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Convergence of numerical schemes for a conservation equation with

convection and degenerate diffusion ∗

R. Eymard †, C. Guichard ‡, Xavier Lhébrard†,

November 12, 2018

Abstract

The approximation of problems with linear convection and degenerate nonlinear diffusion, which arise in
the framework of the transport of energy in porous media with thermodynamic transitions, is done using a
θ-scheme based on the centred gradient discretisation method. The convergence of the numerical scheme is
proved, although the test functions which can be chosen are restricted by the weak regularity hypotheses on
the convection field, owing to the application of a discrete Gronwall lemma and a general result for the time
translate in the gradient discretisation setting. Some numerical examples, using both the Control Volume
Finite Element method and the Vertex Approximate Gradient scheme, show the role of θ for stabilising the
scheme.

keywords: linear convection, degenerate diffusion, gradient discretisation method, θ-scheme.

1 Introduction

The development of geothermal energy leads to increasing needs for simulating the displacement of the water
in a porous medium, accounting for the liquid-vapour change of phase [4]. This is achieved by writing the
system of the conservation equation of the mass of water and that of the conservation of energy, together with
a system of equations and inequalities expressing the thermodynamic equilibrium between the two phases when
they are simultaneously present [7]. Let us consider a simplification of this system, which may be considered as
a reasonable approximation in some physical cases:

∂t(ρl(1− S) + ρvS)− div

(
K

µ
(ρl(1− S) + ρvS)∇P

)
= w, (1)

∂t(el(1− S) + evS)− div

(
K

µ
(el(1− S) + evS)∇P + Λ∇T

)
= f, (2)

(T < Te and S = 0) or (T = Te and 0 ≤ S ≤ 1) or (T > Te and S = 1). (3)

In the preceding system, the indices l, v respectively stand for the liquid and vapour phases, S is the saturation
of the vapour phase (hence 1−S is that of the liquid phase), P the pressure assumed to be common for the two
fluids (we neglect the capillary pressure), and for α = l, v, ρα and eα are respectively the density and the internal
energy per mass unit of the phase α, assumed to be given functions of T . In System (2)-(3), the mobilities of
the phases l and v are assumed to be equal to (1 − S)/µ and S/µ, assuming the same viscosity µ for the two
phases, and K is the absolute permeability field. The thermal conductivity is denoted by Λ. The right hand
sides w and f are respectively the source terms of water and energy. The thermodynamic equilibrium between
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the two fluid phases l and v is assumed to hold when the temperature is equal to the equilibrium temperature
Te, assumed to be a constant; otherwise, one of the two fluid phases is missing.
Now denoting by ū = el(1− S) + evS, we notice that, from (3), it is possible to express T − Te as a function ζ
of ū. For example, if el = Cl(T − Te) and ev = L+Cv(T − Te), where L is the latent heat and Cα the thermal
capacity of phase α, then there holds,

ζ(ū) =


ū

Cl
ū < 0,

0 0 ≤ ū ≤ L,
ū− L
Cv

ū > L.

Therefore, denoting by ~v = −Kµ∇P and only focusing on the energy conservation (we assume that the wa-

ter conservation equation (1) is in some way decoupled from this problem), we consider the following linear
convection – degenerate diffusion problem, issued from (2)-(3):

∂tū(x, t) + div( ū(x, t)~v(x, t)− Λ(x)∇ζ(ū(x, t)) ) = f(x, t), for a.e. (x, t) ∈ Ω× (0, T ), (4a)

with the initial condition:
ū(x, 0) = uini(x), for a.e. x ∈ Ω, (4b)

together with the homogeneous Dirichlet boundary condition:

ζ(ū(x, t)) = 0 on ∂Ω× (0, T ). (4c)

In (4), we consider the following hypotheses.

• Ω is an open bounded connected polyhedral subset of Rd, d ∈ N? and T > 0 is now the final time, (5a)

• uini ∈ L2(Ω), (5b)

• ~v ∈ L∞(Ω× (0, T )), (5c)

• Λ is a measurable function from Ω to the set of d× d symmetric matrices and

there exist λ, λ > 0 such that, for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (5d)

• f ∈ L2(Ω× (0, T )), (5e)

• ζ ∈ C0(R) is non–decreasing, Lipschitz continuous with constant Lζ and s.t. ζ(0) = 0, and (5f)

|ζ(s)| ≥ Lζ |s| − Cζ for all s ∈ R for some given values Lζ , Cζ ∈ (0,+∞). (5g)

We remark that (5f) and (5g) imply 0 < Lζ ≤ Lζ . Note that, inspired by the properties which can be expected
from (1), Hypothesis (5c) only prescribes poor regularity properties for the velocity, that we only assume to be
bounded, without regularity hypotheses on its derivatives. This weak regularity at least implies that Problem
(4) must be considered in a weak sense (see (6) below). Hypotheses (5f)-(5g) on ζ are classically satisfied
in the framework described in the beginning of this section. The assumptions on Λ are taking into account
heterogeneous and anisotropic porous media.
A function ū is said to be a weak solution of Problem (4) if the following holds:

ū ∈ L2(Ω× (0, T )), ζ(ū) ∈ L2(0, T ;H1
0 (Ω)), ∀ϕ ∈ C∞c (Ω× [0, T )),

−
∫ T

0

∫
Ω

ū(x, t)∂tϕ(x, t)dxdt−
∫

Ω

uini(x)ϕ(x, 0)dx

+

∫ T

0

∫
Ω

(Λ(x)∇ζ(ū)(x, t)− ū(x, t)~v(x, t)) · ∇ϕ(x, t)dxdt =

∫ T

0

∫
Ω

f(x, t)ϕ(x, t)dxdt,

(6)

where we denote by C∞c (Ω× [0, T )) the set of the restrictions of functions of C∞c (Ω× (−∞, T )) to Ω× [0, T ).
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Let us first comment the question of the existence and uniqueness of a solution to (6). Since the case where ζ
is constant on an interval is included in our study, (6) includes the case of linear scalar hyperbolic equations
whose solutions are valued in such an interval (such cases occur in the numerical examples of Section 4). So
in this framework, the lack of regularity of ~v prevents from applying the existence and uniqueness results of
the literature. In [8], existence is proved with very low regularity for ~v, but uniqueness only holds if ~v ∈ W 1,1

and div~v ∈ L∞, and in [2], the preceding results are extended to the case where ~v ∈ BV , and div~v ∈ L∞.
Hence in this paper, we only provide an existence result (obtained here through the convergence of a numerical
scheme); we are not able to prove a uniqueness result for a solution to (6). We follow in this paper the same
mathematical steps for this proof as the ones which would be considered in the study of the convergence of uε,
solution in a weak sense to the problem

∂tuε + div
(
uε~v(x, t)− Λ∇ζ(uε)

)
= fε, in Ω× (0, T ),

together with the same initial and boundary conditions as those included in Problem (4), assuming that fε
converges to f in L2(Ω× (0, T )) as ε→ 0. In the case where the velocity ~v is sufficiently regular (for example,
~v ∈ H1(Ω)d, or even more regular as in [6]), one multiplies the equation by η′(uε), in order to get estimates
on η(uε), for well-chosen convex functions η. Then it is possible, under suitable boundary conditions, to get a
bound on the convection term. In the present situation, this choice for the test function does not lead to any
estimate, and the only test function that we can take is ζ(uε), using the equation which provides a control on
∇ζ(uε) in L2(Ω × (0, T ))d. Let us detail this point. We introduce the function Z(s) =

∫ s
0
ζ(x)dx (as in (14)),

and we obtain, after integration on Ω× (0, T ), and an integrate by parts,∫
Ω

Z(uε(x, T ))dx−
∫

Ω

Z(uini)dx +

∫ T

0

∫
Ω

(
Λ∇ζ(uε)− uε~v(x, t)

)
· ∇ζ(uε)dxdt =

∫ T

0

∫
Ω

fεζ(uε)dxdt. (7)

