euler system has
been established as the hydrodynamic limit of a conservative kinetic system. In
particular the authors deal with the case B3 = 0, which implies that the current
j = (j1, j2) at equilibrium satisfies j = 0 and enables to express the electric field
as a combination of first order spatial derivatives of the variables ρ, Te, Ti.
The novelty in our case is that we have j1 = 0 and j2 = −∂xB3 6= 0. Thus we
have a slightly different approach and we proceed in two steps.

• First we perform an hydrodynamic limit of (??) -(??). The first compo-
nent E1 will behave as in [?] and will be expressed as a combination of
first order spatial derivatives of the variables ρ, u2, Te, Ti, B3. However,
the evolution of E2 will be given by the second order PDE (??).

• Second we use the smallness of the mass ratio me/mi which enables to
simplify the equation satisfied by E2.

After those two steps we recover the bitemperature Euler system with transverse
magnetic field (??)-(??).

Proposition 2.1. The kinetic conservative system (??) - (??) converges for-
mally to the following system

∂tρ+ ∂xρu1 = 0, (2.13)

∂t(ρu1) + ∂x(ρu2
1 + pe + pi +B2

3/2) = 0, (2.14)

∂t(ρu2) + ∂x(ρu2u1) = 0, (2.15)

∂t
(
Ee + ceB

2
3/2
)

+ ∂x (u1 (Ee + pe) + ceE2B3)− u1∂x (cipe − cepi)
− (E2 − u1B3) (qeneu2 + (ce − ci)∂xB3) = Sei, (2.16)

∂t
(
Ei + ciB

2
3/2
)

+ ∂x (u1 (Ei + pi) + ciE2B3) + u1∂x (cipe − cepi)
+ (E2 − u1B3) (qeneu2 + (ce − ci)∂xB3) = −Sei, (2.17)

∂tB3 + ∂xE2 = 0, (2.18)
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where

Eα = ραεα +
1

2
ρα(u2

1 + u2
2,α), α = e,i (2.19)

with u2,α defined by (??). Moreover the first component of electric field E1 is
explicitly given by the Ohm’s law

ci∂xpe − ce∂xpi + (ci − ce)∂x(B2
3/2) = qene (E1 + u2B3) , (2.20)

and the second component of electric field E2 satisfies the following equation:

∂t(∂xB3) + ∂x(u1∂xB3) + (qene)
2 ρ

ρeρi
(E2 − B3u1) = − ∂xB3

τiece + τeici
. (2.21)

In addition the source term Sei is defined by

Sei = ν1,ei(Ti − Te) + ν2,ei(∂xB3)2 + ν3,eiu2∂xB3, (2.22)

with the coefficients ν1,ei, ν2,ei, ν3,ei given by

ν1,ei =
3

2

kBneni
τiene + τeini

, (2.23)

ν2,ei = ceciρ
(ce − ci)

(
niciτ

2
ei + neceτ

2
ie

)
− 2ceci(ni − ne)τeiτie

(τiene + τeini) (qene)
2

(τiece + τeici)
2 , (2.24)

and
ν3,ei =

ceciρ

(qene) (ceτie + ciτei)
. (2.25)

Note that with Proposition ??, we do not recover yet (??) - (??). Using the
following approximation we are able to simplify the previous system and recover
the bitemperature Euler system with transverse magnetic field.

Proposition 2.2. We consider the previous system (??)-(??). Using the ap-
proximation of a small mass ratio between electron and ion species me/mi =
κ << 1, the equation (??) formally converges to

E2 = B3u1. (2.26)

Thus in this setting the conservative kinetic system (??) - (??) formally con-
verges to the nonconservative bitemperature MHD system (??) - (??). The elec-
tric field E = (E1,E2) is given by the Ohm’s laws (??) and (??). The exchange
coefficient ν̃1,ei = ν1,ei is defined by (??). The magnetic coefficients ν̃2,ei, ν̃2,ie

are defined by

ν̃2,ei = ceciρ
(τiene + τeini) (τiece + τeici) + (cine − ceni) τeiτie

2(qene)2 (τiene + τeini) (τiece + τeici)
2 , (2.27)

ν̃2,ie = ceciρ
(τiene + τeini) (τiece + τeici)− (cine − ceni) τeiτie

2(qene)2 (τiene + τeini) (τiece + τeici)
2 . (2.28)

Remark 2.3. In the case B3 = 0 we recover all the results of [?]. Concern-
ing the Ohms law, compared to [?], in (??) we have additional terms (ce −
ci)∂x(B2

3/2) + qeneu2B3.
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Proof of Proposition ??. For this proof, for any g belonging in L1
2 = {g ∈

L1/(1 + v2)f ∈ L1}, we use the notation

〈g〉 =

∫
R3

gdv,

the equilibrium states of (??) write

fα = Mα, α = e,i, ρ̄ = 0, j1 = 0,

∂tB3 + ∂xE2 = 0, j2 = −∂xB3.

This system implies that

neqe + niqi = 0, neqeu1,e + niqiu1,i = 0,

∂tB3 + ∂xE2 = 0, neqeu2,e + niqiu2,i = −∂xB3,

which is equivalent to

neqe + niqi = 0, (2.29)

u1,e = u1,i = u, (2.30)

neqe (u2,e − u2,i) = −∂xB3, (2.31)

∂tB3 + ∂xE2 = 0, (2.32)

with u defined by (??). Moreover combining (??) and (??) we compute
u2,e = u2 −

ci
qene

∂xB3,

u2,i = u2 −
ce
qini

∂xB3.
(2.33)

Next we establish the hydrodynamic limit associated to the previous equilibrium.
Hence fα writes

fα = Mα + κgα, (2.34)

with ∫
R3

mα

(
1
|v|2
)
gα = 0,

∫
R3

mα

(
v1

v2

)
gα = 0. (2.35)

Plugging (??) into (??), we compute gα as follows

∂tMα + v1∂xMα +
qα
mα

(E1 +B3v2) ∂v1Mα +
qα
mα

(E2 −B3v1) ∂v2Mα

= −gα +
1

ταβ

(
Mα −Mα

)
+O(κ).

(2.36)

From here we will take the moments of the previous equation. The procedure
we use here is very similar to the one detailed in [?]. So we skip some details of
computation.

Our goal is to obtain the system (??)- (??) with E1, E2 defined by (??),
(??), respectively.

a) Firstly we proceed similarly to [?]. Multiplying (??) by mα, integrating w.r.t.
v and by summing the two equations for electrons and ions gives (??).
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b) Then multiplying (??) by mαv1 and integrating w.r.t. v leads to

∂t(ραu1) + ∂x(ραu
2
1 + pα)− qαnα (E1 +B3u2,α) = 0. (2.37)

By summing for electrons and ions (??) and using (??), (??) we get (??).
Next considering as in [?] the nonconservative form of (??) with the addi-
tional term qαnα

ρα
B3u2,α, we get the generalized Ohm’s law (??) for E1.

c) Then we multiply by mαv2 and we integrate w.r.t. v:

∂t(ραu2,α) + ∂x(ραu2,αu1)− qαnα (E2 −B3u1) =
ρα
ταβ

(
u#

2 − u2,α

)
. (2.38)

Using (??) and the definition of u# in (??), we sum for electrons and ions
(??) and we get (??).
Next we compute a generalized Ohm’s law for E2. First we use (??) and the
definition of u# in (??) in order to obtain that

1

ταβ

(
u#

2 − u2,α

)
=

cβ
cατβα + cβταβ

(
∂xB3

qαnα

)
. (2.39)

Then we multiply (??) by qα/mα and we use (??) to get

∂t(qαnαu2,α) + ∂x(qαnαu2,αu1)− (qαnα)2

ρα
(E2 −B3u1) =

cβ∂xB3

cατβα + cβταβ
.

