
HAL Id: hal-01939149
https://hal.science/hal-01939149v1

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Detecting the Onset of Strain Localisation using
Two-dimensional Wavelet Analysis on Sandstone

Deformed at Different Effective Pressures
Roberto G. Rizzo, David Healy, Michael Heap, Natalie Farrell

To cite this version:
Roberto G. Rizzo, David Healy, Michael Heap, Natalie Farrell. Detecting the Onset of Strain Localisa-
tion using Two-dimensional Wavelet Analysis on Sandstone Deformed at Different Effective Pressures.
Journal of Geophysical Research, 2018, �10.1029/2018JB015898�. �hal-01939149�

https://hal.science/hal-01939149v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Journal of Geophysical Research: Solid Earth

Detecting the Onset of Strain Localization Using
Two-Dimensional Wavelet Analysis on
Sandstone Deformed at Different
Effective Pressures

Roberto E. Rizzo1,2 , David Healy1 , Michael J. Heap3 , and Natalie J. Farrell1

1School of Geosciences, King’s College, University of Aberdeen, Aberdeen, UK, 2School of Materials, University of
Manchester at Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, UK, 3Géophysique
Expérimentale, Institut de Physique du Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST), 5 rue René
Descartes, Strasbourg, France

Abstract Laboratory brittle deformation experiments have shown that a rapid transition exists in the
behavior of porous materials under stress: At a certain point, early formed and spatially distributed tensile
cracks interact and coalesce forming a shear plane. In this work, we present and apply a novel image
processing tool that is able to quantify this transition between distributed (“stable”) damage accumulation
and localized (“unstable”) deformation, in terms of the size, density, and orientation of cracks at the point
of strain localization. Our technique, based on a two-dimensional Morlet wavelet analysis, can recognize,
extract, and visually separate the multiscale changes occurring in the crack network during the deformation
process. We first performed a series of triaxial experiments (𝜎1 >𝜎2 = 𝜎3) on core plugs of Hopeman
Sandstone (Scotland, UK) at different effective pressures (from 5 to 30 MPa). We then processed
high-resolution backscattered electron microscope images of thin sections of these core plugs and found
differences in the strain localization process as effective pressure was increased. The critical length of tensile
cracks required before the onset of strain localization was reduced from 0.24 to 0.15 mm as the effective
pressure was increased to 30 MPa, resulting in a narrow fracture zone. Critically, by comparing patterns of
fractures in these deformed sandstone samples, we can quantitatively explore the relationship between
the observed geometry of the cracks and the inferred mechanical processes. This will eventually help us to
better understand the physics underlying the initiation of catastrophic events, such as earthquakes,
landslides, and volcanic eruptions.

1. Introduction

Understanding the rupture process of initially intact rocks is a basic aim of experimental rock deformation in
the brittle field. The propagation of a shear plane (i.e., a fault) by a mechanism of en-echelon tensile crack
coalescence has been proposed from field evidence (e.g., Jourde et al., 2002; McGrath & Davison, 1995), from
experimental evidence (e.g., Lockner et al., 1991; Petit & Barquins, 1988; Stanchits et al., 2006), and from the-
oretical and numerical modeling (e.g., Healy et al., 2006a, 2006b; Reches & Lockner, 1994). It is generally
accepted that shearing becomes the dominant mechanism when sufficient tensile damage has been gener-
ated. The location of acoustic emission (AE) events, related to microcrack generation throughout the loading
cycle (Lockner et al., 1992; Lockner, 1993; Moore & Lockner, 1995), enables the mapping of microcrack forma-
tion prior to bulk—that is, whole sample—failure, showing that a fault initiates by the interaction of cracks
even at relatively low average crack density. However, in the field of rock mechanics, a quantitative mapping
of the proportion of cracks whereat tensile fracturing gives way to a throughgoing shear fracture has rarely
been performed. It has been recognized (e.g., Reches & Lockner, 1994) that the interaction starts by dilata-
tion of one or more cracks that induces dilatation of certain neighboring cracks that were themselves on the
verge of opening, in an overall process that involves coalescence of tensile cracks, grain-boundary cracks, and
porosity (Dunn et al., 1973). However, this effect of self-organized “contamination,” which ultimately leads the
rock to bulk shear failure, requires the existence of a minimum distance among contiguous en-echelon tensile
cracks—that is, a critical density, an interflaw length (Vasseur et al., 2017)—together with a certain minimum
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size of cracks—that is, a critical crack length. In this paper, we specifically address these two questions:

1. Is it now possible to quantitatively determine the point of transition in the length and/or density of micro-
cracking during brittle deformation, to assess and constrain the magnitude of “sufficient tensile damage”
in order for shear failure to initiate?

2. How much influence does the applied stress field (i.e., the effective pressure) have on the point of transition
between tensile damage and shear failure?

Being able to characterize in a quantitative manner the abrupt changes in the interaction of tensile cracks and
incipient faults is crucial to fully comprehend the mechanics of fault initiation, which has direct implications
for earthquake nucleation and seismology, and rock-mass stability.