Thanks to Hypothesis (5g), we show that
∫

Ω
Z(uε(x, T ))dx ≥ C(‖uε(·, T )‖2L2(Ω) − 1) for some constant C. We

then write, thanks to Young’s inequality,∣∣∣∣∣
∫ T

0

∫
Ω

uε~v(x, t) · ∇ζ(uε)dxdt

∣∣∣∣∣ ≤ α
∫ T

0

‖uε(·, t)‖2L2(Ω)dt+ β‖∇ζ(uε)‖2L2(Ω×(0,T )),

with β small enough for controlling the second term by
∫ T

0

∫
Ω

Λ∇ζ(uε) ·∇ζ(uε)dxdt, and we write the Cauchy-
Schwarz and the Poincaré inequality for handling the right hand side of (7). This leads to an equation under
the form

‖uε(·, T )‖2L2(Ω) ≤ A
∫ T

0

‖uε(·, t)‖2L2(Ω)dt+B,

allowing for the application of Gronwall’s lemma. Gathering these results, we raise the following estimates:

(E1) an estimate on ζ(uε) in L2(0, T ;H1
0 (Ω)),

(E2) an estimate on uε in L∞(0, T ;L2(Ω)),

(E3) an estimate on ∂tuε in L2(0, T ;H−1(Ω)).

Once these estimates are proved, it only remains to prove that, under the extraction of a subsequence from a
sequence of approximate solutions, uε converges to a weak solution of the problem. One remarkable idea in [1]
is the use of the following result:

‖ζ(ūε(·, ·+ τ))− ζ(ūε)‖2L2(Ω×(0,T−τ)) ≤ τ 2Lζ‖∂tuε‖L2(0,T ;H−1(Ω))‖ζ(uε)‖L2(0,T ;H1
0 (Ω))

(we give a discrete equivalent of this result in Lemma B.1). This result, in addition to (E1) and (E3), allows
to apply Kolmogorov’s theorem, and therefore to extract a sequence (ζ(ūεm))m∈N which converges to some
function χ in L2(Ω× (0, T )). Estimate (E2) allows to extract a subsequence from the preceding one such that
there exists ū ∈ L∞(0, T ;L2(Ω)) with (uεm)m∈N weakly converges to ū. Then, thanks to the monotonicity of ζ,
Minty’s trick provides that χ = ζ(ū).
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In the convergence part of this paper, we therefore derive discrete equivalents of (E1)-(E2)-(E3), from similar
computations only resulting from the multiplication of the discrete scheme by ζ(uε). Note that, in any case, this
choice is also the only one which could provide an estimate at the discrete level, even in the case of more regular
~v, since our aim is to approximate Problem (6) in some framework which includes, in addition to conforming
finite elements (see [3], [10], [18] for application to degenerate parabolic problems), non-conforming methods
such as mixed finite element methods, or discontinuous Galerkin methods, and other more recent methods [9]. In
such a general framework, the continuous gradient operator is replaced by a discrete one, denoted by ∇D. Then
Stampacchia’s result [19], which allows to write in the continuous case Λ∇ζ(uε)·∇η(uε) = Λ∇ϕ(uε)·∇ϕ(uε) with
(ϕ′)2 = ζ ′η′, does not hold in the discrete framework (note that Stampacchia’s result has a discrete counterpart
if the scheme is based on the two-point flux approximation, but in this case, the meshes are restricted, and Λ
should be isotropic, see the discussion in [13]).

We emphasize that the scheme which is considered below includes a parameter θ, such that, if θ = 0, the
convection term is explicit, if θ = 0.5, the convection term is centred in time, and if θ = 1., the convection term
is implicit. We consider in this paper the case θ ∈ R since we show in the numerical examples that values θ > 1
lead to a kind of stabilisation in the case where oscillations occur for θ ∈ [0, 1]. In all cases, the degenerate
diffusion term is taken implicit. We recall that, for a centred finite volume scheme for the convection, the θ-
scheme is L2- stable only if θ ≥ 0.5. We prove below that this limitation does not apply in the framework of
this paper. Nevertheless, for any θ ∈ R, the degenerate diffusion is sufficient for leading to weakly convergent
schemes and in some particular cases to a strong convergence property.

This paper is organised as follows. We first apply the gradient discretisation tools to the continuous Problem
in Section 2, and derive some estimates, which are used in Section 3 for the convergence analysis. Finally in
Section 4, numerical examples show the behaviour of the Control Volume Finite Element scheme (CVFE) and
the Vertex Approximate Gradient (VAG) scheme [14] which present some interesting characteristics for coupled
flows in porous media.

2 Approximation by space-time gradient discretisations

In the same manner as in [12], we perform the discretisation of Problem (6) with replacing the continuous opera-
tors by discrete ones, following the Gradient Discretisation Method [9]. LetDT := (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N )
be a space-time discretisation in the sense of [9, Definition 4.1], such that D := (XD,0,ΠD,∇D) is a space gra-
dient discretisation for Dirichlet boundary conditions in the sense of [9, Definition 2.1] (we then denote by
δtD = maxn=0,...,N−1 t

(n+1) − t(n)). Then, [9, Definition 2.1] specifies that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on
XD,0, and the following quantities: CD ∈ [0,+∞), SD : H1

0 (Ω) → [0,+∞) and WD: Hdiv(Ω) → [0,+∞), are
defined by

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖v‖D
, (8)

∀ϕ ∈ H1
0 (Ω) , SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)
, (9)

∀ϕ ∈ Hdiv(Ω), WD(ϕ) = max
u∈XD,0\{0}

1

‖u‖D

∣∣∣∣∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣ . (10)

These quantities are respectively involved in [9, Definition 2.2] of coercivity, [9, Definition 2.4] of GD-consistency
and in [9, Definition 2.5] of limit-conformity.

We assume that ΠD is a piecewise constant function reconstruction in the sense of [9, Definition 2.12]. Let
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θ ∈ R be given. The scheme consists in finding u := (u(n))n=0,...,N such that:

u(0) = IDuini ∈ XD,0,

u(n+1) ∈ XD,0, δ
(n+ 1

2 )

D u = ΠD
u(n+1) − u(n)

δt(n+ 1
2 )

, u(n+θ) = θ u(n+1) + (1− θ) u(n),∫
Ω

(
δ

(n+ 1
2 )

D u(x)ΠDv(x)−ΠDu
(n+θ)(x)~v(x, t) · ∇Dv(x)

+Λ(x)∇Dζ(u(n+1))(x) · ∇Dv(x)
)

dx

=
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt, ∀v ∈ XD,0, ∀n = 0, . . . , N − 1.

(11)

Let us observe that all the degenerate diffusion terms are implicit, whereas a θ-scheme is used for the time
discretisation of the convection term. This difference leads us to introduce the following notations for the
definition of the discrete space-time dependent functions:

Π
(θ)
D u(x, 0) = ΠDu

(0)(x) and Π
(1)
D u(x, 0) = ΠDu

(0)(x) for a.e. x ∈ Ω,

Π
(θ)
D u(x, t) = ΠDu

(n+θ)(x) and Π
(1)
D u(x, t) = ΠDu

(n+1)(x),

Π
(1)
D ζ(u)(x, t) = ΠDζ(u(n+1))(x),

∇(1)
D ζ(u)(x, t) = ∇Dζ(u(n+1))(x), for a.e. x ∈ Ω, ∀t ∈ (t(n), t(n+1)], ∀n = 0, . . . , N − 1.