(2.40)
Finally using (??) and qeneu2,e + qiniu2,i = −∂xB3, we sum for electrons
and ions (??) and we obtain (??).

d) Then we multiply by mα
|v|2
2 and we integrate w.r.t. v:

∂tEα + ∂x(u1(Eα + pα))− qαnα (E1 +B3u2,α)u1

− qαnα (E2 −B3u1)u2,α = S, (2.41)

whith Eα defined by (??) and

S =
1

ταβ

〈
mα
|v|2

2

(
Mα −Mα

)〉
. (2.42)

Using (??) and (??) we get

∂tEα + ∂x(u1(Eα + pα)) + u1 (cα∂xpβ − cβ∂xpα) + u1cαB3∂xB3

− (E2 −B3u1) (qαnαu2 − cβ∂xB3) = S. (2.43)

Moreover, we multiply (??) by cαB3 and we get

∂t(cαB
2
3/2) + ∂x(cαB3E2)− cαE2∂xB3 = 0. (2.44)

Adding (??) and (??) we get, for α 6= β

∂t
(
Eα + cαB

2
3/2
)

+ ∂x(u1(Eα + pα) + cαE2B3) + u1 (cα∂xpβ − cβ∂xpα)

− (E2 −B3u1) (qαnαu2 + (cα − cβ)∂xB3) = S. (2.45)
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At this point we deal with S defined by (??). Using (??) and (??) we write

S =
3

2

kBnα
ταβ

(
T# − Tα

)
+

1

2

ρα
ταβ

(
(u#

2 )2 − u2
2,α

)
. (2.46)

Next by using the definition of T# (??) in (??), we get

S =
3

2

kBnαnβ
τβαnα + ταβnβ

(Tβ − Tα)

+
1

2

nαnβ
τβαnα + ταβnβ

(
mα

(
(u#

2 )2 − u2
2,α

)
−mβ

(
(u#

2 )2 − u2
2,β

))
. (2.47)

Now we deal with (u#
2 )2 − u2

2,α. First using (??) in the definition of u# in
(??) we write

u#
2 = u2 +

cαcβ∂xB3 (ταβ − τβα)

(qαnα) (cατβα + cβταβ)
.

Moreover using (??) we can compute u#
2 −u2,α and u#

2 +u2,α and after some
simple computations we get that

mα

(
(u#

2 )2 − u2
2,α

)
=

2mαcβταβ
qαnα (cατβα + cβταβ)

u2∂xB3

+
mαc

2
βταβ ((cα − cβ)ταβ − 2cατβα)

(qαnα)2 (cατβα + cβταβ)
2 (∂xB3)

2
.

At this point we sum last equality for electron and ion species and we get

1

2

neni
τiene + τeini

(
me

(
(u#

2 )2 − u2
2,e

)
−mi

(
(u#

2 )2 − u2
2,i

))
= ν2,ei(u2∂xB3) + ν3,ei(∂xB3)2, (2.48)

with ν2,ei , ν3,ei defined by (??), (??).
Plugging (??) into (??) we get the RHS of (??) with ν1,ei, ν2,ei and ν3,ei

defined by (??), (??) and (??), which concludes the proof.

Proof of Proposition ??. We use Proposition ?? and we deal with the system
(??) - (??). In addition we use the small mass ratio assumption κ = me/mi.
We also use the constant ionization number Z = ne/ni and we get

ρ

ρeρi
=
neme + nimi

nemenimi
=

(κZ + 1)

(mini)κZ
= O

(
1

κ

)
. (2.49)

Retaining terms of order 0 in (??), it leads to (??). Moreover using (??) in (??)
- (??), we get

∂t
(
Ee + ceB

2
3/2
)

+ ∂x
(
u1

(
Ee + ceB

2
3/2 + pe + ceB

2
3/2
))

− u1∂x (cipe − cepi) = Sei, (2.50)

∂t
(
Ei + ciB

2
3/2
)

+ ∂x
(
u1

(
Ei + ciB

2
3/2 + pi + ciB

2
3/2
))

+ u1∂x (cipe − cepi) = −Sei, (2.51)

∂tB3 + ∂x (u1B3) = 0, (2.52)
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with Sei defined by (??)-(??). To complete the proof we have to recover (??)-
(??) with ν̃1,ei = ν1,ei, ν1,ei defined by (??), and ν̃2,ei, ν̃2,ie defined by (??),
(??). In the following we focus on the electron energy equation (??), the ion
energy equation (??) is obtained in a similar way. First we notice the following
equality:

Ee = Ee + ceB
2
3/2 + ρe

u2
2

2
− ρe

u2
2,e

2
. (2.53)

From (??) we have a PDE on Ee + ceB
2
3/2, thus in order to use the previous

relation we need PDEs on ρe
u2
2

2 and ρe
u2
2,e

2 . Thus on the one hand, we use (??)
and (??) in order to get

∂t(ρeu2,e) + ∂x(ρeu2,eu1) = ν3,ei∂xB3, (2.54)

with ν3,ei defined by (??). Next we multiply by u2,e (??) and we use (??) in
order to get that

∂t

(
ρe
u2

2,e

2

)
+ ∂x

(
ρe
u2

2,e

2
u1

)
= − ci

qene
ν3,ei(∂xB3)2 + ν3,eiu2∂xB3. (2.55)

On the other hand, we combine (??), (??) and we obtain

∂t

(
ρe
u2

2

2

)
+ ∂x

(
ρe
u2

2

2
u1

)
= 0. (2.56)

Next following (??), we add (??), (??) and we substract (??), it leads to (??).
Moreover we obtain the following formulas for ν̃1,ei, ν̃2,ei, ν̃2,ie:

ν̃1,ei = ν1,ei, ν̃2,ei = ν2,ei +
ci
qene

ν3,ei, ν̃2,ie = −ν2,ei +
ce
qene

ν3,ei.

Finally using (??), (??) one recovers (??).

3 Numerical approximation

The numerical approximation we use has two steps:

• First step. We use an approximate Riemann solver for the homogeneous

system. Let U
n+1/2

be the obtained solution.

• Second step. We take the temperatures interaction into account implic-
itly: the approximate solution of system at time tn+1 is defined by

ρn+1 = ρn+1/2, un+1
1 = u1

n+1/2, un+1
2 = u2

n+1/2, Bn+1
3 = B̄

n+1/2
3

and  En+1
e = Ee

n+1/2
+ ∆t Sn+1

ei ,

En+1
i = Ei

n+1/2 −∆t Sn+1
ei ,

where
Sn+1
ei = ν̃1,ei(T

n+1
i − Tn+1

e ) + ν̃2,ei

(
(∂xB3)n+1

)2
.

This system is linear and owns an explicit solution.

11



From here we will focus on the first step of the numerical approximation. We
will explain how to derive an efficient approximate Riemann solvers for the
homogeneous part of the system (??) - (??).

In order to get those approximate Riemann solvers, we use a standard relax-
ation approach, introduced in [?] for the gas dynamic equations. This approach
has been developed in [?] for the MHD equations, in [?] for shallow elastic flu-
ids, in [?] for shallow water MHD equations, in [?] for the bitemperature Euler
system. An abstract general description can be found in [?], and related works
are [?, ?]. This technique enables to naturally handle the entropy inequality
(??), and also preserves the positivity of density and internal energies.

