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Abstract 

From the new infrared (IR) reflectivity and time-domain terahertz (THz) spectra combined with 

available high-frequency dielectric data above the MHz range in a broad temperature range of 10-

900 K, a full picture of the soft and central mode behavior in the classical relaxor ferroelectric 

Pb(Mg1/3Nb2/3)O3 (PMN) is suggested. A detailed comparison is given with the recent hyper-

Raman spectroscopy data (Hehlen et al. Phys. Rev. Lett. 117, 155501 (2016)), and also with other 

available experiments based on inelastic light and neutron scattering. It is revealed that each type 

of experiment provides slightly different data. The closest agreement is with the hyper-Raman 

data, both techniques yield the same number of soft-mode components and the same high-

temperature softening towards the temperature T* ≈ 400 K. In addition to evaluation of the IR-

THz data using fitting with standard factorized form of the dielectric function, we performed a 

successful fitting of the same data using the effective medium approach (EMA), originally based 

on the assumption that the mesoscopic structure of PMN consists of randomly oriented uniaxially 

anisotropic polar nanodomains (PNDs) with somewhat harder TO polar modes in the direction 

along the local PND dipole (Phys. Rev. Lett. 96, 027601 (2006)). Evaluation using the 

Bruggeman EMA modelling has been successfully applied in the entire investigated temperature 

range. These results suggest that the response perpendicular to the local dipole moment, at high 

temperatures induced by random fields rather than PNDs, undergoes a classical softening from 

high temperatures with permittivity obeying the Curie-Weiss law, ε = C/(T-TC), C = 1.7 x 10
5
 K 

and TC = 380 K, whereas the response parallel to it shows no softening. Below the Burns 

temperature ~620 K, a GHz relaxation ascribed to flipping of the PNDs emerges from the soft 

mode response, slows down and broadens, remaining quite strong towards the cryogenic 

temperatures, where it can be assigned to fluctuations of the PND boundaries. 

 

I. INTRODUCTION 

 In ideal displacive proper ferroelectrics, IR active soft phonon mode (SM) induces the 

ferroelectric phase transition and its temperature-dependent dielectric strength fully accounts for 

the Curie-Weiss dielectric anomaly near the phase transition temperature TC. Most of displacive 

ferroelectrics, however, exhibit only partial phonon softening towards TC and close to TC an 

additional soft overdamped excitation appears below the SM response, called central mode (CM), 

which can have comparable or even higher dielectric strength (contribution to static permittivity) 

than the SM [1]. The SM (and CM) behavior of relaxor ferroelectrics and particularly of the 
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classical perovskite relaxor Pb(Mg1/3Nb2/3)O3 (PMN) represents a non-trivial task for lattice 

dynamics studies already for about 20 years, as it has become clear that, unlike in displacive 

ferroelectrics, their dielectric strengths cannot explain the large dielectric anomaly, dispersive 

down to very low frequencies [1]. Moreover, the significance and physical relevance of the SM 

behavior in relaxors is not so evident, since it is not connected with any macroscopic phase 

transition. Therefore the softening of the SM is not expected to be complete (it may be connected 

with some local phase transition) and the concept of CM is not quite well defined, because the 

lower-frequency dielectric relaxations, which are generally ascribed to appearance of dynamic 

polar nanoregions or nanodomains, are usually treated separately from the CM and SM response. 

Suitable techniques for the SM and CM studies are inelastic neutron scattering (INS), inelastic 

light scattering as Raman, Brillouin and hyper-Raman spectroscopy (HRS), and Fourier-

transform infrared (IR), time-domain terahertz (THz) and microwave spectroscopy, which offer 

the high-frequency dielectric response above ~MHz, in combination with the standard low-

frequency capacitance spectroscopy, many times published as most recently reviewed by Bokov 

and Ye [2]. The rich INS studies before 2011 have been thoroughly reviewed by Cowley et al. [3] 

and here we will compare only the recent and for SM and CM spectroscopy relevant INS results 

[3-9], Raman [10-13], Brillouin [14] and HRS [15-17] studies with the dielectric response from 

the 10
6
 to10

13
 Hz presented and analyzed here. Particularly, a detailed comparison of the HRS 

results with those of IR-THz spectroscopy is of interest, because the selection rules for HRS and 

IR are similar [15] – the SM should be active (unlike in Raman) even for the average simple 

cubic perovskite structure of PMN, space group 𝑃𝑚3̅𝑚 with one formula unit per unit cell 

(Z = 1).  