(12)

We also denote

δDu(x, t) = δ
(n+ 1

2 )

D u(x), for a.e. (x, t) ∈ Ω× (t(n), t(n+1)), ∀n = 0, . . . , N − 1. (13)

We can notice that, in the spirit of the estimates which are proved below, the space-time functions reconstruc-

tions for u are defined for all time t ∈ [0, T ], whereas δDu, Π
(1)
D ζ(u) and ∇(1)

D ζ(u) are only defined for a.e.
t ∈ (0, T ). We finally introduce the function

Z(s) =

∫ s

0

ζ(x)dx, ∀s ∈ R. (14)

which is used several times in the convergence proofs. We then have

Z(s) =

∫ s

0

ζ(x)dx =

∫ s

0

(ζ(x)− ζ(0))dx ≤ Lζ
∫ s

0

xdx = Lζ
s2

2
, ∀s ∈ R, (15)

and, from Hypotheses (5f) and (5g), and using Young’s inequality,

Z(s) ≥
∫ |s|

0

(Lζx− Cζ)dx =
1

2
Lζ |s|2 − Cζ |s| ≥

1

4
Lζs

2 −
C2
ζ

Lζ
, ∀s ∈ R. (16)

Lemma 2.1 (Discrete versions of (E1) and (E2) and existence of a discrete solution). Under Hypotheses (5),
let DT = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation such that ΠD is a piecewise
constant function reconstruction. Let γ ∈ (0, 1) be given and let θ ∈ R be such that

4‖~v‖2L∞(Ω×(0,T ))θ
2δtD ≤ γLζλ. (17)

Then there exists at least one solution to Scheme (11), and there exists C1 > 0, only depending on Lζ , Lζ , Cζ ,

CP > CD, Cini > ‖uini −ΠDu
(0)‖L2(Ω), f , ~v, λ, θ and γ such that, for any solution u to this scheme,

‖Π(1)
D ζ(u)‖L∞(0,T ;L2(Ω)) ≤ C1, ‖Π(1)

D u‖L∞(0,T ;L2(Ω)) ≤ C1, and ‖Π(θ)
D u‖L∞(0,T ;L2(Ω)) ≤ C1, (18)

and
‖∇(1)
D ζ(u)‖L2(Ω×(0,T )) ≤ C1. (19)
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Remark 2.2 (On condition (17)). For any consistent sequence ((DT )m)m∈N of space-time gradient discretisa-
tions, condition (17) is necessarily satisfied for m large enough for any θ ∈ R, since the consistency property
implies that δtDm tends to 0 as m→∞. For a given space-time gradient discretisation, it is always possible to
choose θ ∈ R such that condition (17) holds (see Section 4 for an example of numerical maximum value for |θ|
such that this condition holds).

Proof. Before showing the existence of at least one discrete solution to Scheme (11), let us first prove (18) and

(19). From properties (15) and (16), and using
∫ b
a
ζ(s)ds = Z(b) − Z(a) = ζ(b)(b − a) −

∫ b
a
ζ ′(s)(s − a)ds, we

get, since (5f) implies ζ ′(s) ≥ 0 and using the piecewise constant reconstruction hypothesis, that

(ΠDu
(n+1)(x)−ΠDu

(n)(x)) ΠDζ(u(n+1))(x) ≥ ΠDZ(u(n+1))(x)−ΠDZ(u(n))(x) for a.e. x ∈ Ω.

We then let v = δt(n+ 1
2 )ζ(u(n+1)) in (11), and we sum the obtained equation on n = 0, . . . ,m − 1 for a given

m = 1, . . . , N . Accounting for the above inequality yields that there holds

∫
Ω

(Z(ΠDu
(m)(x))− Z(ΠDu

(0)(x)))dx + λ

∫ t(m)

0

∫
Ω

|∇(1)
D ζ(u)(x, t)|2dxdt

≤
∫ t(m)

0

∫
Ω

(
Π

(θ)
D u(x, t)~v(x, t) · ∇(1)

D ζ(u)(x, t) + f(x, t)Π
(1)
D ζ(u)(x, t)

)
dxdt, ∀m = 0, . . . , N, (20)

since for m = 0 the above inequality reduces to 0 ≤ 0. Thanks to Young’s inequality and applying the
definition of the coercivity constant (8), we get that, for any n = 0, . . . ,m − 1, for every η1 > 0 and a.e.
(x, t) ∈ Ω× (t(n), t(n+1)),

f(x, t) ΠDζ(u(n+1))(x) ≤ 1

2η1
|f(x, t)|2 +

η1

2
|ΠDζ(u(n+1))(x)|2,

≤ 1

2η1
|f(x, t)|2 +

C2
Dη1

2
|∇Dζ(u(n+1))(x)|2.

Summing two Young’s inequalities applied to both terms θ ΠDu
(n+1)(x)~v(x, t) · ∇Dζ(u(n+1))(x) and

(1− θ) ΠDu
(n)(x)~v(x, t) · ∇Dζ(u(n+1))(x), we get that for every η2 > 0 and a.e. (x, t) ∈ Ω× (t(n), t(n+1)),

|ΠDu(n+θ)(x)~v(x, t) · ∇Dζ(u(n+1))(x)|

≤ ‖~v‖L∞(Ω×(0,T ))

(
1

2η2

(
θ2 (ΠDu

(n+1)(x))2 + (1− θ)2 (ΠDu
(n)(x))2

)
+ η2|∇Dζ(u(n+1))(x)|2

)
.

Thus from (20), using the two above inequalities with η1 = λ/(2C2
D) and η2 = λ/(2‖~v‖L∞(Ω×(0,T ))), we get

that, for all m = 0, . . . , N (with the convention that an empty sum is equal to 0),

‖ΠDZ(u(m))‖L1(Ω) +
1

4
λ‖∇(1)

D ζ(u)‖2L2(Ω×(0,t(m)))

≤
‖~v‖2L∞(Ω×(0,T ))

λ

m−1∑
n=0

δt(n+ 1
2 )
(
θ2 ‖ΠDu(n+1)‖2L2(Ω) + (1− θ)2 ‖ΠDu(n)‖2L2(Ω)

)
+
C2
D
λ
‖f‖2L2(Ω×(0,t(m))) + ‖ΠDZ(u(0))‖L1(Ω). (21)
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which in turn yields, thanks to (15) and (16) and to the non-negativity of the second term of the left hand side,(
Lζ
4
−
‖~v‖2L∞(Ω×(0,T ))

λ
δt(m−

1
2 )θ2

)
‖ΠDu(m)‖2L2(Ω)

≤
‖~v‖2L∞(Ω×(0,T ))

λ

m−1∑
n=1

(
θ2 δt(n−

1
2 ) + (1− θ)2δt(n+ 1

2 )
)
‖ΠDu(n)‖2L2(Ω)

+
C2
D
λ
‖f‖2L2(Ω×(0,T )) +

(
‖~v‖2L∞(Ω×(0,T ))

λ
(1− θ)2δt(

1
2 ) +

Lζ
2

)
‖ΠDu(0)‖2L2(Ω) +

C2
ζ

Lζ
, ∀m = 1, . . . , N. (22)

Let us notice that (17) has been designed in order that the coefficient of ‖ΠDu(m)‖2L2(Ω) at the left hand side

remains strictly positive. Indeed, (17) is equivalent to
Lζ
4 − θ

2 ‖~v‖
2
L∞(Ω×(0,T ))

λ δtD >
Lζ(1−γ)

4 . Thus, using

‖ΠDu(0)‖L2(Ω) ≤ ‖uini‖L2(Ω) + Cini, (23)

we obtain, denoting am = ‖ΠDu(m)‖2L2(Ω) for all m = 1, . . . , N , that

∀m ∈ {1, . . . , N}, am ≤
m−1∑
n=1

bnan +B,

with the convention that an empty sum is equal to zero, and denoting by

B =
4

Lζ(1− γ)

(
C2
D
λ
‖f‖2L2(Ω×(0,T )) +

(
Lζ
2

+ (1− θ)2T
‖~v‖2L∞(Ω×(0,T ))

λ

)
(‖uini‖L2(Ω) + Cini)

2 +
C2
ζ

Lζ

)
,

and

bn = A(θ2δt(n−
1
2 ) + (1− θ)2δt(n+ 1

2 )) with A =
4‖~v‖2L∞(Ω×(0,T ))

(1− γ)Lζλ
.