3.1 Relaxation approach

3.1.1 Approximate Riemann solver

We introduce new variables πe,πi, the relaxed pressures, and a intended to
parametrize the speed. The form of the relaxation system is as follows,

∂tρ+ ∂xρu1 =0, (3.1)

∂t(ρu1) + ∂x(ρu2
1 + πe + πi +B2

3/2) =0, (3.2)

∂t(ρu2) + ∂x(ρu2u1) =0, (3.3)

∂tEe + ∂x
(
u1

(
Ee + πe + ceB

2
3/2
))
− u1∂x (ciπe − ceπi) =0, (3.4)

∂tEi + ∂x
(
u1

(
Ei + πi + ciB

2
3/2
))

+ u1∂x (ciπe − ceπi) =0, (3.5)

∂tB3 + ∂x(u1B3) =0, (3.6)

∂t(ρπe) + ∂x(ρu1πe) + ce
(
a2 − ρB2

3

)
∂xu1 =0, (3.7)

∂t(ρπi) + ∂x(ρu1πi) + ci
(
a2 − ρB2

3

)
∂xu1 =0, (3.8)

∂t(ρa) + ∂x(ρau1) =0. (3.9)

The approximate Riemann solver can be defined as follows, starting from left
and right values Ul, Ur at an interface.

• Solve the Riemann problem of the system (??)-(??) with initial data ob-
tained by completing Ul, Ur by the equilibrium relations

πe,L = pe,L ≡ (γe − 1)ρLεe,L,
πi,L = pi,L ≡ (γi − 1)ρLεi,L,
πe,R = pe,R ≡ (γe − 1)ρRεe,R,
πi,R = pi,R ≡ (γi − 1)ρRεi,R,

(3.10)

and with suitable positive values of al, ar that will be discussed further
on, essentially in Section ??.

• Retain in the solution only the variables ρ, ρu1, ρu2, Ee, Ei, B3. The
result is a vector called R(x/t, Ul,Ur).

Intuitively, the solver is consistent because of the equations (??)-(??), that are
consistent with the equations (??)-(??). The specific values used for a do not
play any role in this consistency.

The accuracy of the solver on isolated contacts is described by the following
lemma.

12



Lemma 3.1. The approximate Riemann solver R(x/t, Ul,Ur) solves exactly the
material contact discontinuities.

Proof. Material contacts are solutions to the bitemperature MHD system (??)
- (??) with u1, pe + pi +B2

3/2 constant. These solutions are obviously solutions
to the relaxation system (??) - (??) with πe = pe, πi = pi. Thus for these data,
R coincides with the exact solver, which concludes the proof.

3.1.2 Godunov scheme

Following the Godunov approach, the numerical scheme can be defined by the
approximate Riemann solver as follows. We consider a mesh of cells (xi−1/2, xi+1/2),
i ∈ Z, of length ∆xi = xi+1/2 − xi−1/2, discrete times tn with tn+1 − tn = ∆t,
and cell values Uni approximating the average of U over the cell i at time tn.
We can then define an approximate solution Uappr(t,x) for tn ≤ t < tn+1 and
x ∈ R by

Uappr(t,x) = R(
x− xi+1/2

t− tn
, Uni , U

n
i+1) for xi < x < xi+1, (3.11)

where xi = (xi−1/2 + xi+1/2)/2. This definition is coherent under a half CFL
condition, formulated as

x/t < −∆xi
2∆t

⇒ R(x/t, Ui, Ui+1) = Ui,

x/t >
∆xi+1

2∆t
⇒ R(x/t, Ui, Ui+1) = Ui+1.

(3.12)

The new values at time tn+1 are defined by

Un+1
i =

1

∆xi

∫ xi+1/2

xi−1/2

Uappr(tn+1 − 0, x)dx.

Notice that it is only in this averaging procedure that the choice of the par-
ticular pseudo-conservative variable U as (??) is involved. We can follow the
computations of [?, Section 2.3], the only difference being that the system is not
conservative. We obtain the update formula

Un+1
i = Uni −

∆t

∆xi
(Fl(U

n
i , U

n
i+1)− Fr(U

n
i−1, U

n
i )), (3.13)

where

Fl(Ul,Ur) = F (Ul)−
∫ 0

−∞
(R(ξ, Ul, Ur)− Ul)d ξ,

Fr(Ul,Ur) = F (Ur) +

∫ ∞
0

(R(ξ, Ul, Ur)− Ur) dξ.
(3.14)

The variable ξ stands for x/t, and the pseudo-conservative flux is chosen as

F (U) ≡
(
ρu1, ρu2

1 + pe + pi +B2
3/2, ρu1u2,

u1

(
Ee + pe + ceB

2
3/2
)
, u1

(
Ei + pi + ciB

2
3/2
)
, u1B3

)
. (3.15)

In (??), the fourth and fifth components could be chosen differently since the
two energy equations in our system are not conservative. We can remark that
the choice of F has no influence on the update formula (??).
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3.1.3 Subcharacteristic condition

We are interested on necessary stability conditions for smooth solutions. In
order to address such an issue, we consider (??), (??) in which we add right-
hand-sides:

∂t(ρπe) + ∂x(ρu1πe) + ce
(
a2 − ρB2

3

)
∂xu1 =

ρ

κ
(pe − πe) , (3.16)

∂t(ρπi) + ∂x(ρu1πi) + ci
(
a2 − ρB2

3

)
∂xu1 =

ρ

κ
(pi − πi) . (3.17)

On the other hand one can check with straightforward computations that the
smooth solutions to (??) - (??) verify

∂t(ρpe) + ∂x(ρpeu1) + γeρpe∂xu1 = 0, (3.18)

∂t(ρpi) + ∂x(ρpiu1) + γiρpi∂xu1 = 0. (3.19)

Next when the relaxation parameter κ tends to zero one has

πα = pα + δκ+ O(κ2), α = e,i. (3.20)

Pluggin (??) into (??) or (??) then substracting (??)-(??) we get that :

δ = cα
(
ρB2

3 + γαρpα − a2
)
∂xu1 + O(κ).

Hence the stability condition needed by the parameter a is

a2 > ρB2
3 + γeρpe + γiρpi. (3.21)

3.1.4 Intermediate states

By using the variable V = (ρ,u1,u2,B3, εe, εi, πe, πi, a), one can easily compute
the eigenvalues of the system (??) - (??). They read as {u − a/ρ, u, u + a/ρ},
where u is an eigenvalue of order 7. All the fields are linearly degenerated. As a
consequence, Rankine-Hugoniot conditions are well-defined (the weak Riemann
invariants do not jump through the associated discontinuity), and are equivalent
to any conservative formulation.
In the solution to the Riemann problem, the speeds corresponding to the pre-
vious eigenvalues will be denoted by

Σ1 < Σ2 < Σ3. (3.22)

Thus we get a 3-wave solver with two intermediate states. The variables take
the values “L” for x/t < Σ1, “L*” for Σ1 < x/t < Σ2, “R*” for Σ2 < x/t < Σ3,
“R” for Σ3 < x/t, see Figure ??. There are 7 strong Riemann invariants for the
central wave (i.e. quantities that lie in the kernel of ∂t + u1∂x), which are

u2, a,
B3

ρ
, w1,e, w1,i, w2,e, w2,i, (3.23)

with w1,e, w1,i, w2,e, w2,i defined by

w1,α = πα + cαB
2
3/2 +

a2
1cα
ρ

, w2,α = εα +
B2

3

2ρ
−
(
πα + cαB

2
3/2
)2

2(cα a1)2
.
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Figure 1: Intermediate states in the Riemann solution

These quantities are thus weak Riemann invariants for the other waves. Two
weak Riemann invariants for the central wave are

u1, π, (3.24)

with π = πe + πi + B2
3/2. We shall denote u∗1 the common value of u1 on the

left and on the right of the central wave.
Computations using the Riemann invariants (??), (??) give the following inter-
mediate states: 

1

ρ∗L
=

1

ρL
+
aR(u1,R − u1,L) + πL − πR

aL(aL + aR)
,

1

ρ∗R
=

1

ρR
+
aL(u1,R − u1,L) + πR − πL

aR(aL + aR)
,

u∗1 =
aRu1,R + aLu1,L + πL − πR

aL + aR
, (3.25)

B∗3,L =
ρ∗L
ρL
B3,L, B∗3,R =

ρ∗R
ρR
B3,R,

for α = e,i we have
π∗α,L = πα,L +

cαB
2
3,L

2

(
1−

(
ρ∗L
ρL

)2
)

+ a2
Lcα

(
1

ρL
− 1

ρ∗L

)
,

π∗α,R = πα,R +
cαB

2
3,R

2

(
1−

(
ρ∗R
ρR

)2
)

+ a2
Rcα

(
1

ρR
− 1

ρ∗R

)
,
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

ε∗α,L = εα,L +
B2

3,L

2ρL

(
1− ρ∗L

ρL

)
+

(
π∗α,L + cαB

∗
3,L

2/2
)2

2(cαaL)2

−
(
πα,L + cαB

2
3,L/2

)2
2(cαaL)2

,

ε∗α,R = εα,R +
B2

3,R

2ρR

(
1− ρ∗R

ρR

)
+

(
π∗α,R + cαB

∗
3,R

2/2
)2

2(cαaR)2

−
(
πα,R + cαB

2
3,R/2

)2
2(cαaR)2

.