Image analysis techniques succeeded to identify petrographic and textural features—for example, mineral
and grain clustering—on rock thin-sections (Reedy, 2006). More recently a number of automatic and semiau-
tomatic algorithms have been developed for identifying cracked regions in composite artificial (e.g., concrete
and steel; Yeum & Dyke, 2015) or natural materials (e.g., Arena et al., 2014; Voorn et al., 2013). All these methods
employ segmentation procedures based on various object detection techniques such as Radon Transforma-
tion (Yeum & Dyke, 2015) and Hessian Filtering (Voorn et al., 2013). In a recent work Rizzo, Healy, Farrell,
and Heap (2017) demonstrated the applicability of the Morlet wavelet analysis for detecting fracture size
and orientation transitions during the deformation history of a rock sample. Here we extend the method to
investigate and characterize the brittle deformation process of a low-medium porosity (11% on average) sand-
stone, deformed in a conventional triaxial (axisymmetric) deformation apparatus under different effective
pressures. The analysis is based on postfailure fracture maps of high-resolution montages of backscattered
electron (BSE) microscope images. These montages allow total coverage of the fractured area of the spec-
imens, enabling us to map the crack and incipient-fault interactions for a suite of three samples deformed
at progressively higher effective pressures. First, we present the results of the wavelet analysis for each sam-
ple. Second, from the derived optimum wavelet coefficient maps, we focus on the geometrical and kinematic
attributes of crack/fault relationships to infer the critical lengths, which mark the transition between diffuse
tensile cracking and localized shear failure. We demonstrate the ability of wavelet analysis to investigate the
evolution through time of crack sizes and their spatial densities using postfailure static images. By comparing
the different samples, the role of effective pressure on crack initiation and propagation is also assessed, and
the relevance of these findings for interpreting the physical processes at the base of large scale rock failure is
also considered.

The wavelet analysis technique presented in this work is part of the FracPaQ toolbox (Healy et al., 2017),
which can be freely downloaded from https://github.com/DaveHealy-Aberdeen/FracPaQ. With the introduc-
tion of this new tool, FracPaQ now allows the user to perform a comprehensive analysis of fracture networks,
in both their key “static”—for example, length distribution, spatial density and connectivity—and “dynamic”
features—for example, variation in the hierarchy of cracks.

2. Materials and Methods
2.1. Sample Description and Setup for Laboratory Deformation Tests
We mapped microcracks from images of three centimeter-scale thin sections made from core plugs of the
Hopeman Sandstone Formation, a Permian quartz arenite (Edwards et al., 1993; Farrell et al., 2014), taken to
failure under triaxial conditions in the laboratory. Intact blocks were taken from the Clashach quarry on the
coast of Moray (Scotland, UK), and cylindrical core plugs 20 mm in diameter and 40 mm long were prepared.
This quartz-cemented arenite is texturally mature (>92% quartz grains and <8% K-feldspar and subordinate
lithics) and well-sorted (optical microscopy showed that grains have a fine to medium grain size and mean
grain diameter of 0.25–0.4 mm; Farrell & Healy, 2017). Samples were chosen based on homogeneity: with-
out visible laminations and with uniform grain size, very similar porosity, and cement distribution. Three core
plugs of Hopeman Sandstone were deformed in a conventional triaxial compressional apparatus (𝜎1 >𝜎2 =
𝜎3). The core plugs were first vacuum-saturated in deionized water. Following saturation, the samples were
inserted into a rubber (viton) jacket and placed inside the triaxial deformation apparatus. The samples were
then subjected to confining pressures (Pc) ranging between 15 and 40 MPa and a constant pore fluid (deion-
ized water) pressure (Pf ) of 10 MPa. These pressures were increased slowly (0.05 MPa/s) on the sample and
such that the target effective pressure (Peff ; where Peff = Pc − 𝛼 Pf ; we assume here a simple effective
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Figure 1. Two-dimensional anisotropic Morlet wavelet Ψ(a,b, 𝜃, 𝜖). Top
image shows the wavelet in the spatial domain, seen in a 3-D perspective.
The bottom image shows the wavelet represented as level curves; here the
black ellipse is the envelope (i.e., the wavelet “footprint”) that contains most
of the energy of the wavelet. Representations of the location parameter (b)
and of the orientation parameter (𝜃) are also viewed in the Cartesian
coordinates (x, y).

pressure law where 𝛼 = 1) was never exceeded. The confining and pore
pressures were kept constant using servo-controlled pumps. The samples
were left overnight under the target pressures to ensure microstructural
equilibration. The samples were then loaded axially to failure at a constant
strain rate of 10−5s−1. Based on the high permeability of Hopeman sand-
stone (∼ 5 × 10−13m2; Farrell et al., 2014), we expect our samples to be
drained at a strain rate of 10−5s−1 (see Heap & Wadsworth, 2016). During
deformation we monitored axial force (using a load cell) and axial dis-
placement (using a linear variable differential transducer located outside
the pressure vessel), pore volume change (via the servo-controlled pore
pressure pumps), and the output of AE energy. Axial force, axial displace-
ment, and pore volume change were converted to axial stress, axial strain,
and porosity change using the sample dimensions. AEs–high-frequency
elastic wave packets generated by the rapid release of strain energy such
as during microcracking—were recorded using a piezo-electric crystal
attached to the top of the upper piston (see Farquharson et al., 2017, for
a schematic diagram) and a single-channel AE recording system (Physical
Acoustics AE Node) set at a threshold of 40 dB. AE energy is taken here as
the area under the received waveform (and is therefore in arbitrary units).