Using that
∑m
n=1 δt

(n− 1
2 ) = t(m), we get that

∑m−1
n=1 bn ≤ AT (θ2 + (1− θ)2) . Therefore, applying the discrete

Gronwall lemma A.1, we prove that

‖ΠDu(m)‖2L2(Ω) ≤ B exp
(
AT (θ2 + (1− θ)2)

)
, ∀m = 1, . . . , N.

Together with (23), this shows (18). Reporting this estimate in (21), we deduce (19).

Let us now turn to the proof of existence of a solution to Scheme (11). Let us introduce, for any µ ∈ [0, 1],
the function ζµ(s) = (1 − µ)Lζs + µζ(s). Then all the hypotheses of the lemma are satisfied with the same

values Lζ , Lζ and Cζ , which implies that the bounds in (18)-(19) hold with the same constant for all µ ∈ [0, 1].

For µ = 0, Scheme (11) leads to a square linear system; repeating the above computations with Z(s) = 1
2Lζs

2,

u(0) = 0, f = 0 and Cζ = 0 implies that the solution is equal to 0 if the right hand side vanishes, which implies
the existence and uniqueness of the solution of this linear system. By continuity of the discrete equations with
respect to µ, we apply the constancy of the topological degree by an homotopy which allow to conclude the
existence of at least one solution for µ = 1 (see [11] for the topological degree theory).

In view of the study of the time translates, for fulfilling the hypotheses of Kolmogorov’s compactness theorem,
let us prove an estimate on the dual norm of the discrete time derivative, defined as follows. We define the
following semi-norm on L2(Ω):

∀w ∈ L2(Ω), |w|?,D = sup

{∫
Ω

w(x)ΠDv(x)dx; v ∈ XD,0, ‖∇Dv‖L2(Ω)d = 1

}
, (24)
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and we introduce the following semi-norm on L2(0, T ;L2(Ω)):

∀w ∈ L2(0, T ;L2(Ω)), |w|L2(0,T ;?,D) =

(∫ T

0

|w(t)|2?,Ddt

)1/2

. (25)

Lemma 2.3 (Discrete version of (E3)).
Under Hypotheses (5), let DT = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation such
that ΠD is a piecewise constant function reconstruction. Let γ ∈ (0, 1) be given and let θ ∈ R be such that
condition (17) holds. Then there exists C2 > 0, only depending on Lζ , Lζ , Cζ , CP > CD, Cini > ‖uini −
ΠDu

(0)‖L2(Ω), f , ~v, λ, λ, θ and γ such that, for any solution u := (u(n))n=0,...,N to Scheme (11),

|δDu|L2(0,T ;?,D) ≤ C2. (26)

Proof. From (11), we can write, for any v ∈ XD,0 and any n = 0, . . . , N − 1,∫
Ω

δ
(n+ 1

2 )

D u(x)ΠDv(x)dx =

∫
Ω

ΠDu
(n+θ)(x)~v(x, t) · ∇Dv(x)dx

+
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t) ΠDv(x)dxdt−
∫

Ω

Λ(x)∇Dζ(u(n+1))(x)∇Dv(x)dx.

Applying the Cauchy-Schwarz inequality and applying the definition of the coercivity constant (8), we obtain

|δ(n+ 1
2 )

D u|?,D ≤ ‖~v‖L∞(Ω×(0,T ))‖ΠDu(n+θ)‖L2(Ω)

+ CD
1

δ(n+ 1
2 )

∫ t(n+1)

t(n)

‖f(·, t)‖L2(Ω)dt+ λ‖∇Dζ(u(n+1))‖L2(Ω).

Then on one hand we use that for all x, y, z ∈ R, (x+ y + z)
2 ≤ 3

(
x2 + y2 + z2

)
. On the other hand, the

definition |δDu|2L2(0,T ;?,D) =
∑N−1
n=0 δ

(n+ 1
2 )|δ(n+ 1

2 )

D u|2?,D leads to

|δDu|2L2(0,T ;?,D) ≤ 3
(
‖~v‖2L∞(Ω×(0,T ))‖Π

(θ)
D u‖2L2(Ω×(0,T )) + C2

D‖f‖2L2(Ω×(0,T )) + λ
2‖∇(1)

D ζ(u)‖2L2(Ω×(0,T ))

)
.

Thus (18) and (19) of Lemma 2.1 imply (26), where the dependence of C2 with respect to the data of the
problem are resulting from the one arising in Lemma 2.1.

The next lemma concerns the study of the time translates of Π
(1)
D ζ(u). Note that the estimate (19) provides

an estimate on the space translate of the same function, and the combination of these two estimates allows the
application of Kolmogorov’s theorem for deriving a strong convergence property.

Lemma 2.4 (Estimate on the time translates).
Under Hypotheses (5), let DT = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation such
that ΠD is a piecewise constant function reconstruction. Let γ ∈ (0, 1) be given and let θ ∈ R be such that
condition (17) holds. Then there exists C3 > 0, only depending on Lζ , Lζ , Cζ , CP > CD, Cini > ‖uini −
ΠDu

(0)‖L2(Ω), f , ~v, λ, λ, θ and γ such that, for any solution u := (u(n))n=0,...,N to Scheme (11),

‖Π(1)
D ζ(u)(·, ·+ τ)−Π

(1)
D ζ(u)(·, ·)‖2L2(Ω×(0,T−τ)) ≤ C3

√
τ(τ + δtD),∀τ ∈ (0, T ). (27)

Proof. Let τ ∈ (0, T ). Similarly using that Lζ is a Lipschitz constant of ζ and ζ is non-decreasing, and using
the fact that ΠD is piecewise constant, the following inequality holds:∫

Ω×(0,T−τ)

(
Π

(1)
D ζ(u)(x, t+ τ)−Π

(1)
D ζ(u)(x, t)

)2

dxdt ≤ Lζ
∫ T−τ

0

A(t)dt, (28)
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where, for almost every t ∈ (0, T − τ),

A(t) =

∫
Ω

(
Π

(1)
D ζ(u)(x, t+ τ)−Π

(1)
D ζ(u)(x, t)

)(
Π

(1)
D u(x, t+ τ)−Π

(1)
D u(x, t)

)
dx.

We apply lemma B.1 and we get∫ T−τ

0

A(t)dt ≤ 2
√
τ(τ + δt) |δDu|L2(0,T ;?,D) ‖∇

(1)
D ζ(u)‖L2(0,T ;L2(Ω)d). (29)

Using (26), (19) in (29), we get the result.

3 Convergence analysis

Let us begin with the weak convergence of Π
(θ)
D u(t) and Π

(1)
D u(t), for all t ∈ [0, T ] to an element of Cw([0, T ];L2(Ω)),

denoting the set of functions from [0, T ] to L2(Ω), continuous for the weak topology of L2(Ω)).

Lemma 3.1 (Time pointwise weak convergence of Π
(θ)
D u(t) and Π

(1)
D u(t)).

Let Hypotheses (5) be fulfilled. Let ((DT )m)m∈N be a consistent sequence of space-time gradient discretisations,
such that the associated sequence of approximate gradient approximations is limit–conforming (it is then coercive
thanks to [9, Lemma 2.6]), and such that, for all m ∈ N, ΠDm is a piecewise constant function reconstruction.
Let γ ∈ (0, 1) be given and let θ ∈ R be such that condition (17) holds for all m ∈ N. For any m ∈ N, let um be
a solution to Scheme (11).
Then there exists ū ∈ L∞(0, T ;L2(Ω)) ∩ Cw([0, T ];L2(Ω)) such that, up to a subsequence, for all t ∈ [0, T ],

Π
(θ)
Dmum(t) and Π

(1)
Dmum(t) weakly converges in L2(Ω) to ū(t) as m→∞.

Proof. Applying Lemma 2.1, we get that there exists ū(θ) ∈ L∞(0, T ;L2(Ω)) (resp. ū(1) ∈ L∞(0, T ;L2(Ω)))

such that Π
(θ)
Dmum (resp. Π

(1)
Dmum) weakly converges, up again to the extraction of a subsequence, to ū(θ) (resp.