(3.26)

Finally, using previous formulas one can compute the speeds

Σ1 = u1,L −
aL
ρL
, Σ2 = u∗1, Σ3 = u1,R +

aR
ρR
. (3.27)

Remark 3.2. Let us notice that ciπe − ceπi is equal to ciw1,e − cew1,i. As a
consequence, ciπe − ceπi is a Riemann invariant for both extreme eigenvalues.
This means that this quantity remains constant through the related contact dis-
continuities, so that u∂x(ciπe − ceπi) = 0 there. For the central discontinuity,
u is constant so that u∂x(ciπe − ceπi) = ∂x (u (ciπe − ceπi)) this product is also
well defined in the usual weak sense.

3.2 Numerical fluxes

All components of the system except Ee and Ei are conservative, thus classical
computations give the associated numerical fluxes,

FL = (Fρ, Fρu1 , Fρu2 , FEe
L , FEi

L ,F
B3),

FR = (Fρ, Fρu1 , Fρu2 , FEe
R , FEi

R ,F
B3),

(3.28)

where the conservative part involves the Riemann solution evaluated at x/t=0,

Fρ = (ρu)x/t=0,
Fρu1 = (ρu2

1 + πe + πi +B2
3/2)x/t=0,

Fρu2 = (ρu1u2)x/t=0,
FB3 = (u1B3)x/t=0.

(3.29)

More explicitly (??) yields that the quantities between parentheses are evaluated
at “L” if Σ1 ≥ 0, at “L∗” if Σ1 ≤ 0 ≤ Σ2, at “R∗” if Σ2 ≤ 0 ≤ Σ3, at “R” if
Σ3 ≤ 0 (see Figure ??). As usual there is no ambiguity when equality occurs in
these conditions.

We complete these formulas by computing the left/right numerical fluxes
from (??) for the variables Eα with α = e,i ,

FEα
L =

(
u1

(
Eα + πα + cαB

2
3/2
))
L

+ min(0,Σ1)
(
E
∗
α,L − Eα,L

)
+ min(0,Σ2)

(
E
∗
α,R − E

∗
α,L

)
+ min(0,Σ3)

(
Eα,R − E

∗
α,R

)
, (3.30)

FEα
R =

(
u1

(
Eα + πα + cαB

2
3/2
))
R
−max(0,Σ1)

(
E
∗
α,L − Eα,L

)
−max(0,Σ2)

(
E
∗
α,R − E

∗
α,L

)
−max(0,Σ3)

(
Eα,R − E

∗
α,R

)
. (3.31)
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3.2.1 Positivity of density and internal energies

We must now provide some sufficient conditions on aL and aR in order to satisfy
(??) and the realisability of the intermediate states, that is the positivity of ρ∗L,
ρ∗R, ε∗e,L, ε∗i,L, ε∗e,R and ε∗i,R. First, using (??), (??), (??), we obtain that

aL(aL + aR) ≥ ρL (aR(u1,L − u1,R) + πR − πL) ,

aR(aL + aR) ≥ ρR (aL(u1,L − u1,R) + πL − πR) ,

are sufficient conditions to obtain (??) and thus are sufficient conditions to
preserve the positivity of ρ∗L and ρ∗R.
Second, from a straightforward calculation using (??), ε∗e,L, ε∗i,L, ε∗e,R and ε∗i,R
are positive if

aL ≥ max

(
|πe,L + ceB

2
3,L/2|

2ce
√
εe,L

,
|πi,L + ciB

2
3,L/2|

2ci
√
εi,L

)
,

aR ≥ max

(
|πe,R + ceB

2
3,R/2|

2ce
√
εe,R

,
|πi,R + ciB

2
3,R/2|

2ci
√
εi,R

)
.

4 Entropy minimum principle

The present section is devoted to prove that the scheme (??) - (??) satisfies the
following discrete entropy inequality

η(Un+1
i )− η(Uni ) +

∆t

∆x
(G(Ui,Ui+1)−G(Ui−1,Ui)) ≤ 0, (4.1)

where
η(U) = −ρ(se(U) + si(U)), (4.2)

is the entropy from (??). The numerical entropy flux G(Ul,Ur) satisfies the
consistency condition G(U,U) = −ρu (se(U) + si(U)).

The state vector U is defined by (??) and belongs to the admissible state
space Ω defined as follows

Ω =
{
U ∈ R6; ρ > 0, εe > 0, εi > 0

}
.

First we recall the classical and most general condition from Harten-Lax-van
Leer [?] concerning discrete entropy inequalities. Let η(U) be the entropy de-
fined by (??). Let R(ξ, UL, UR) be the approximate Riemann solver defined in
Section ??. Under CFL condition (??), assume the following entropy consis-
tency condition:

1

∆x

∫ ∆x/2

−∆x/2

η (R(x/∆t, UL, UR)) dx ≤

1

2
(η(UL) + η(UR))− ∆t

∆x
(η(UR)uR + η(UL)uL) . (4.3)

Then the scheme (??) - (??) satisfies the discrete entropy inequality (??). We
skip the proof of this well-know result (for instance, see [?]).
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The previous result states a criterion which is too weak to be applied on our
scheme. Instead we use a stronger condition, based on a local minimum entropy
principle. This idea was introduced in [?] for the gas dynamic sytem. A suitable
extension of this technique has been derived for the MHD system in [?] and in
[?] for the ten-moments system.

The first step consists in stating a sufficient condition on the intermediate
states of the approximate Riemann solver to enforce the required discrete en-
tropy inequality.

Theorem 4.1. Assume the intermediate states U∗L and U∗R defined by belong Ω
for all UL,R ∈ Ω and satisfy the following entropy estimates for α = e,i

sα(U∗L) ≥ sα,L, sα(U∗R) ≥ sα,R, (4.4)

where
sα,L = sα(UL), sα,R = sα(UR),

and sα(U) is given by (??). In addition assume the CFL condition (??) holds.
Let Uni ∈ Ω for all i ∈ Z. Then Un+1

i defined by (??)-(??) satisfies the discrete
entropy inequality (??).

Remark 4.2. The result remains valid when B3 = 0 and proves that the scheme
developed by a Suliciu relaxation approach in [?] also satisfies a discrete entropy
inequality.

Proof. Arguing similarly to the proof of the Theorem 6.1 in [?], the scheme
will be proved to satisfy a discrete entropy inequality as soon as we have the
following entropy estimates

η(U∗L) ≥ η(UL), η(U∗R) ≥ η(UR),

and the following relations are satisfied

ρ∗Lu
∗
1 − ρLu1,L = Σ1 (ρ∗L − ρL) ,

ρ∗Ru
∗
1 − ρRu1,R = Σ3 (ρ∗R − ρR) .