Following deformation, the samples were carefully unloaded at a con-
stant strain rate of 10−5s−1 to avoid additional microcrack damage dur-
ing unloading. The confining and pore pressures were then decreased
slowly (0.05 MPa/s), such that the maximum effective pressure was never
exceeded. Samples were Epoxy filled under a vacuum then thin sections
were cut in the XZ plane of each core plug, that is, orthogonal to the strike
of the throughgoing shear plane. The thin sections were hand ground
thus minimizing the chance of grain plucking or fracturing induced during

machine grinding. Montages of high-resolution (225 pixels per millimeter) BSE images taken at a magnifica-
tion of ×100 from each thin section were taken on a FEI Quanta 200F environmental SEM at the University of
Glasgow (UK). BSE images are very practical for microscale crack and pore mapping, because different min-
erals are represented with different grey levels and black represents void space, that is, pores and fractures
(Farrell et al., 2014; Farrell & Healy, 2017; Griffiths et al., 2017; Wibberley et al., 2000). Fracture maps were
produced by manually tracing all the visible cracks over the of the BSE mosaic using a vector graphic editor
(Adobe IllustratorTM). A number of automatic and semiautomatic algorithms for the segmentation of crack
patterns have been recently developed (e.g., Arena et al., 2014; Delle Piane et al., 2015; Griffiths et al., 2017) and
successfully used to isolate crack patterns in crystalline rocks with low primary porosity (e.g., granite and mar-
ble). However, these softwares become less accurate when analyzing rocks with more complex microstruc-
tures (i.e., sandstones; Griffiths et al., 2017). Therefore, although we recognize that subjectivity issues exist,
we still prefer manually retracing the cracks: In this way the user is able to discern and identify specific fea-
tures, discriminating cracks from pores, grain margins, and artifacts. Once produced, the fracture maps were
converted into binary images; the resulting images were embedded in a white square matrix to avoid edge
effects during the wavelet analysis (Ouillon et al., 1995).

2.2. Two-dimensional Continuous Wavelet Analysis for the Quantification of Multiscale Fracture
Patterns
The spatial distribution of crack lengths and densities depend on, and vary with, the scale of analysis: They
are multiscale properties (Gaillot et al., 1999; Ouillon et al., 1995, 1996). Consequently, for studying fracture
trace maps, we need a tool that is able to efficiently perform a multiscale analysis of two-dimensional binary
images. Wavelet analysis has emerged as a very powerful tool for signals (i.e., images) in which different scales
are combined (Antoine et al., 1993). The method is based on projecting (convolving) the analyzed signal onto
a family of elementary functions (filters), obtained by translating and dilating a single basic function, the
analyzing wavelet (Ψ) (Figure 1). We based our study on a combination of the fully anisotropic directional
Morlet wavelet algorithm of Neupauer and Powell (2005) and the wavelet coefficient method developed by
Darrozes et al. (1997). This combination enables sharp unequivocal detection and quantification of any
organized feature in a binary image, regardless of its scale, orientation, and location.
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Figure 2. Example of continuous wavelet transform for a Morlet wavelet (modified after Neupauer & Powell, 2005).
(a) Mother wavelet, (b) shifted wavelet (b = (1,−2)), (c) dilated wavelet (a = 2), (d) Rotated wavelet (𝜃 = 110∘,
counterclockwise with 0 parallel to y-axis), (e) anisotropic wavelet (𝜖 = 2), and (f ) fully anisotropic wavelet (𝜖 = 2 and
𝜃 = 15∘). Red rings represent the envelope that contains most of the energy of the wavelet.

The anisotropic Morlet wavelet Ψ(a,b, 𝜃, 𝜖) is a function of four parameters that allows, for a given spatial
resolution and a given position, the detection of structures in any direction (Figures 1 and 2): (1) the scale
parameter (a), or resolution, allows multiscale analysis by dilatation/contraction of the wavelet; (2) the position
vector (b) defines the location of the wavelet on the image and hence permits the filter to be moved over the
whole field of the analyzed image; (3) the anisotropy parameter (𝜖) allows one to elongate the envelope of
the wavelet (Figure 1) in the x-direction producing an elliptical “footprint” with a long axis in the x-direction,
setting 𝜖 to unity we recover the isotropic wavelet; and (4) the orientation parameter (𝜃) permits the rotation
of the wavelet for detecting any anisotropic feature (e.g., a fracture trace) in any direction (Figure 2). The Morlet
wavelet is intrinsically directional, with peaks and troughs all aligned in one direction (Figure 1); when this
wavelet is rotated through an angle 𝜃 the peaks and troughs are aligned along the direction of 𝜃. In addition
to being directional, the Morlet wavelet is also intrinsically anisotropic, meaning that it is elongated in the
direction of 𝜃 (Neupauer & Powell, 2005).