ū(1)) in L2(Ω× (0, T )).

Let ϕ ∈ C∞c ([0, T )) and w ∈ C∞c (Ω) , and let wm ∈ XDm,0 be such that

wm = argmin
z∈XDm,0

SDm(z). (30)

Since the definitions of | · |?,D and of δ
(n+ 1

2 )

D u imply

|
∫

Ω

(ΠDmu
(n+1)
m −ΠDmu

(n+θ)
m )ΠDmwmdx| ≤ δtDm |1− θ| |δ

(n+ 1
2 )

Dm u|?,Dm‖wm‖Dm ,

we obtain, multiplying the above inequality by δt(n+ 1
2 )ϕ(t(n))wm, summing the resulting equation on n =

0, . . . , Nm − 1 and using the Cauchy-Schwarz inequality, that

|
Nm−1∑
n=0

∫
Ω

(ΠDmu
(n+1)
m −ΠDmu

(n+θ)
m )δt(n+ 1

2 )ϕ(t(n))ΠDmwmdx|

≤ δtDm |1− θ| |δDmu|L2(0,T ;?,Dm)‖wm‖Dm
√
T‖ϕ‖L∞([0,T ]).

Denoting by ψm(x, t) = ϕ(t(n))ΠDmwm(x) for a.e. t ∈ (t(n), t(n+1)) and x ∈ Ω, we get

|
∫ T

0

∫
Ω

(Π
(1)
Dmum −Π

(θ)
Dmum)ψmdxdt| ≤ δtDm |1− θ| |δDmu|L2(0,T ;?,Dm)‖wm‖Dm

√
T‖ϕ‖L∞([0,T ]).
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Using Lemma 2.3, we get that the right hand side of the above inequality tends to 0 as m→∞. Passing to the
limit in the above inequality, and using weak/strong convergence in the left hand side, we obtain that∫ T

0

∫
Ω

(ū(1)(x, t)− ū(θ)(x, t))ϕ(t)w(x)dxdt = 0.

Since the set T = {
∑q
i=1 ϕi(t)wi(x) : q ∈ N, ϕi ∈ C∞c [0, T ), wi ∈ C∞c (Ω)} is dense in C∞c (Ω × [0, T )), we

conclude that ū(1) = ū(θ). We now denote by ū ∈ L∞(0, T ;L2(Ω)) the common limit of Π
(1)
Dmum and Π

(θ)
Dmum.

The fact that ū ∈ Cw([0, T ];L2(Ω)) and that, up to a subsequence, for all t ∈ [0, T ], Π
(θ)
Dmum(t) and Π

(1)
Dmum(t)

weakly converges in L2(Ω) to ū(t) as m → ∞ is proved by [9, theorem 4.19], since its hypotheses hold thanks
to Lemmas 2.1 and 2.3.

We can now state the concluding convergence theorem.

Theorem 3.2 (Convergence of Scheme (11)).
Let Hypotheses (5) be fulfilled. Let ((DT )m)m∈N be a consistent sequence of space-time gradient discretisations,
such that the associated sequence of approximate gradient approximations is limit–conforming (it is then coer-
cive) and compact ([9, Definition 2.8]), and such that, for all m ∈ N, ΠDm is a piecewise constant function
reconstruction. Let γ ∈ (0, 1) be given and let θ ∈ R be such that condition (17) holds for all m ∈ N. For any
m ∈ N, let um be a solution to Scheme (11).
Then there exists ū ∈ L∞(0, T ;L2(Ω))∩Cw([0, T ];L2(Ω)) such that ū is a solution of Problem (6) and, up to a
subsequence,

1. for all t ∈ [0, T ], Π
(θ)
Dmum(t) and Π

(1)
Dmum(t) weakly converges in L2(Ω) to ū(t) as m→∞,

2. Π
(1)
Dmζ(um) converges in L2(Ω× (0, T )) to ζ(ū) as m→∞,

3. ∇(1)
Dmζ(um) weakly converges in L2(Ω× (0, T ))d to ∇ζ(ū) as m→∞.

Proof. We first apply Lemma 3.1, and we consider the corresponding extracted subsequence. The compactness

hypothesis of (Dm)m∈N allows to enter into the framework of Kolmogorov’s theorem. Indeed, prolonging Π
(1)
D ζ(u)

by 0 outside Ω × (0, T ), from [9, Lemma 2.21], we get that the space translates of Π
(1)
D ζ(u) uniformly tend to

0. For the time translates, in addition to Lemma B.1, we show that the terms
∫

Ω×(−τ,0)

(
Π

(1)
D ζ(u)(x, t + τ) −

Π
(1)
D ζ(u)(x, t)

)2

dxdt and
∫

Ω×(T−τ,T )

(
Π

(1)
D ζ(u)(x, t+ τ)−Π

(1)
D ζ(u)(x, t)

)2

dxdt are of order less than τ thanks

to Estimate (18). Therefore, there exists χ ∈ L2(Ω×(0, T )) such that Π
(1)
Dmζ(um) converges, up to the extraction

of a subsequence, to χ in L2(Ω× (0, T )). Thanks to the limit-conformity of the sequence (Dm)m∈N, we get that
χ ∈ L2(0, T ;H1

0 (Ω)).
This allows to apply to Minty’s trick [9, Lemma D.10], for concluding that χ(x, t) = ζ(ū(x, t)) for a.e. (x, t) ∈
Ω× (0, T ). It now remains to prove that ū is the weak solution of Problem (6).

Let ϕ ∈ C∞c ([0, T )) and w ∈ C∞c (Ω). Let m ∈ N, and let vm ∈ XDm,0 be such that

vm = argmin
z∈XDm,0

(
‖ΠDmz − w‖L2(Ω) + ‖∇Dmz −∇w‖L2(Ω)d

)
.

Thanks to the consistency hypothesis, we have that ΠDmvm (resp. ∇Dmvm) converges in L2 to w (resp.

∇w). We take as test function v in (11) the function δt
(n+ 1

2 )
m ϕ(t(n)) vm, and we sum the resulting equation on

n = 0, . . . , N − 1. We get, denoting D = Dm and dropping some indices m for the simplicity of the notation,

T
(m)
1 + T

(m)
2 + T

(m)
3 = T

(m)
4 , (31)

with
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T
(m)
1 =

N−1∑
n=0

δt(n+ 1
2 )ϕ(t(n))

∫
Ω

δ
(n+ 1

2 )

D u(x)ΠDv(x)dx,

T
(m)
2 =

N−1∑
n=0

δt(n+ 1
2 )ϕ(t(n))

∫
Ω

∇Dζ(u(n+1))(x) · ∇Dv(x)dx,

T
(m)
3 =

N−1∑
n=0

δt(n+ 1
2 )ϕ(t(n))ΠDu

(n+θ)(x)~v(x, t) · ∇Dv(x)dx,

and

T
(m)
4 = −

N−1∑
n=0

ϕ(t(n))

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt.

Writing

T
(m)
1 = −

∫ T

0

ϕ′(t)

∫
Ω

Π
(1)
D u(x, t)ΠDv(x)dxdt− ϕ(0)

∫
Ω

ΠDu
(0)(x)ΠDv(x)dx,

we get that

lim
m→∞

T
(m)
1 = −

∫ T

0

ϕ′(t)

∫
Ω

ū(x, t)w(x)dxdt− ϕ(0)

∫
Ω

uini(x)w(x)dx.

We also immediately get that

lim
m→∞

T
(m)
2 =

∫ T

0

ϕ(t)

∫
Ω

∇ζ(ū)(x, t) · ∇w(x)dxdt,

and

lim
m→∞

T
(m)
4 =

∫ T

0

ϕ(t)

∫
Ω

f(x, t)w(x)dxdt.