 The main difficulty with the SM studies in PMN is that, on cooling from high 

temperatures, the low-frequency SM becomes overdamped in the most interesting temperature 

range between the Burns temperature TB ≈ 620 K and the temperature T* ≈ 400 K [17]. 

Typically, it is assumed that either the dynamic polar nanoregions, embedded into the paraelectric 

matrix, or the dynamic polar nanodomains (PNDs), separated by more or less sharp domain 

boundaries from the neighbouring PND’s, are formed at TB while below the temperature T* they 

begin to freeze. The difference between the polar nanoregions within a paraelectric matrix and 

the PNDs, occupying the whole volume, was discussed in Ref. [18]. Even if the preferred picture 

is not yet commonly accepted, here we will prefer the picture of PNDs, which better corresponds 

to our results. Namely, in this case below TB, the complete dielectric response consists only of the 

contributions of PNDs (their bulk and boundaries) and the response of the paraelectric matrix can 

be neglected. Below the complete freezing temperature Tf ≈ 200-220 K, where the relatively 

stable ferroelectric phase (still consisting of static PNDs) can be induced by an external electric 

field, the SM response becomes underdamped, but splits into at least two components [3,17]. In 

inelastic neutron and light scattering experiments, the overdamped SM appears as a central peak 

(i.e. CM), whose half-width represents the characteristic frequency (corresponding to the 

frequency of the dielectric loss peak in the dielectric response), which is, however, hard to 

determine accurately, since it is usually overlapped with the elastic central peak (Bragg, 

Rayleigh). This problem is avoided in the dielectric response, where the loss peak of the CM has 

always a finite frequency, but the typical frequency range of this peak (10
11

 – 10
12

 Hz or 3 – 30 

cm
-1

), appearing frequently close but below the standard THz range, is rather hardly accessible.  

 The first temperature-dependent SM studies of PMN using IR and THz spectroscopy were 

performed by Bovtun et al. [19], who joined together these data with the lower-frequency 

dielectric data and assigned them in accordance with the general scheme of the dielectric spectra 

in relaxors published somewhat earlier [20]. In this scheme the CM appears below TB where it 



3 
 

starts to separate from the SM response in the 10
11

 Hz range, slows down as a relaxation to very 

low (~mHz) frequencies at the temperature of low-frequency permittivity maximum (~240 K), 

and is assigned to the dynamics of PNDs. The data on SM and CM in PMN were already 

reviewed and compared with other relaxors and ferroelectrics in Ref. [1]. However, here we will 

use the concept of CM in PMN rather in a more restricted sense, as the overdamped component 

of the SM response, if the response consists of more than one component. The GHz and lower-

frequency dispersion caused by PND dynamics will be called relaxational dispersion. At the same 

time, the available IR-THz, Raman and INS data were also compared with the first-principles 

lattice dynamics calculations of variously ordered PMN supercells using the frozen phonon 

method by Prosandeev et al. [21]. Due to the high absorption in the THz range, the time-domain 

THz transmission data on PMN crystal plate samples were obtained only below ~160 K. To 

broaden the temperature range up to ~900 K, Kamba et al. [22] studied the IR transmission of a 

PMN thin film (prepared by chemical solution deposition on a sapphire substrate, thickness ~500 

nm), from which they could evaluate the SM and CM response, which at low temperatures agreed 

with the single crystal response. The data on the whole available dielectric response of the PMN 

single crystals, ceramics and thin films were summarized by Bovtun et al. [23], concluding that 

concerning the SM response there was no substantial difference among the types of the sample.  

 The IR-THz reflectivity spectra of PMN revealed more complex features than expected 

from the simple cubic structure, for which only three F1u IR active transverse optical (TO) 

phonon modes are expected (see [24] for a detailed review and analysis of the IR spectra of 

ferroelectric and relaxor ferroelectric perovskites). Therefore Hlinka et al. [25] suggested that the 

PNDs show locally an anisotropic dielectric response, differing for the electric field E parallel 

and perpendicular to the local polarization Pl of PNDs, which splits the effective phonon 

response. To model such spectra, an effective medium approximation (EMA) was used with a 

Bruggeman model, mixing statistically the EPl (1/3 volume fraction) and EPl response (2/3 

volume fraction) and a very good fit was obtained for the 300 K IR reflectivity spectra. This 

approach could explain the two-mode behavior, i.e. splitting of all the three F1u phonons below 

TB into the E and A1 symmetry modes.  