The convolution, or wavelet transform (WT), of the image with each analyzing wavelet, obtained when we
dilate/contract, elongate, rotate, and translate a mother wavelet (Ψ), produces a set of wavelet coefficients
(WC), WΨ (a,b, 𝜖, 𝜃), which are local indicators of the quality of the match between the filter and the local
content of the image (Gaillot et al., 2002, Figure 3). This set is called a wavelet image and is represented by a
coefficient map (Figure 3). A constant signal would produce a null coefficient. Conversely, if the image shows
“irregularities” (i.e., nonnull pixels), the wavelet reacts by producing nonnull coefficients. Small coefficients
reflect a poor match between the given analyzing wavelet and the image; and maximum coefficients indicate
optimal correlations between the filter and the content of the image under analysis. In practise, a complete
and objective detection of all organized structures in a binary image requires the application of a range of
filters each having a unique combination of the parameter triplets (a, 𝜖, 𝜃) values (Gaillot et al., 1997). Then
the calculated coefficients WΨ (a, 𝜖, 𝜃) at each point of the image are normalized with respect to the theo-
retical maximum value obtained for a perfect match between the wavelet and the analyzed structure. This
normalization enhances the quality of the coefficient map—that is, produces an optimum map (Ouillon et al.,
1995, Figure 3). In Figure 3 we show the basic procedure of wavelet transformation: For simplicity a synthetic
fracture network is analyzed employing only two triplets (a, 𝜃, 𝜖) of the wavelet coefficients, two sizes, two
orientations, and two anisotropy parameters. The different magnitudes of the coefficients for each resolu-
tion allow one to recognize the different level of organization of the image. The anisotropic Morlet wavelet
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Figure 3. Wavelet analysis on a two-dimensional synthetic fracture network (a) composed of several vertical small cracks and one large inclined crack.
(b–c) Analysis carried out with a small analyzing wavelet fixing the size (a = 4) and anisotropy (𝜖 = 1∕4) while modifying the orientation parameter 𝜃 (90∘ in (b),
and 135∘ in (c)). (d–e) Analysis obtained with a larger analyzing wavelet (a = 16, 𝜖 = 1∕16, while varying the orientation parameter 𝜃). For each analysis (i.e., row),
we show the analyzing anisotropic wavelet, the corresponding wavelet coefficient map before normalization and the normalized coefficient map, respectively.
The use of a synthetic fracture pattern allows us to show the strong angular and dimensional selectivity of the anisotropic Morlet wavelet: Small and vertically
oriented wavelet successfully catches the vertical small cracks (a), while a large wavelet is better suited to detect the long inclined fracture (d).
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Figure 4. Hopeman Sandstone constant strain rate triaxial experiments. (a) Differential stress (MPa) as a function of axial
strain for samples deformed at increasing effective pressures (5, 15, and 30 MPa). (b) The porosity reduction curves as a
function of axial strain for the experiments shown in Figure 4a. (c) Cumulative acoustic emission energy (in arbitrary
units) as function of axial strain for the experiments shown in Figure 4a.
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Figure 5. Fracture network in Sample 1. (a) Postfailure SEM-BSE high-resolution montage for Sample 1, deformed at Peff = 5 MPa; 𝜎1 vertical. (b) Fracture map and
(c) rose diagram (equal area) of all the fracture segments; the contribution of each crack segment to the frequency in each bin of the rose diagram is multiplied by
its length (length weighted). (d) Histogram of length distribution of cracks, after removing lines relative to shear fractures. The best fit (red curve) is a log-normal
distribution, derived from maximum likelihood analysis (MLE; Rizzo, Healy, & De Siena, 2017), with an arithmetic mean of 0.23 mm and variance of 0.023.

successfully quantifies the geometry of all features at a given scale a, whatever their location, shape
anisotropy, and orientation.

Each optimum map is associated with optimum wavelets with known azimuths (𝜃); these azimuths corre-
spond to the orientations of the detected structures in a known position b, at a given resolution (a). In our
case, the detected structures in the images correspond to cracks formed during the deformation of the sand-
stone samples. From these azimuthal values, we can draw rose diagrams, which provide an overview of the
variations in the cracks orientations with the scale of analysis. It follows that, if a sharp transition in the ori-
entations of the crack traces is observed at a given scale (a), then this scale contains important information
about the deformation process encapsulated in the crack pattern (Ouillon et al., 1995). When such a scale is
detected, we perform a new analysis to determine its value with better accuracy.

The validity of the described method has been tested by Rizzo, Healy, Farrell, and Heap (2017) through the
analysis of synthetic and natural fracture networks. This study found that the anisotropic Morlet wavelet
performed better than its more commonly used counterpart, the Mexican hat wavelet, in the detection of
oriented linear features, such as fracture traces, because of its inherent anisotropy. In addition, Rizzo, Healy,
Farrell, and Heap (2017) described a complementary outcome that arose from the WC maps; from these maps,
these authors directly retrieved information on the spatial density distribution of the analyzed features for a
specific scale. Therefore, this type of analysis can provide insight into the processes of shear fracture growth
from the interaction and coalescence of constituent tensile microcracks (Moore & Lockner, 1995). The anal-
ysis of Rizzo, Healy, Farrell, and Heap (2017) was however restricted to a single experiment. Here we use the
wavelet analysis method to glean differences between the process of strain localization in sandstone samples
deformed at different effective pressures.