Using (??), we sum (??) for α = e, i and we obtain the entropy estimate.
Moreover, these previous relations are Rankine-Hugoniot relations which are
satisfied because the solver resolves exactly the equation on density (??).

Our goal is now to obtain the sufficient condition (??). In the sequel, we de-
note Σ = (λ, εα, B3, π)T ∈ R+×R+×R×R and we set Σeq = (λ, εα, B3, pα(λ, εα))T .
Moreover we introduce three functions Σ 7→ φ(Σ), Σ 7→ ϕ(Σ), Σ 7→ ψ(Σ) in
C2(R+ × R+ × R × R) associated to the Riemann invariants already exhibited
in (??), as follows

φ(Σ) = π + cαB
2
3/2 + cαa

2λ,

ϕ(Σ) = εα + λB2
3 −

(
π + cαB

2
3/2
)2

2 (cea)
2 ,

ψ(Σ) = λB3,

(4.5)

where we have set λ the specific volume as follows

λ =
1

ρ
.

We now give our central technical statement.
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Proposition 4.3. Let U defined by (??). Assume that (??) holds for all U ∈ Ω.
Then there exist a function Σ 7→ Sα (φ(Σ), ϕ(Σ), ψ(Σ)) so that

max
π∈R

Sα (φ(Σ), ϕ(Σ), ψ(Σ)) = Sα (φ(Σ), ϕ(Σ), ψ(Σ)) |π=pα(λ,εα) = sα(λ,εα).

(4.6)

Before we give the proof of this result, let us illustrate the interest of this
technical proposition, by proving Theorem ??.

Proof of Theorem ??. Here we focus on the first inequality of (??) since the
establishment of the second inequality is similarly obtained. First we apply
Proposition ??. Thus there exists a function Σ 7→ Sα(Σ) such that relation (??)
holds. As a consequence, if we denote

S∗α(π) = S∗α
(
φ(λ∗L, ε

∗
α,L, B

∗
3,L, π), ϕ(λ∗L, ε

∗
α,L, B

∗
3,L, π), ψ(λ∗L, ε

∗
α,L, B

∗
3,L, π)

)
then we have

sα(λ∗L,ε
∗
α,L) = max

π∈R
S∗α(π) ≥ S∗α(π̃), ∀π̃ ∈ R.

We fix π̃ = π∗α,L to write

sα(λ∗L,ε
∗
α,L) ≥ S∗α(π∗L). (4.7)

Next the functions φ, ϕ, ψ defined by (??) are Riemann invariants shared by the
eigenvalues u1±a/ρ. Thus they are invariant across the wave speeds u1,L−aL/ρL
and u1,R + aR/ρR. So we have

ϕ
(
λ∗L, ε

∗
α,L, B

∗
3,L, π

∗
α,L

)
= ϕ (λL, εα,L, B3,L, πα,L) ,

φ
(
λ∗L, ε

∗
α,L, B

∗
3,L, π

∗
α,L

)
= φ (λL, εα,L, B3,L, πα,L) ,

ψ
(
λ∗L, ε

∗
α,L, B

∗
3,L, π

∗
α,L

)
= ψ (λL, εα,L, B3,L, πα,L) .

(4.8)

Last three equations imply that

S∗α(π∗L)

= Sα (φ(λL, εα,L, B3,L, pL), ϕ(λL, εα,L, B3,L, pL), ψ(λL, εα,L, B3,L, pL)) .

Using last equality in (??) we get

sα(λ∗L,ε
∗
α,L)

≥ Sα (φ(λL, εα,L, B3,L, pL), ϕ(λL, εα,L, B3,L, pL), ψ(λL, εα,L, B3,L, pL)) .

In addition, using second equation in (??), we have

sα(λL,εα,L)

= Sα (φ(λL, εα,L, B3,L, pL), ϕ(λL, εα,L, B3,L, pL), ψ(λL, εα,L, B3,L, pL)) .

Thus the expected left minimum principle is reached and the proof is complete.

To complete this section, we now establish Proposition ??. To address such
an issue, we need the following lemma whose helpfulness is just technical. In
the sequel we set σ = (λ, ε)T .
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Lemma 4.4. Let U defined by (??) and φ(Σ), ϕ(Σ), ψ(Σ) by (??). Assume
that (??) holds for all U ∈ Ω. Then there exists three functions, denoted by
λ̄(X,Y,Z), ε̄α(X,Y,Z), B̄3(X,Y,Z) such that

λ̄(φ(Σeq), ϕ(Σeq), ψ(Σeq)) = λ, ε̄α(φ(Σeq), ϕ(Σeq), ψ(Σeq)) = ε

and B̄3(φ(Σeq), ϕ(Σeq), ψ(Σeq)) = B3, (4.9)

and the following derivatives are satisfied:

∂λ̄

∂X
(X,Y,Z) =

1

D(σ̃)

(
λ̄− γ − 1

cαa2

(
pα(λ̄,ε̄α) + cα

B̄2
3

2

))
, (4.10)

∂λ̄

∂Y
(X,Y,Z) =

−cα(γ − 1)

D(σ̃)
, (4.11)

∂ε̄α
∂X

(X,Y,Z) =
1

D(σ̃)

(
λ
B̄2

3

2
− pα(λ̄, ε̄α) + cαB̄

2
3

(cαa)2

(
pα(λ̄, ε̄α) + cα

B̄2
3

2

))
,

(4.12)

∂ε̄α
∂Y

(X,Y,Z) =
1

D(σ̃)

(
λ̄a2 − pα(λ̄,ε̄α)− cαB̄2

3

)
, (4.13)

∂B̄3

∂X
(X,Y,Z) =

−B̄3

D(σ̃)

(
1− γ − 1

λ̄cαa2

(
pα(λ̄,ε̄α) + cα

B̄2
3

2

))
, (4.14)

∂B̄3

∂Y
(X,Y,Z) =

cα(γ − 1)B̄3

λ̄D(σ̃)
, (4.15)

where we have set

σ̃ = (λ̄(X,Y,Z), ε̄α(X,Y,Z), B̄3(X,Y,Z))T

and
D(λ,εα,B3) = cαλa

2 − γαpα(λ, εα)− cαB2
3 . (4.16)

In the second statement, we exhibit a suitable function derived from λ̄ and
ε̄ and we consider its local extremum.

Lemma 4.5. Let U defined by (??) and φ(Σ), ϕ(Σ), ψ(Σ) by (??). Assume
that (??) holds for all U ∈ Ω. We introduce S(Σ) : R+ × R+ × R × R → R
defined by:

S(Σ) = sα
(
λ̄ (φ(Σ), ϕ(Σ), ψ(Σ)) , ε̄α (φ(Σ), ϕ(Σ), ψ(Σ))

)
, (4.17)

where sα(λ, εα) denotes the specific entropy. For sake of clarity we denote λ̄, ε̄α
and B̄3 instead of λ̄ (ϕ(Σ), φ(Σ), ψ(Σ)), ε̄α (ϕ(Σ), φ(Σ), ψ(Σ)), and B̄3 (ϕ(Σ), φ(Σ), ψ(Σ)).
Then we have

∂S

∂π
(Σ) =

(
pα(λ̄, ε̄α) + B̄2

3/2
)
−
(
π +B2

3/2
)

a2ε̄α
, (4.18)

with the functions λ̄, ε̄α and B̄3 defined in Lemma ??.

The last result concerns the study of the extrema of the function S defined
by (??).
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Lemma 4.6. Let U defined by (??) and S(Σ) defined by (??). Assume that (??)
holds for all U ∈ Ω. Then the function π 7→ S(Σ) admits a unique maximum
given by π = pα(λ, εα).

Equipped with these results, we can establish Proposition ??