Applying Lemma 3.1 stating the weak convergence of Π
(θ)
D u to ū, we also obtain that

lim
m→∞

T
(m)
3 =

∫ T

0

ϕ(t)

∫
Ω

ū(x, t)~v(x, t) · ∇w(x)dxdt

Since the set T = {
∑q
i=1 ϕi(t)wi(x) : q ∈ N, ϕi ∈ C∞c [0, T ), wi ∈ C∞c (Ω)} is dense in C∞c (Ω × [0, T )), we

conclude the proof that ū ∈ L∞(0, T ;L2(Ω)) is a solution of Problem (6), which concludes the proof of the
theorem.

3.1 A strong convergence result in a particular case

This section concerns a particular case, which holds in the numerical results of Section 4. In the case of the
function ζ defined by (32), we define the “mushy” zoneM(t) for any t ∈ [0, T ] byM(t) = {x ∈ Ω, 0 < ū(x, t) <
1}. It is known [5, 17] that, for regular velocity fields and if there is no source term, the solution ū of (4a)
is such that the measure of the mushy zone |M(t)| is decreasing with t, and therefore, if M(0) = 0, we have

M(t) = 0 for all t ∈ [0, T ]. Letting Q = Ω× (0, T ), w = ū and wn = ΠD
(θ)
n un, the following lemma shows that

the weak convergence result of Theorem 3.2 becomes a strong convergence result in this case.
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Lemma 3.3. Let N ∈ N? be given, let Q be a non empty bounded open subset of RN . Let w ∈ L∞(Q) be such
that w(x) /∈ (0, 1) for a.e. x ∈ Q. Let ζ be defined by

∀s ∈ R, ζ(s) =


s if s < 0,

0 if 0 ≤ s ≤ 1,

s− 1 if 1 < s.

(32)

Let (wn)n∈N be a sequence of functions of L2(Q) such that, as m→∞:

1. (wn)n∈N weakly converges to w in L2(Q),

2. (ζ(wn))n∈N converges to ζ(w) in L2(Q).

Then (wn)n∈N converges to w in L2(Q).

Proof. We first |s| = 2 max(s, 0)− s for writing, for a.e. x ∈ Q,

max(w(x)− 1

2
, 0)|wn(x)− w(x)| = max(w(x)− 1

2
, 0)
(
2 max(wn(x)− w(x), 0)− (wn(x)− w(x))

)
= max(w(x)− 1

2
, 0)
(
2 max(ζ(wn(x))− ζ(w(x)), 0)− (wn(x)− w(x))

)
.

Then, using the strong convergence of ζ(wn) and the weak convergence of wn in L2(Q), we get

lim
n→∞

∫
Q

max(w(x)− 1

2
, 0)|wn(x)− w(x)|dx = 0.

Similarly, we use |s| = s− 2 min(s, 0) for writing, for a.e. x ∈ Q,

max(
1

2
− w(x), 0)|wn(x)− w(x)| = max(

1

2
− w(x), 0)

(
wn(x)− w(x)− 2 min(wn(x)− w(x), 0)

)
= max(

1

2
− w(x), 0)

(
wn(x)− w(x)− 2 min(ζ(wn(x))− ζ(w(x)), 0)

)
,

and we therefore obtain

lim
n→∞

∫
Q

max(
1

2
− w(x), 0)|wn(x)− w(x)|dx = 0. (33)

Adding the two limits such proved, we obtain

lim
n→∞

∫
Q

|w(x)− 1

2
||wn(x)− w(x)|dx = 0.

We have, for any x, y ∈ R, |x− y| ≤ 1 + |ζ(x)− ζ(y)|. For a.e. x ∈ Q, since |w(x)− 1
2 | ≥

1
2 , we get that

(wn(x)− w(x))2 ≤ |wn(x)− w(x)|(2|w(x)− 1

2
|+ (wn(x)− w(x))(ζ(wn(x))− ζ(w(x)).

Hence we obtain, using (33) for the first term and weak/strong convergence for the second one,

lim
n→∞

∫
Q

(wn(x)− w(x))2dx

≤ lim
n→∞

(
2

∫
Q

|w(x)− 1

2
||wn(x)− w(x)|dx +

∫
Q

(wn(x)− w(x))(ζ(wn(x))− ζ(w(x))dx

)
= 0,

which concludes the proof.
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4 Numerical examples

We compare in this section two schemes which enter into the framework of this paper. Let us briefly recall each
of them.

The Control Volume Finite Element (CVFE) scheme

This scheme, also called the mass-lumped P1 finite element method, is detailed in [9, Section 8.4]. We consider
a conforming triangular mesh of Ω, and we define a dual mesh by joining the centre of gravity of the triangles
with the middle of the edges. Denote by V the set of the vertices of the mesh, and for v ∈ V define Kv as the
dual cell around the vertex v.

1. We then define XD,0 as the set of all families u = (uv)v∈V such that uv = 0 for all vertices v located on
the boundary of the domain.

2. For every u ∈ XD,0, v ∈ V and for almost-every x ∈ Kv, ΠDu(x) = uv (piecewise constant reconstruction
in all Kv);

3. For every u ∈ XD,0, define ∇Du as the gradient of the conforming piecewise affine function reconstructed
in the triangles from the values at the vertices of the triangles.

The Vertex Approximate Gradient (VAG) scheme

The properties of the VAG scheme, introduced in [14], are detailed in [9, Section 8.5]. In the 2D case, a polygonal
mesh M is given, such that each element K ∈ M is strictly star-shaped with respect to some point xK . We
denote by V the set of all the vertices of the mesh, and by E the set of all the edges of the elements of the mesh,
assumed to be linear segments. For any σ ∈ E , we denote by xσ its middle point. We consider two meshes
of Ω. The first one is a triangular mesh, where the vertices of the triangles are the points xK ,xσ,v, for all
K ∈ M, for all σ of K and v common vertex of K and σ. The second one is a dual mesh, associated to all
points (xK)K∈M and (v)v∈V .

1. We then define XD,0 as the set of all families u = ((uK)K∈M, (uv)v∈V) such that uv = 0 for all v ∈ V∩∂Ω.

2. The mapping ΠD is defined by piecewise constant functions having the values uK in the dual control
volume associated to xK for all K ∈M and uv in the dual control volume associated to v ∈ V.

3. Considering the value uσ = 1
2 (uv +uv′) at the middle xσ of an edge σ = [v,v′], the mapping ∇D is defined

as the gradient of the P1 affine reconstruction with the values uK , uσ, uv at the vertices xK ,xσ,v of any
triangle of the triangular mesh.

This scheme has two advantages. Firstly, adjusting the dual mesh with respect to the heterogeneous properties
of the domain, it allows accurate computations of coupled conservation equations in porous media [14]. Secondly,
it leads to cheap computations with the elimination of all values (uK)K∈M with respect to the values (uv)v∈V .

Data for the numerical tests

In the following numerical examples, we consider the function ζ presented in the introduction of this paper,
letting Cv = Cl = 1, Tf = 0 and L = 1, which leads to

∀s ∈ R, ζ(s) =


s if s < 0,

0 if 0 ≤ s ≤ 1,

s− 1 if 1 < s.

(34)

In this case, the data involved in (5f) and (5g) can be chosen as Lζ = 1, Lζ = 1 and Cζ = 1.

We let d = 2, Ω = (0, 1) × (0, 1), ~v = (1, 1) (hence ‖~v‖∞ =
√

2), Λ = Id (we then choose λ = λ = 1 in (5d)).
Letting γ tend to 1, and considering the case δtD = 0.001 (this value is selected in most of the numerical tests
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below) the maximum value of θ2 such that Condition (17) holds is therefore equal to 125
√

2), which enables
|θ| ≤ 10.

We finally let f = 0 and uini(x) = αini if x = (x1, x2) ∈ (0.1, 0.4) × (0.1, 0.4) and uini(x) = 0 elsewhere, with
the three cases αini = 1.5, αini = 1 and αini = .5. These three choices are aimed to provide the behaviour of
the numerical schemes in three cases: in the first and second (which is a limit case) cases a strong convergence
property holds for ΠDu (see Section (3.1)), and in the third one is a case where oscillations are expected. The
computations are done with a final time T = 0.5, with a constant time step equal to 0.001 and a family of
triangular meshes extracted from the benchmark [16]. The coarsest grid, respectively the finest one, has a space
step equal to 0.25, respectively 0.016.