3. Results
3.1. Mechanical Tests
The stress-strain curves for the three triaxial experiments on samples of Hopeman Sandstone are shown in
Figure 3a. All three curves exhibit the classical stress-strain features of brittle rock in compression. Stress
is first a nonlinearly increasing function of strain (Figure 4a), typically attributed to the closure of compli-
ant pores/cracks (as evidenced by the porosity decrease shown in Figure 4b). This stage is followed by a
quasi-linear elastic portion (Figure 4a). Following elastic deformation, the stress is a nonlinearly decreasing
function (strain hardening) of strain prior to a peak stress (𝜎p), typically attributed to the formation and growth
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Figure 6. Morlet wavelet analysis applied to Sample 1 (Peff = 5 MPa). The color scale shows the values of the normalized
wavelet coefficients. Equal area rose diagrams of crack orientations are associated with wavelet coefficients (WCs) maps
for each filter resolution. Inset text boxes contain descriptive statistics: circular mean vector azimuth (i.e., mean) and
angular confidence interval. (a–d) Main orientation and size transitions in Sample 1 from early distributed tensile
microcracks (a), the initiation of coalescence (b), to growth of two throughgoing shear planes (c–d); 𝜎1 vertical.
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Figure 7. Identification of the precise orientation transitions for Sample 1. (a–b) The first transition has been detected
between a = 6 and a = 7; this observation may correspond to clustering of initial tensile vertical cracks. (c–d) The
second abrupt change in orientations has been imaged between a = 20 and a = 22; this stage may be associated with
the evolution of a second and prominent shear plane.
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Figure 8. Fracture network in Sample 2. (a) Postfailure SEM-BSE high-resolution montage for Sample 2, deformed Peff = 15 MPa; 𝜎1 vertical. (b) Fracture map and
(c) rose diagram (equal area) of all the fracture segments. (d) Histogram of length distribution of cracks, after removing lines relative to shear fractures. The best
fit (red curve) is a log-normal distribution, derived from MLE analysis, with an arithmetic mean of 0.24 mm and variance of 0.025.

of microcracks (as evidenced by the increase in porosity shown in Figure 4b and the appearance of AE activ-
ity shown in Figure 4c). The samples enter a strain-softening phase (a stress drop) following the peak stress
(Figure 4a). The development of a shear fracture is often considered to occur during the strain-softening
phase, which is characterized by large increases in porosity (Figure 4b) and significant AE activity (Figure 4c)
(due to the growth and coalescence of microcracks). Visual inspection of our postmortem samples revealed
the presence of shear fractures. The peak stress of Hopeman sandstone is higher at higher effective pressures:
192.8, 290.8, and 349.7 MPa at effective pressures of 5, 15, and 30 MPa, respectively (Figure 4a). These mechan-
ical data are similar to those previously published on porous sandstones in the brittle regime (e.g., Baud et al.,
2000; Klein et al., 2001; Menendez et al., 1996; Wong et al., 1997).

3.2. Morlet Wavelet Analysis
We applied wavelet processing to the set of fracture networks obtained from Hopeman Sandstone samples
triaxially deformed at three different effective pressures (Figure 4). The inputs were digital, binary, fracture
network maps, which mathematically can be described as a function I(x) equal to 1 on pixels corresponding to
fracture traces and equal to 0 otherwise. The convolution (or wavelet transform, WT) of I(x)with the analyzing
wavelets produces the optimum wavelet coefficients computed in the resulting wavelet maps. Because every
resolution (a) and every anisotropy (𝜖) is explored, the preferred orientations of individual cracks and clusters
of cracks can be extracted from the wavelet coefficient maps. Note that in the following descriptions, a high
resolution (lower values of a) refers to short length scales, and low resolution (higher values of a) refers to
longer length scales.

3.2.1. Low Effective Pressure—Sample 1
This sample was deformed at an effective pressure (Peff ) of 5 MPa (Pc = 15 MPa and Pf = 10 MPa) and failure
occurred through the development of a conjugate set of shear planes (Figure 5a). The first wavelet coefficient
to produce results is for a resolution a = 4 (Figure 6a); at this stage, we detect the presence of diffuse short
cracks over about two thirds of the sample area (see Figures 5 and 6). These cracks are oriented parallel or
subparallel to the applied maximum stress (𝜎1). On incrementing the wavelet resolution to a = 8 (Figure 6b),
while we observed that most cracks were still aligned parallel to the 𝜎1 (i.e., vertical), we noticed the appear-
ance of a second prominent crack orientation oriented at an angle of 330∘—that is, assuming that 0∘ is parallel
to the z-axis. Thus, we identified a first oblique cluster of cracks, whose orientation will become predominant
at a resolution of a = 16. This feature corresponded to the left inclined shear plane seen at failure in Sample
1. Finally, at the lowest resolution (a = 32) we recognized a second, now dominant, orientation at 30∘, corre-
sponding to the second shear plane on the sample. However, we also noted that a cluster of cracks with the
same orientation was already detected for a = 8 (and consequently a = 16), although relatively minor.
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Figure 9. Morlet wavelet analysis applied to fracture network seen in Sample 2 (Peff = 15 MPa). Color scale shows the
values associated with normalized wavelet coefficients. Equal-area rose diagrams of fracture orientations correspond to
wavelet coefficient (WC) maps at each filter resolution. Text boxes contain angular statistics: circular mean vector
azimuth and angular confidence interval. (a–d) The orientation transitions from distributed microcracks (a) to localized
scale fractures (b–d) are clearly captured with increasing size of the filter; 𝜎1 vertical.
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Figure 10. Fracture network in Sample 3. (a) Postfailure BSE high-resolution montage for Sample 3, deformed at Peff of 30 MPa; 𝜎1 vertical. (b) Fracture map.
(c) The inset shows rose diagram (equal area) of all the fracture segments. (d) Histogram of length distribution of cracks, after removing lines relative to shear
fractures. The best fit (red curve) is a log-normal distribution, derived from MLE analysis, with an arithmetic mean of 0.15 mm and variance of 0.006.