Proof of Proposition ??. From assumption (??), we can apply Lemmas ?? and
?? to define a function S as follows:

S(φ(Σ),ϕ(Σ),ψ(Σ)) = S(Σ),

= s
(
λ̄ (φ(Σ),ϕ(Σ),ψ(Σ)) , ε̄α (φ(Σ),ϕ(Σ), ψ(Σ))

)
,

where the function s is nothing but the specific entropy. Now, by definition of
λ̄ and ε̄α, we have

λ̄ (φ(Σ),ϕ(Σ), ψ(Σ)) |π=p(λ,εα) = λ and ε̄α (φ(Σ),ϕ(Σ), ψ(Σ)) |π=p(λ,εα) = εα,

which immediately implies

S (φ(Σ),ϕ(Σ), ψ(Σ)) |π=p(λ,εα) = s(λ,εα).

Next, we study the extrema of the function π 7→ S(Σ). By Lemma ??, the unique
maximum of the function S is π = pα(λ, εα), which completes the proof.

We conclude this section by giving successively the proof of the three inter-
mediate lemmas.

Proof of Lemma ??. Let us consider the function

Θ : (λ, εα, B3) 7→

 φ(λ, εα, B3, pα(λ, εα))
ϕ(λ, εα, B3, pα(λ, εα))
ψ(λ, εα, B3, pα(λ, εα))

 . (4.19)

We remark that the function D(λ,εα,B3), defined by (??) is nothing but the
Jacobian function of Θ. Since for all (λ,εα,B3) under consideration (??) holds,
D(λ,εα,B3) does not vanish. Thus we can apply the inverse function theorem
to deduce the existence of a reciprocal function

Θ−1(X,Y, Z) =

 λ̄(X,Y,Z)
ε̄α(X,Y,Z)
B̄3(X,Y,Z)

 ,

defined for (X,Y,Z) in the range of Θ and such that D(λ,εα,B3) 6= 0.
By definition of the functions λ̄, ε̄α and B̄3, the relation (??) is obviously ob-
tained.
Now, we evaluate the derivatives of those reciprocal functions. Once again by
definition of λ̄, ε̄α and B̄3, we have

ϕ
(
λ̄(X,Y,Z), B̄3(X,Y,Z), pα(λ̄, ε̄α)

)
= X,

φ
(
λ̄(X,Y,Z), ε̄α(X,Y,Z), B̄3(X,Y,Z), pα(λ̄, ε̄α)

)
= Y,

ψ
(
λ̄(X,Y,Z), B̄3(X,Y,Z)

)
= Z.
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By differentiating in X these two relations and using (??), we obtain:(
cαa

2 − pα(λ̄, ε̄α)

λ̄

)
∂λ̄

∂X
+
cα(γ − 1)

λ̄

∂ε̄α
∂X

+ cαB̄3
∂B̄3

∂X
= 1,(

B̄2
3

2
+
pα(λ̄, ε̄α)

(cαa)2λ̄

(
pα(λ̄, ε̄α) + cα

B̄2
3

2

))
∂λ̄

∂X

+

(
1− pα(λ̄, ε̄α)

(cαa)2ε̄α

(
pα(λ̄, ε̄α) + cα

B̄2
3

2

))
∂ε̄α
∂X

+ B̄3

(
λ̄− 1

cαa2

(
pα(λ̄, ε̄α) + cα

B̄2
3

2

))
∂B̄3

∂X
= 0,

B̄3
∂λ̄

∂X
+ λ̄

∂B̄3

∂X
= 0.

With D(λ,εα,B3) 6= 0, this above 3 × 3 system is solvable in the variables

( ∂λ̄∂X ,
∂ε̄α
∂X ,

∂B̄3

∂X ). Then we get the expected definition of the derivatives ∂λ̄
∂X (X,Y,Z),

∂ε̄α
∂X (X,Y,Z) and ∂B̄3

∂X (X,Y,Z) given by (??), (??), and (??).

Proof of Lemma ??. Here, we have to compute the derivative of S with respect
to π where the function S is defined by (??). Using the definition of ψ in (??)
we notice that ∂ψ

∂π (Σ) = 0, which enables us to write

∂S

∂π
(Σ) =

∂sα
∂λ

(σ̄)

(
∂λ̄

∂X
(ϕ(Σ), φ(Σ), ψ(Σ))

∂ϕ

∂π
(Σ)

+
∂λ̄

∂Y
(ϕ(Σ), φ(Σ), ψ(Σ))

∂φ

∂π
(Σ)

)
+

∂sα
∂εα

(σ̄)

(
∂ε̄α
∂X

(ϕ(Σ), φ(Σ), ψ(Σ))
∂ϕ

∂π
(Σ)

+
∂ε̄α
∂Y

(ϕ(Σ), φ(Σ), ψ(Σ))
∂φ

∂π
(Σ)

)
,

(4.20)

where we have set

σ̄ =
(
λ̄ (ϕ(Σ), φ(Σ), ψ(Σ)) , ε̄α (ϕ(Σ), φ(Σ), ψ(Σ))

)T
.

In the sequel, we will denote λ̄, ε̄α and B̄3 instead of λ̄ (ϕ(Σ), φ(Σ), ψ(Σ)),
ε̄α (ϕ(Σ), φ(Σ), ψ(Σ)) and B̄3 (ϕ(Σ), φ(Σ), ψ(Σ)). Moreover we will use the no-
tation σ̃ =

(
λ̄, ε̄α, B̄3

)
. Next using (??)-(??), we compute

∂λ̄

∂X
(ϕ(Σ), φ(Σ), ψ(Σ))

∂ϕ

∂π
(Σ) +

∂λ̄

∂Y
(ϕ(Σ), φ(Σ), ψ(Σ))

∂φ

∂π
(Σ) =

1

D(σ̃)

(
λ̄+

(γ − 1)

cαa2

[(
π + cα

B2
3

2

)
−
(
pα(λ̄,ε̄) + cα

B̄2
3

2

)])
, (4.21)

and

∂ε̄α
∂X

(ϕ(Σ), φ(Σ), ψ(Σ))
∂ϕ

∂π
(Σ) +

∂ε̄α
∂Y

(ϕ(Σ), φ(Σ), ψ(Σ))
∂φ

∂π
(Σ) =

1

D(σ̃)

(
λ̄

(
B̄2

3

2
− 1

cα

(
π + cα

B2
3

2

))
+
pα(λ̄,ε̄α) + cαB̄

2
3

(cαa)2[(
π + cα

B2
3

2

)
−
(
pα(λ̄,ε̄) + cα

B̄2
3

2

)])
. (4.22)
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Then we plug into (??) the two previous relations together with

∂sα
∂λ

(σ̄) =
(γ − 1)

λ̄
, and

∂sα
∂εα

(σ̄) =
1

εα
,

to obtain the following equation:

∂S

∂π
(Σ) =

1

D(σ̃)

(
A+B

[(
π + cα

B2
3

2

)
−
(
pα(λ̄,ε̄) + cα

B̄2
3

2

)])
, (4.23)

with

A = (γ − 1) +
λ̄

cαε̄α

(
cα
B̄2

3

2
− π − cα

B2
3

2

)
, B =

(γ − 1)2

cαa2λ̄
+
pα(λ̄,ε̄) + cαB̄

2
3

(cαa)2ε̄α
.

We now write

A =
λ̄

cαε̄α

(
pα(λ̄,ε̄α) + cα

B̄2
3

2
− π − cα

B2
3

2

)
, B =

γpα(λ̄,ε̄α) + cαB̄
2
3

(cαa)2ε̄αλ̄
.

Finally we plug these equalities into (??) which gives (??).