4.1 Case αini = 1.5

The mushy zone is such that M(0) = 0. So the solution is given at any time t ∈ (0, T ] by ū(·, t) > 1 a.e. inside

a moving domain Ω̃(t), with Ω̃(0) = (0.1, 0.4)× (0.1, 0.4), and ū(·, t) = 0, a.e. inside Ω \ Ω̃(t). Due to the choice

of the velocity ~v, this domain Ω̃(t) moves along the principal diagonal.

Figure 1: Case αini = 1.5, solutions at T = 0.5. Top: CVFE scheme (from left to right: θ = 0, θ = 0.5, θ = 1).
Bottom: same for the VAG scheme (cell center values). The colour blue is associated to the value 0, whereas
the colour red corresponds to 1. Results obtained on the finest grid.

We then observe in Figures 1 and 2 that the numerical solutions obtained with the CVFE and VAG schemes
respect the expected physical features of the problem. There is a good agreement between the two schemes, for
the different values of θ on both figures.

4.2 Case αini = 1

This case has the advantage to be such that ū(x, t) ∈ {0, 1} so ū(x, t) /∈ (0, 1), for any t ∈ [0, 0.5] and a.e.
x ∈ Ω, and is therefore such that ζ(ū(x, t)) = 0 for a.e. (x, t) ∈ Ω× (0, T ). Therefore the solution ū to Problem
(6) is also the solution of the following pure convection problem:

∂tū+ div(ū~v) = 0, in Ω× (0, T ), (35)

14



Figure 2: Case αini = 1.5, solutions at T = 0.5. Comparison of profiles along the first diagonal. Circle blue
for θ = 0, cross green for θ = 0.5 and square black for θ = 1. Left: CVFE scheme. Right: same for the VAG
scheme (cell center values). Results obtained on the finest grid.

with the same initial and boundary conditions. It is given by ū(x, 0.5) = 1 for a.e. x ∈ (0.6, 0.9) × (0.6, 0.9),
and 0 elsewhere. Although it is the limit case, the convergence of ΠDmum in L2(Ω × (0, T )) to ū is again an
immediate consequence of Theorem 3.2 and Lemma 3.3.

Figure 3: Case αini = 1, solutions at T = 0.5. From left to right: CVFE, VAG (cell centre values), upstream
schemes (the colour blue is associated to the value 0, whereas the colour red corresponds to 1) and comparison
of profiles along the first diagonal (dash red for CVE, dot green for VAG, black line for upstream). Results
obtained on the finest grid.

We compare in Figure 3 the numerical solution obtained at T = 0.5 with θ = 1 by the CVFE and the VAG
schemes, compared to an upstream implicit weighting scheme. The accurateness of centred schemes compared
to upstream scheme is confirmed by the L1 and L2 errors respectively shown for these two schemes in Tables
1. We also again observe that the bounds are not strictly respected by the centred scheme, but that the error
committed on the bounds tends to 0 rapidly. As expected in the case of a discontinuous analytical solution, the
numerical orders of convergence are nevertheless closer to 1/2 than to 1.
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h δt L2-error ratio L1-error ratio umin umax

0.250 0.01024 0.202E+00 - 0.769E-01 - -0.020 1.032
0.125 0.00512 0.136E+00 0.572 0.378E-01 1.023 -0.021 1.024
0.062 0.00256 0.992E-01 0.454 0.239E-01 0.662 -0.012 1.019
0.031 0.00128 0.748E-01 0.408 0.149E-01 0.685 -0.007 1.009
0.016 0.00064 0.574E-01 0.383 0.922E-02 0.689 -0.004 1.005

0.250 0.01024 0.182E+00 - 0.572E-01 - -0.040 1.045
0.125 0.00512 0.126E+00 0.535 0.314E-01 0.864 -0.018 1.019
0.062 0.00256 0.942E-01 0.415 0.171E-01 0.876 -0.013 1.016
0.031 0.00124 0.708E-01 0.412 0.102E-01 0.751 -0.007 1.006
0.016 0.00064 0.550E-01 0.362 0.619E-02 0.717 -0.003 1.004

0.250 0.01024 0.170E+00 - 0.625E-01 - 0.000 0.995
0.125 0.00512 0.151E+00 0.170 0.488E-01 0.358 0.000 1.000
0.062 0.00256 0.124E+00 0.293 0.401E-01 0.281 0.000 1.000
0.031 0.00128 0.102E+00 0.275 0.311E-01 0.369 0.000 1.000
0.016 0.00064 0.854E-01 0.258 0.229E-01 0.442 0.000 1.000

Table 1: Case αini = 1 with θ = 1. L2(Ω× (0, T )) and L1(Ω× (0, T )) discrete errors. Results for CVFE method
(top array), VAG scheme (middle array) and upstream scheme (bottom array).

4.3 Case αini = 0.5

We now turn to the case where αini = 0.5. In this case, ū(x, t) ∈ {0, 0.5}, for any t ∈ [0, 0.5] and a.e. x ∈ Ω,
and is again such that ζ(ū(x, t)) = 0 for a.e. (x, t) ∈ Ω× (0, T ) (the property ū(x, t) /∈ (0, 1) is no longer true,
and we do no longer expect strong convergence properties for ΠDu). Therefore the solution ū to Problem (6)
is also the solution of (35) with the same initial and boundary conditions as the problem studied in this paper,
and it is given by ū(x, 0.5) = 0.5 for a.e. x ∈ (0.6, 0.9)× (0.6, 0.9), and is equal to 0 elsewhere. As mentioned in
the introduction of this paper, although the numerical results show oscillations, the weak convergence for ΠDu
holds for any value θ ∈ R. We compare in Figure 4 the numerical solution obtained at T = 0.5 with the CVFE
and VAG schemes on the finest mesh. We observe that the height of the oscillations is decreasing with respect
to θ, and that high values for θ stabilise the oscillations, but introduce some numerical diffusion. The solution
obtained with the VAG scheme and θ = 1.5 appears to be quite good.

4.4 The θ-scheme: another way to introduce numerical diffusion

In numerical codes such as the one used in [4], the upstream weighting scheme is used for the energy equation,
leading to the addition of numerical diffusion in order to stabilise the convection terms. Let us show how the
parameter θ can play a similar role (as we noticed in the numerical Section 4.3), by using an analogy with
continuous equations.
We assume here that ~v is a constant vector and we consider formally the transport equation, in which ū(t) is
replaced by ū(t+ θδt) in the convection term:

∂tū(x, t) + div(ū(x, t+ θδt)~v) = ∂tū(x, t) + ~v · ∇ū(x, t+ θδt) = 0, in Ω× (0, T ). (36)

We use the following approximation

ū(x, t+ θδt) ' ū(x, t) + θδt∂tū(x, t) = ū(x, t)− θδt~v · ∇ū(x, t+ θδt).

We then have, reporting this value in (36) and setting ε = θδt|~v| (which is homogeneous with a length),

∂tū(x, t) + ~v · ∇ū(x, t)− ε div(D∇ū(x, t+ θδt)) = 0,
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Figure 4: Case αini = 0.5, solutions at T = 0.5. Results obtained on the finest grid. Left: CVFE scheme. Right:
same for the VAG scheme (cell center values). Top: colour blue is associated to the value 0, whereas colour red
corresponds to 0.5, CVFE for θ = 4 and VAG for θ = 1.5. Bottom: comparison of profiles along the diagonal,
cross red for θ = 0, square black for θ = 1 and circle green for θ = 4 (CVFE) or θ = 1.5 (VAG).

with

D =
1

|~v|
~v ⊗ ~v.

This equation shows a transport equation, with an anisotropic diffusion term which applies in the direction of
the velocity, as does an upstream weighting scheme.