Since we observed the onset of at least two orientation transitions—that is, between a = 4 to 8, and between
a = 16 to 32—we further investigated the sample to identify the precise wavelet coefficients at which these
transitions are detectable (Figure 7). In particular, we found that the first transition occurred between a = 6
and 7, corresponding to the clustering of initial tensile vertical cracks. The second abrupt change in orien-
tation occurred between a = 20 and 22 corresponding to the propagation of the second and prominent
shear plane.

3.2.2. Intermediate Effective Pressure—Sample 2
This sample was deformed at Peff = 15 MPa (Pc = 25 MPa and Pf = 10 MPa; Figure 8). At the lowest resolu-
tion (a = 4), similar to the previous sample, the wavelet method detected the presence of diffuse and short
subvertical cracks, aligned parallel to the direction of the maximum compressive stress. When lowering the
resolution, for a = 8, we observed a shift in the crack orientation towards an inclined position (∼26–28∘). This
transition marked the change in the fracture orientation to a macroscopic feature, corresponding to the time
when the fault started to establish its position at an angle to the applied maximum compressive stress (ver-
tical). At this scale, a minor set of conjugate fractures was also detected. Gradually (Figures 9c and 9d), the
conjugate pattern became less resolvable (a = 16) and only the single major shear fracture appeared as a
well-defined entity, with an average orientation of 26∘ (a = 24). As opposed to the previous sample (Sample
1), the minor conjugate cluster of cracks did not develop into a fully grown shear plane.

3.2.3. High Effective Pressure—Sample 3
This sample was deformed at Peff of 30 MPa (Pc = 40 MPa and Pf = 10 MPa) and failure occurred along a single
well-defined shear plane (Figure 10). First of all, to detect the initial emergence of small subvertical cracks we
had to increase the resolution to a = 2 (Figure 10). These initial cracks were not diffused through the sample
area but were all preferentially located along a relatively narrow zone (Figure 11). For a = 4 the wavelet already
detected a single large cluster of cracks oblique (30∘) to the applied maximum compressive stress. For increas-
ing wavelet resolutions, we did not observe any further orientation transitions for either clusters of cracks nor
for the final shear plane (Figure 11).

4. Discussion

The formation of a fault—a composite shear fracture—is a highly complex process involving the growth and
the coalescence of small tensile cracks that are initially subparallel to the 𝜎1-axis (Dunn et al., 1973; Healy et al.,
2006a; Lockner et al., 1991; Mandl, 2005; Reches & Lockner, 1994). High-resolution BSE images allowed us to
study fault initiation over a significant area within samples deformed under a range of effective pressures
(from 5 to 30 MPa; Figure 4).
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Figure 11. Morlet wavelet analysis applied to fracture network seen in Sample 3 (Peff of 30 MPa). Color scale shows the
values associated with normalized wavelet coefficients. Equal-area rose diagrams of fracture orientations correspond to
wavelet coefficient (WC) maps at each filter resolution. Text boxes contain angular statistics: circular mean vector
azimuth and angular confidence interval; 𝜎1 vertical.
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Figure 12. Overview of the difference observed in the deformation mechanism for increasing confining pressures as imaged with 2-D Morlet wavelets
(resolution decreases rightward). The principal deformation stages (1 to 3) are represented by an early tensile cracking, clustering and interlinking of tensile
cracks, and finally the formation of a defined shear plane. Similarities in the mode of fault development are observed for low (5 MPa) and intermediate (15 MPa)
effective pressures: Pervasive tensile cracking initially affects the samples; subsequent interlinking reflects the formation crack clusters, which then coalesce to
form the final shear plane. At relatively high effective pressure (30 MPa), cracks parallel to the applied main compressive stress (𝜎1) mostly form along a
well-developed plane; then rapid linkage localizes the fault along a finite-size process zone (Reches & Lockner, 1994; Renard et al., 2017).

Conceptually, wavelet coefficient maps for progressively lower resolutions (1∕a) can be compared to a tem-
poral sequence representing the deformation history of the sample, from the early tensile cracking, to crack
interaction and eventual shear failure (Figure 12). The underlying assumption behind this “space for time”
substitution in the analysis is that an intact rock transitions to bulk shear failure through the progressive nucle-
ation, growth, interaction, and coalescence of tensile microcracks (Lockner et al., 1992). The fundamental
difference seen via the wavelet analysis is that the evolution of crack sizes and orientation transitions between
samples can be directly associated with the effect that effective pressure exerts on crack nucleation and prop-
agation. It has been found (Mandl, 2005) that the growth of fractures is very sensitive to compressive stress
normal to the crack planes. We therefore infer that shear fracturing becomes the dominant mechanism in two
distinct ways in response to the loading conditions (Figure 12).