Proof of Lemma ??. We apply Lemma ?? and Lemma ??, which enables us to
introduce the function

g(Σ) =
(
pα(λ̄, ε̄α) + B̄2

3/2
)
◦ (φ(Σ), ϕ(Σ), ψ(Σ))−

(
π +B2

3/2
)
,

where Σ = (λ, εα, B3, π)T .
In order to prove the lemma, we are going to study the roots of the function g.
First we notice that, thanks to relations in (??), π0 = pα(λ, εα) is a root of g.
Then we will show that for every π̃0 root of g, we have ∂g

∂π (π̃0) < 0.
Let π̃0 be a root of g. We denote by g′ the partial derivative of g with respect
to π, and we compute it as follows:

g′(Σ) =
∂pα
∂λ

(σ̄)

(
∂λ̄

∂X
(ϕ(Σ), φ(Σ), ψ(Σ))

∂ϕ

∂π
(Σ)

+
∂λ̄

∂Y
(ϕ(Σ), φ(Σ), ψ(Σ))

∂φ

∂π
(Σ)

)
+
∂pα
∂εα

(σ̄)

(
∂ε̄α
∂X

(ϕ(Σ), φ(Σ), ψ(Σ))
∂ϕ

∂π
(Σ)

+
∂ε̄α
∂Y

(ϕ(Σ), φ(Σ), ψ(Σ))
∂φ

∂π
(Σ)

)
+B̄3(ϕ(Σ), φ(Σ), ψ(Σ))

(
∂B̄3

∂X
(ϕ(Σ), φ(Σ), ψ(Σ))

∂ϕ

∂π
(Σ)

+
∂B̄3

∂Y
(ϕ(Σ), φ(Σ), ψ(Σ))

∂φ

∂π
(Σ)

)
− 1,

(4.24)
where

σ̄ =
(
λ̄ (ϕ(Σ), φ(Σ), ψ(Σ)) , ε̄α (ϕ(Σ), φ(Σ), ψ(Σ))

)T
.

In the sequel, we use the notation Σ0 = (λ, εα, B3, π̃
0) and we are interested in

computing g′(Σ0). For sake of clarity we will denote λ̄, ε̄α and B̄3 instead of
λ̄
(
ϕ(Σ0), φ(Σ0), ψ(Σ0)

)
, ε̄α

(
ϕ(Σ0), φ(Σ0), ψ(Σ0)

)
and B̄3

(
ϕ(Σ0), φ(Σ0), ψ(Σ0)

)
.
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Moreover we will denote σ̃ =
(
λ̄, ε̄α, B̄3)

)T
.

First we use the previous computations (??), (??) and the fact that g(Σ0) = 0
to get

∂λ̄

∂X
(ϕ(Σ0), φ(Σ0), ψ(Σ0))

∂ϕ

∂π
(Σ0)

+
∂λ̄

∂Y
(ϕ(Σ0), φ(Σ0), ψ(Σ0))

∂φ

∂π
(Σ0) =

λ̄

D(σ̃)
,

and

∂ε̄α
∂X

(ϕ(Σ0), φ(Σ0), ψ(Σ0))
∂ϕ

∂π
(Σ0)

+
∂ε̄α
∂Y

(ϕ(Σ0), φ(Σ0), ψ(Σ0))
∂φ

∂π
(Σ0) =

−λ̄pα(λ̄,ε̄α)

cαD(σ̃)
.

Moreover combining g(Σ0) = 0 and relations (??), (??), (??) we get that

∂B̄3

∂X
(ϕ(Σ0), φ(Σ0), ψ(Σ0))

∂ϕ

∂π
(Σ0)

+
∂B̄3

∂Y
(ϕ(Σ0), φ(Σ0), ψ(Σ0))

∂φ

∂π
(Σ0) =

−cαB̄
D(σ̃)

.

Then we plug in (??) last three previous relations together with

∂pα
∂λ

(σ̄) =
−pα
λ

and
∂sα
∂εα

(σ̄) =
pα
εα
,

in order to get

g′(Σ0) = −γpα(λ̄, ε̄α) + cαB̄3 +D(σ̃)

D(σ̃)
.

Thus g′(Σ0) < 0 for all roots g. The function g being continuous, π 7→ g(Σ) has
a unique root, which is π = pα(λ, εα).
To complete the proof we will show that π = pα(λ, εα) is a maximum of the
function S in Lemma ??. Indeed we can rewrite (??) as

∂S

∂π
(Σ) =

g(Σ)

a2ε̄α (ϕ(Σ), φ(Σ), ψ(Σ))
.

Since π = pα(λ, εα) is a unique root of g, g(Σeq) = 0 and from the previous
relation we deduce that ∂S

∂π (Σeq) = 0. Moreover we have

∂2S

∂π2
(Σeq) =

g′(Σeq)

a2ε̄α (ϕ(Σeq), φ(Σeq), ψ(Σeq))
,

and we have previously shown that g′ is negative for all roots of g. So we finally

get that ∂S
∂π (Σeq) = 0 and ∂2S

∂π2 (Σeq) < 0. Thus π = pα(λ, εα) is the maximum
of the function S, which concludes the proof.
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5 Numerical tests

In this section we perform numerical approximations in order to evaluate both
accuracy and robustness of the scheme. First order in time and space are eval-
uated. The CFL number is 1/2 in all tests. The computations are performed
over interval [0,1]. Boundary conditions are transmissive. For all test case we
use the following values for the parameters

kB = 1, γe = γi =
5

3
, Z = 1, me = 10−3, mi = 1, u2 = 0.

The numerical test are organized as follows. The subsection ?? is dedicated
to the approximation of a smooth analytical solution for the full system (the
source term is a non-zero function). The subsection ?? is dedicated to the ap-
proximation of discontinuous solutions of the homogeneous system (parameters
are taken such that the source term is the identically zero function).

5.1 Source term approximation: an analytical solution

We take initial data such that

∀x ∈ R, ρ(x, 0) = 1, u1(x, 0) = 10, Ti(x, 0) + Te(x, 0) = T = 2.

An exact solution of the system (??)-(??) is available,

∀(x, t) ∈ R× R+, ρ(x, t) = 1, u1(x,t) = 10,

Te(x, t) = Te(x− u1t, 0)e−2µt

+ a(x,t)
(
1− e−2µt

)
+ b(x,t)

(
2µt− 1 + e−2µt

)
, (5.1)

where µ = (γα − 1)ν1,αβ/(nekB) and

a(x,t) =
T

2
+
ν̃2,ei

2ν1
ei

(∂xB3(x− u1t, 0))
2
,

b(x,t) =
ν̃2,ei + ν̃2,ie

4µ
(∂xB3(x− u1t, 0))

2
.

Here we choose T = 2 and for all x ∈ [0,1],

Te(x,0) =
T

2
+ exp(−200(x− 1/2)2), and B3(x,0) = exp(−50(x− 1/2)2).

Moreover we set ν1,ei = 1 and ν̃2,ei = ν̃2,ie. The results for ν̃2,ei = 2 and ν̃2,ei = 4
are displayed in figure ??. They show a good agreement with analytical solution
(??).

5.2 Resolution of the Riemann Problem

In this section, we consider seven test cases that are inspired from the book of
Toro ([?]) in order to highlight the robustness of the numerical method and take
into account the magnetic field. In all chosen tests, data consists of two constant
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Figure 2: Solution for analytic test case for the temperatures Te, Ti computed
with 200 and 500 cells. On the left ν̃2,ei = 2 and on the right ν̃2,ei = 4.

states WL = (ρL,u1,L,Te,L,Ti,L,B3,L)
T

and WR = (ρR,u1,R,Te,R,Ti,R,B3,R)
T

,
separated by a discontinuity at a position x = x0. The states WL and WR are
given in Table ??. These test cases are Riemann problems in the space domain
[0,1]. For each test problem we select a convenient position x0 of the initial
discontinuity and the output time. These are stated in the legend of each figure
displaying computational results.