5 Conclusion

The mathematical study of the approximation of a linear convection – degenerate diffusion problem by a centered
θ-scheme for the convection term shows the following features:

1. The strong convergence of the scheme is observed in the case where the continuous solution is such that
the measure of the mushy region is equal to 0.

2. A weak convergence always holds for any value of θ, due to the degenerate diffusion term, which is strongly
different with the properties of a centred finite volume scheme without (degenerate) diffusion.

3. The centred scheme happens to be much more precise than upstream schemes in some situations.

4. The parameter θ can be numerically used for stabilising the centred scheme as an artificial viscosity.

These results show that a track which remains to be studied is the use of such a θ-centred scheme in practical
applications (such as the ones handled in [4]), with the goal to tune the diffusion in such a way that the precision
is sufficiently respected.
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A Discrete Gronwall’s lemma

Although there exist numerous papers providing discrete formulations of Gronwall’s inequality [15], let us
provide the statement of the precise inequality that we use in this paper, as well as its very short proof.

Lemma A.1 (Discrete Gronwall’s lemma). Let N ∈ N? be given, let B, (an)n=1,...,N and (bn)n=1,...,N be
non-negative reals such that

∀m ∈ {1, . . . , N}, am ≤
m−1∑
n=1

bnan +B,

with the convention that an empty sum is equal to zero. Then there holds

∀m ∈ {1, . . . , N}, am ≤ B exp

(
m−1∑
n=1

bn

)
.

Proof. We define vm =
∑m−1
n=1 bnan, and we prove by induction that vm ≤ B exp

(∑m−1
n=1 bn

)
− B. Since we

have

vm+1 − vm = bmam ≤ bm(vm +B) ≤ bmB exp

(
m−1∑
n=1

bn

)
,

by applying the hypothesis of the lemma (first inequality) and the induction hypothesis (second inequality), we
get, using again the induction hypothesis,

vm+1 ≤ B(1 + bm) exp

(
m−1∑
n=1

bn

)
−B ≤ B exp(bm) exp

(
m−1∑
n=1

bn

)
−B,

hence proving the induction hypothesis for m+ 1.

B Gradient discretisations and time translates

The next two results are used in the proof of estimate of time translates

Lemma B.1. Let (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation. Let δtD =

maxn=0,...,N−1 δt
(n+ 1

2 ). Let (u(n))n=0,...,N and (v(n))n=0,...,N be two sequences of elements of XD,0. Then there
holds∫ T−τ

0

∫
Ω

Π
(1)
D (v(x, t+ τ)− v(x, t)) Π

(1)
D (u(x, t+ τ)− u(x, t))dxdt

≤ 2
√
τ(τ + δtD) |δDv|L2(0,T ;?,D) ‖∇

(1)
D u‖L2(0,T ;L2(Ω)d). (37)

Proof. Let us define

A(t) =

∫
Ω

Π
(1)
D (u(x, t+ τ)− u(x, t))Π

(1)
D (v(x, t+ τ)− v(x, t))dx.

Let t ∈ (0, T − τ). Denoting n0(t), n1(t) = 0, . . . , N − 1 such that t(n0(t)) ≤ t < t(n0(t)+1) and t(n1(t)) ≤ t+ τ <
t(n1(t)+1), we may write

A(t) =

∫
Ω

(
ΠDu

(n1(t)+1)(x)−ΠDu
(n0(t)+1)(x)

)( n1(t)∑
n=n0(t)+1

δt(n+ 1
2 )δ

(n+ 1
2 )

D v(x)
)

dx,

which also reads
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A(t) =

∫
Ω

(
ΠDu

(n1(t)+1)(x)−ΠDu
(n0(t)+1)(x)

)(N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )δ

(n+ 1
2 )

D v(x)
)

dx,

with χn(t, t+ τ) = 1 if t(n) ∈ (t, t+ τ ] and χn(t, t+ τ) = 0 if t(n) /∈ (t, t+ τ ].
This leads to

A(t) ≤
(
‖∇Du(n1(t)+1)‖L2(Ω)d + ‖∇Du(n0(t)+1)‖L2(Ω)d

)
×
(N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )|δ(n+ 1

2 )

D v|?,D
)
.

Using the inequality ab ≤ 1
2 (αa2 + 1

αb
2) for some α > 0 chosen later, this yields:

A(t) ≤ α

2
(A0(t) +A1(t)) +

1

α
A2(t). (38)

with

A0(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )‖∇Du(n0(t)+1)‖2L2(Ω)d ,

A1(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )‖∇Du(n1(t)+1)‖2L2(Ω)d ,

and

A2(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )|δ(n+ 1

2 )

D v|2?,D.

Applying (42) in lemma B.2 yields

∫ T−τ

0

A0(t)dt ≤ (τ + δtD)‖∇(1)
D u‖2L2(0,T ;L2(Ω)d) and

∫ T−τ

0

A1(t)dt ≤ (τ + δtD)‖∇(1)
D u‖2L2(0,T ;L2(Ω)d), (39)

and applying (41) in lemma B.2 gives.∫ T−τ

0

A2(t)dt ≤ τ
∫ T

0

|δDv(t)|2?,Ddt = τ |δDv|2L2(0,T ;?,D), (40)

hence leading to (37), letting α =
√
τ/(τ + δtD)|δDv|L2(0,T ;?,D)/‖∇

(1)
D u‖L2(0,T ;L2(Ω)d).

The following lemma is used in the course of the proof of the preceding lemma.

Lemma B.2. Let (t(n))n∈Z be a stricly increasing sequence of real values such that δt(n+ 1
2 ) := t(n+1) − t(n) is

uniformly bounded by δt > 0, lim
n→−∞

t(n) = −∞ and lim
n→∞

t(n) =∞. For all t ∈ R, we denote by n(t) the element

n ∈ Z such that t ∈ [t(n), t(n+1)). Let (a(n))n∈Z be a family of non negative real values with a finite number of
non zero values. Then∫

R

n(t+τ)∑
n=n(t)+1

(δt(n+ 1
2 )a(n+1))dt = τ

∑
n∈Z

(δt(n+ 1
2 )a(n+1)), ∀τ ∈ (0,+∞), (41)

and ∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 an(t+ζ)+1dt ≤ (τ + δt)
∑
n∈Z

(δt(n+ 1
2 )a(n+1)), ∀τ ∈ (0,+∞), ∀ζ ∈ R. (42)
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Proof. Let us define the function χ(t, n, τ) by χ(t, n, τ) = 1 if t < t(n) and t+ τ ≥ t(n), else χ(t, n, τ) = 0. We
have ∫

R

n(t+τ)∑
n=n(t)+1

(δt(n+ 1
2 )a(n+1))dt =

∫
R

∑
n∈Z

(δt(n+ 1
2 )a(n+1)χ(t, n, τ))dt

=
∑
n∈Z

(
δt(n+ 1

2 )a(n+1)

∫
R
χ(t, n, τ)dt

)
.

Since
∫
R χ(t, n, τ)dt =

∫ t(n)

t(n)−τ dt = τ , thus (41) is proven.
We now turn to the proof of (42). We define the function χ̃(n, t) by χ̃(n, t) = 1 if n(t) = n, else χ̃(n, t) = 0. We
have ∫

R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 a(n(t+ζ)+1)dt =

∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

∑
m∈Z

a(m+1)χ̃(m, t+ ζ)dt,

which yields

∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 a(n(t+ζ)+1)dt =
∑
m∈Z

a(m+1)

∫ tm+1−ζ

tm−ζ

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 dt. (43)

Since we have
n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 ) =

∑
n∈Z, t<t(n)≤t+τ

(t(n+1) − t(n)) ≤ τ + δt,

we can write from (43)

∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 a(n(t+ζ)+1)dt ≤ (τ + δt)
∑
m∈Z

a(m+1)

∫ t(m+1)−ζ

t(m)−ζ
dt

= (τ + δt)
∑
m∈Z

a(m+1)δt(m+ 1
2 ),

which is exactly (42).
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