4.1. Low and Intermediate Effective Pressures
Based on our inferred temporal mapping of the wavelet analysis we observe that at low (5 MPa) and inter-
mediate (15 MPa) effective pressures, the first features to form (a = 4) were pervasive short tensile cracks
randomly located throughout the samples (Figure 6a). As time progresses (a = 8), the deformation reached a
subsequent stage marked by the first orientation transition (Figure 5b). A previous analysis of the microme-
chanics of brittle failure in sandstones (Hazzard et al., 2000) showed that “secondary” cracking occurs along
grain boundaries by shear rupturing of the cement at the contacts caused by rotation and slip of the grains
under an applied load. The same mechanisms were seen by Dunn et al. (1973) as the crucial part of the pro-
cess, because extension cracks unlock the ends of ready-to-fail grain-boundary cracks. For samples deformed
at low and intermediate effective pressure, the application of a differential stress produced comminution and
grain rotation until each grain is fixed by its neighbors. This mechanism determined the interlinking of the
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Figure 13. Schematic models for the two recognized shear initiation modes. The idealized samples (rectangular boxes) are under biaxial loading. The top images
show the strain localization mode as seen at low (5 MPa) and intermediate (15 MPa) effective pressure. Deformation starts with pervasive tensile cracks parallel to
the applied 𝜎1; it progresses with the growth of clusters of cracks, which, once reached a critical length and density, start interacting and coalescing to form the
final shear planes. In the bottom images (modified after Reches & Lockner, 1994), at relatively high effective pressures (30 MPa), the deformation involves a rapid
localization of strain, initiating with the interaction of short en-echelon tensile cracks, which then coalesce and give way to the propagation of the shear plane.

widespread axially (vertically) oriented small tensile cracks. When cracks became interlinked, we observed
the formation of scattered clusters of cracks characterized by a different orientation—that is, different rela-
tive to the early tensile cracks—as apparent from wavelet coefficient maps and the number of petals in the
corresponding rose diagrams (Figures 6 and 8). The distribution and the orientation of these clusters will influ-
ence the location of the final shear plane. On average, in both samples, the tensile fracture length is 0.24 mm
(Figures 5d and 8d), which is comparable with the mean grain diameter of Hopeman Sandstone (Rizzo, Healy,
Farrell, & Heap, 2017). Therefore, we infer that cracks tended to reach the edges of the grains before achieving
sufficient interaction and coalescence (Katz & Reches, 2004). Further deformation in the samples caused clus-
ters to expand and join, if favorably oriented, in a shear plane (a = 16, in Figures 6 and 9). Shear fractures then
grew accumulating displacement during tensile cracking associated with deformation localizing on individual
tensile crack and crack clusters (Figure 13).

A major effect of increasing the effective pressure from 5 to 15 MPa on the failure process is exemplified at the
latest stage of deformation. For Sample 1, deformed at the lowest effective pressure (5 MPa), we observed the
formation of two shear fractures with very irregular final profiles (Figures 6c and 6d), as shown by a wide range
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of associated 𝜃. On the other hand, for Sample 2, deformed at Peff = 15 MPa, failure occurred along a more
localized single plane, even though deformation initially produced similar effects in both samples—that is,
randomly located diffuse tensile cracking.

Continuous macroscopic shear planes are therefore formed by the interlinking of axially oriented small-scale
tensile cracks with oblique sliding cracks (along quartz grain-boundaries) with the same sense of right-lateral
or left-lateral displacement (Figure 11). The described evolution takes place in a crack nucleation—rather than
crack growth—dominated system culminating in a distributed deformation where the load is distributed
through the numerous fractures. This model (Figure 12) also assumes that macroscopic shear planes formed
due to interaction among many damage points (i.e., cluster of fractures), which formed prior to faulting (Katz
& Reches, 2004; Renard et al., 2017, 2018).

4.2. High Effective Pressure
Similar considerations regarding our wavelet analysis as time lapse imaging of fault initiation can be applied
to Sample 3 deformed at the highest effective pressure (30 MPa). The higher pressure caused the “early” devel-
opment of the shear plane. This rapid localization did not allow tensile cracks to reach significant lengths; in
fact, cracks are shorter on average (0.15 mm, Figure 10d). The cracks are therefore shorter than the average
grain size in Hopeman sandstone. Furthermore, at half the wavelet scale (between a = 2 and a = 4, Figure 11),
we observed that cracks had already achieved a density sufficient to promote interaction and coalescence
compared to the previous specimens deformed at lower effective pressures. Overall, this process resulted in
a very localized deformation, meaning that cracks formed simultaneously along a narrow-inclined zone (28∘
to the applied 𝜎1) where the shear plane eventually formed. Cracks were initially aligned parallel to 𝜎1 (a = 2),
as seen for lower Peff ; we observed a single bulk transition in crack orientation (a = 4), after which no further
changes occurred.