Test ρ u B3 Te Ti
Test 1 left 1 0.75 0.8164966 0.3336667 0.3336667
Test 1 right 0.125 0 0.2581989 0.2669333 0.2669333
Test 2 left 1 -2 0.5163978 0.1334667 0.1334667
Test 2 right 1 2 0.5163978 0.1334667 0.1334667
Test 3 left 1 0 14.142136 100.10000 100.1
Test 3 right 1 0 0.2581989 0.0333667 0.0333667
Test 4 left 5.9999924 19.5975 17.528909 25.630859 25.630860
Test 4 right 5.9999242 -6.19633 5.5434646 2.5634264 2.5634266
Test 5 left 1 -19.5975 8.1649658 33.366665 33.366667
Test 5 right 1 -19.5975 0.2581989 0.0333667 0.0333667
Test 6 left 1.4 0 0.8164966 0.2383333 0.2383333
Test 6 right 1 0 0.8164966 0.3336667 0.3336667
Test 7 left 1.4 0.1 0.8164966 0.2383333 0.2383333
Test 7 right 1 0.1 0.8164966 0.3336667 0.3336667

Table 1: Data for seven test problems.

Test 1 is a modified Sod test case. The solution is constituted by a right shock
wave, a right travelling contact and a left sonic rarefaction wave. Test case
2 consists of two symmetric rarefaction waves travelling in opposite direction
and a trivial contact wave. The solution of Test 3 consists of a strong wave of
shock, a contact surface and a left rarefaction wave. The solution of Test 4 is
composed of three strong discontinuities travelling to the right. The solution
of Test 5 corresponds to a left rarefaction rarefaction wave, a right-travelling
shock wave and a stationary contact discontinuity. The solution of Test 6 is an
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isolated stationary contact wave. The solution of Test 7 is an isolated contact
moving slowly to the right.

We compare our Suliciu method with a nonconservative version of the classi-
cal HLL method. Like the Sulicu method, it is a nonconservative finite volume
type of scheme, with update formula (??). In the following we explain how
we define the numerical fluxes Fl(Ul,Ur) and Fr(Ul,Ur). First we use HLL nu-
merical fluxes (denoted by the subscript HLL in the following) to discretize the
conservative part of our system. It leads to conservative fluxes (Fl = Fr = F )
for the conserved quantities ρ, ρu1, ρu2, B3:

F ρ(Ul,Ur) = F ρHLL(Ul,Ur) (5.2)

F ρu1(Ul,Ur) = F ρu1

HLL(Ul,Ur) (5.3)

F ρu2(Ul,Ur) = F ρu2

HLL(Ul,Ur) (5.4)

FB3(Ul,Ur) = FB3

HLL(Ul,Ur). (5.5)

In addition we use a centered discretisation of the nonconservative terms. In
this subsection we will use the notation φ = cipe − cepi so that the noncon-
servative terms now write −u1∂xφ in (??) and u1∂xφ in (??) .This leads to
nonconservative fluxes (Fl 6= Fr) for the components Ee and Ei:

FEe
l (Ul,Ur) = FEe

HLL(Ul,Ur)− ul (φr − φl) (5.6)

FEe
r (Ul,Ur) = FEe

HLL(Ul,Ur)− ur (φr − φl) (5.7)

FEi
l (Ul,Ur) = FEe

HLL(Ul,Ur) + ul (φr − φl) (5.8)

FEi
r (Ul,Ur) = FEe

HLL(Ul,Ur) + ur (φr − φl) . (5.9)

The nonservative HLL method is thus defined by (??), (??)-(??) with φ =
cipe − cepi.

5.2.1 Numerical results

The results are presented as follows. Figure ?? to Figure ?? show results for
Suliciu method. Figure ?? to Figure ?? show results for the nonconservative
HLL method. Figure ?? show results aimed at comparing the performance of
the nonconservative HLL and the Suliciu methods for isolated, stationnary and
slowly moving contact discontinuities.

For Test 1 to Test 5, in presence of magnetic field no exact solutions are
available. Thus we compute numerical solutions for 300, 2000, 10000 cells. The
quantities shown are density ρ, speed u1, electronic and ionic temperatures Te
and Ti, and magnetic field B3. The goal is to investigate qualitative behavior
of numerical methods. Figure ?? to Figure ?? show three good properties of
the Suliciu method. First, the Suliciu method is able to produce solutions for
all tests. Second it converges when the number of cell increases. Third all
densities and temperatures computed remain positives. Figure ?? to Figure ??
show that the previous good properties of the Sulicu method are not met when
not dealing properly with nonconservative products. First, the nonconservative
HLL fails to produce solutions for Test 2 and Test 5. On the other tests, the
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density remains positive but the ionic temperatures do not on Figure ?? and
??. Moreover, the convergence does not occur. More precisely, on Figure ??, for
ionic temperature and magnetic field, a spike grows when the number of cell is
increasing. For electronic temperature, unphysical oscillations occur. On Figure
??, a spike grows for density and magnetic field, unphysical oscillations grow
on ionic temperature. On Figure ?? or a spike appears and grows for density,
magnetic field and ionic temperature.

For Test 6 and Test 7, exact solutions are available. We compare numerical
solution for 300 cells and the exact solution. Figure ?? shows a good prop-
erty that the Suliciu method has and the nonconservative HLL has not. The
Sulicu method is exact on isolated stationnary contact discontinuity, and very
sharp on isolated slowly moving contact discontinuity. On the other hand, the
nonconservative HLL spreads too much those discontinuities.

6 Conclusion

In this paper we have investigated at the modelling and numerical point of view
the bitemperature Euler system with transverse magnetic field.

At the modelling point of view, we introduced a multicomponent BGK ki-
netic system coupled with Mawell equations. Next by perfoming an hydrody-
namic limit, the bitemperature Euler equations with transverse magnetic field
has been established.

At the numerical level, we designed a Suliciu relaxation approximation and
we showed that the associated scheme is entropic. We compared our method
with an a priori not positive nor entropic scheme, a nonconservative version
of the classical HLL method. The results highlight the fundamental role of
designing positive and entropic schemes to obtain their convergence.

We shall address to forthcoming papers the following different points. Firstly,
we are currently working on taking into account transverse electric (TE) fields.
Then, we plan to use this work dealing with transverse magnetic field and future
work on TE field in order to propose novel high order and multi-dimensional
schemes. Moreover, the case of Navier-Stokes asymptotics has also to be con-
sidered.
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Figure 3: Suliciu method applied to Test 1 with x0 = 0.3. Numerical solutions
are compared at computational time t = 0.2.
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Figure 4: Suliciu method applied to Test 2 with x0 = 0.5. Numerical solutions
are compared at computational time t = 0.15.
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Figure 5: Suliciu method applied to Test 3 with x0 = 0.5. Numerical solutions
are compared at computational time t = 0.012.
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Figure 6: Suliciu method applied to Test 4 with x0 = 0.4. Numerical solutions
are compared at computational time t = 0.035.
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Figure 7: Suliciu method applied to Test 5 with x0 = 0.8. Numerical solutions
are compared at computational time t = 0.012.
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Figure 8: Nonconservative HLL method applied to Test 1 with x0 = 0.3. Nu-
merical solutions are compared at computational time t = 0.2.
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Figure 9: Nonconservative HLL method applied to Test 3 with x0 = 0.5. Nu-
merical solutions are compared at computational time t = 0.012.
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Figure 10: Nonconservative HLL method applied to Test 4 with x0 = 0.4.
Numerical solutions are compared at computational time t = 0.035.
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Figure 11: Noncervative HLL method (left) and Suliciu method (right) applied
to Test 6 with x0 = 0.5, and Test 7 with x0 = 0.3. Numerical and exact solutions
are compared at time t = 2.0 for both Test 6 and Test 7.
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