Reches and Lockner (1994) proposed that, for Pc ≥ 50 MPa, faults grow in the wake of a process zone that
is a finite size region of high stress concentration at fault tip in which the intact rock is disintegrated. In this
model, tensile microfractures would be restricted to the fault vicinity and decay away from the fault. The fail-
ure model developed by Reches and Lockner (1994) predicts that the region of maximum stress induced by
an opening tensile crack is inclined at an angle of at least 30∘ to the crack itself (and to the applied maximum
compressive stress,𝜎1). This angle exerts a fundamental control in the geometry of the final shear failure plane
by promoting the en-echelon interaction of neighboring cracks (Healy et al., 2006b). High Peff allows mechan-
ical interaction predominantly between neighboring cracks which are in a favorable position, determining a
specific cluster of en-echelon cracks to coalesce into a macrofracture only on one side of the crack-tip region;
otherwise, the en-echelon ensemble would be stopped (Figure 12). This chain reaction causes the sample to
fail by propagation of self-organized en-echelon cracks (Mandl, 2005).

4.3. Overall Implications and Applications of the Method
Our wavelet analysis proved useful for sharply distinguishing specific orientations at specific scales of obser-
vation, which would otherwise be lost in the complexity of a standard rose diagram containing all fracture
trace orientations plotted for all scales simultaneously (e.g., compare Figures 4c and 5). The results obtained
from our three initial samples suggest that, for relatively low effective pressures, cracks tend to form in large
and diffuse clusters rather than uniformly along the fault zone, as seen for the highest Peff . Furthermore, at rel-
atively high effective pressure, cracks do not need to grow to the same lengths as for lower Peff —that is, they
do not scale with the sandstone grain size—to achieve interaction and coalescence (as summarized in Rizzo,
Healy, Farrell, & Heap, 2017). This, in turn, results in the two different shear initiation modes observed through
our wavelet analysis. Morlet wavelet analysis has detected that the inclination of the final shear plane, in all
three samples, is in a range between 26∘ and 30∘ with respect to the maximum compression axis (Figures 5d,
8d, and 9d). Similar angular values were found both via experimental procedures (20–30∘ , Engelder, 1974;
Reches & Lockner, 1994; Renard et al., 2018) and numerical models (26∘, Healy et al., 2006a). We emphasize
that our results are based on the assumption that all the mapped cracks were produced solely during the com-
pression tests. More experiments and analyses on sandstones with different grain sizes are now required to
further explore these findings. Further, we are yet to apply our technique to the process of compactant strain
localization (i.e., the growth of compaction bands) in sandstones in the ductile regime (e.g., Baud et al., 2004;
Heap et al., 2015).

Our initial application has been to a single rock type in an effort to reduce variables. However, the appli-
cation of the described image processing technique to rock types with significant mineralogical or textural
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heterogeneities might result in improved models for fracture coalescence. The methodology presented here
can have important applications for recognizing larger length-scale mechanical heterogeneities controlling
fault-scale rupture (e.g., Kim et al., 2004; Peacock, 2002) and fracture propagation during volcanic unrest (e.g.,
Gudmundsson, 2006; Kilburn & Voight, 1998; Kilburn, 2003). Just as a fault on the “small” scale of a labora-
tory sample localizes through extension and coalescence of microcracks, larger faults also grow by extension
and coalescence of multiple segments (e.g., Cartwright et al., 1995). Rock failure is thus perceived as a multi-
scale process for which microscopic cracks can ultimately lead to macroscopic faulting. In addition, a variety
of phenomena have been suggested as parameters that may be used for the prediction of faulting and the
deformation and failure of a volcanic flank or dome, including temporal changes in strain, tilt, and creep. All
these phenomena can be associated directly or indirectly with changes in the microcrack geometry.

5. Conclusions

An image processing method, namely, Morlet wavelet analysis, has been successful in exposing and quan-
tifying the initiation and development of shear fracture formation in laboratory rock deformation tests. The
analytical technique presented here has allowed us to detect the variations and abrupt transitions in orienta-
tion, length, and density occurring during the deformation, from early tensile cracking to the onset of a final
shear fault. The ability of the Morlet wavelet to untangle the geometrical complexities proved straightfor-
ward due, for the most part, to its intrinsically anisotropic nature. Based on the derived wavelet coefficients
maps obtained for three samples deformed at different effective pressures (5, 15, and 30 MPa), it was possi-
ble to derive conceptual models and infer possible mechanisms coupling the role of effective pressure to the
localization of the shear plane. We show that, in the case of low and intermediate effective pressures (5 and
15 MPa, respectively), the wavelet analysis detects early tensile damage randomly distributed throughout the
samples. An abrupt change in crack orientation corresponds to the start of crack interaction to form clusters,
with the detected critical crack length comparable with the average grain size of the samples (0.24 mm). Fur-
ther transitions in crack orientation occur as the result of a localization of the shear plane, which eventually
causes the sample to fail. In contrast, for our highest effective pressure (30 MPa), wavelet analysis detects early
vertical tensile cracking occurring along a narrow-inclined zone. Cracks do not need to reach the grain edges
to achieve interaction due to their relatively high density, but subsequent deformation suddenly localizes, as
identified by the single bulk transition of crack orientations. Thus, the results of this study show how variations
in the applied stress field (i.e., effective pressure) on the same material play a significant role in controlling the
mechanism of initiation and development of shear fracture.
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