 However, recent INS as well as inelastic light scattering and IR data have revealed two 

modes in the SM range even above TB. By comparison of the HRS with the Raman data [13] it 

was suggested that the second component of the SM near 45 cm
-1

 in the HRS data [17] is the F2g 

mode activated in the Raman spectra due to the local doubling of the unit cell caused by the local 

one-to-one B-site ordering in the ABO3 perovskite structure (small chemical clusters of the 

𝐹𝑚3̅𝑚, Z = 2 structure). This mode was weakly seen in the low-temperature IR spectra, in 

addition to the SM doublet [22,23], and it was clearly detected in the whole temperature range 30 

– 900 K also in the HRS experiment [17]. Since the selection rules concerning SM for the HRS 

and IR are expected to be the same [15] and the corresponding spectra look qualitatively similar, 

it is of interest to compare both responses in the whole temperature range more quantitatively. 

For that in this work we have complemented our previous IR data by new THz measurements 

with a thin plate of dense PMN ceramics (described in [26]) and carried out the IR reflectivity 

measurements on single crystals, both up to 900 K. These data were analyzed together with our 

earlier data in the lower-frequency range [19,20,23] and compared with the HRS data [17]. 

II. EXPERIMENT AND EVALUATION 

 To cover the 0.2 – 21 THz frequency range (~6 - 700 cm
-1

 wavenumber range) we have 

used two techniques: time-domain THz transmission (0.2 – 1 THz) and IR reflectivity (1 – 21 
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THz) spectroscopy. The time-domain THz transmission spectrometer is based on a Ti:sapphire 

femtosecond laser source [27]. The THz pulses were generated by an interdigitated 

photoconducting GaAs switch. Electro-optic sampling with a plate of (110) ZnTe crystal was 

used to detect the transmitted THz pulses. IR reflectivity spectra were obtained using the Fourier-

transform IR spectrometer Bruker IFS 113v with deuterated triglycine sulfate pyroelectric 

detector. We used an Optistat continuous He-flow cryostat with mylar windows for the low-

temperature THz measurements and commercial high-temperature cell SPECAC P/N 5850 for 

the high-temperature range in both experiments. THz measurements were performed on the dense 

polished plane-parallel ceramic plate (with a small porosity of 4.3%) [26], thickness 43 μm, and 

the high-temperature IR reflectivity spectra were obtained on the polished thick PMN crystal 

used in Ref. [21]. Low-temperature IR reflectivity data were taken from the previous experiment 

on the PMN crystal [19,21]. The experimental data performed here in the 0.2 – 30 THz frequency 

range were compared with the data on ceramics and crystals from our earlier measurements 

[19,21,22]. We found that all the data are well compatible. From the combined earlier and new 

experimental data we have chosen data for simultaneous fitting the IR reflectivity and THz 

complex dielectric spectra in a broad temperature range 10–900 K. The fitting was performed 

using the standard factorized formula of the generalized multi-oscillator dielectric function [1]: 

                                           𝜀(𝜔) = 𝜀∞ ∏
𝜔𝐿𝑂𝑗

2 − 𝜔2 + 𝑖𝜔𝛾𝐿𝑂𝑗

𝜔𝑇𝑂𝑗
2 − 𝜔2 + 𝑖𝜔𝛾𝑇𝑂𝑗

𝑗

                                                           (1)  

related to the normal reflectivity by 

                                                             𝑅(𝜔) = |
√𝜀(𝜔) − 1

√𝜀(𝜔) + 1
|

2

                                                                    (2) 

where ε∞ is the high-frequency permittivity resulting from the electronic absorption processes 

much above the polar phonons,  is the linear frequency or wavenumber, ωTOj and γTOj is the 

transverse optic (TO) frequency and damping parameter of the j-th oscillator, respectively, and 

ωLOj and γLOj is its respective longitudinal optic (LO) frequency and damping parameter. In 

formula (1) each generalized oscillator is characterized by 4 parameters compared with the 

classical damped oscillator formula with 3 parameters. 

 Experimental details concerning the complex dielectric spectra of PMN crystals between 

3 mHz and 75 GHz were published earlier [19,20,28-30] and the data were joined together in Ref. 

[23]. Here we have joined them with our THz data and fitted the data above ~1 MHz 

independently of the previous IR fits with a sum of Cole-Cole relaxations plus one damped 

harmonic THz oscillator in the 100–500 K temperature range, where the data above 1 MHz are 

available:  

                         𝜀(𝜔) = 𝜀𝑝ℎ + ∑
∆𝜀𝑗

1 + (𝑖𝜔
𝜔𝑅𝑗

⁄ )
1−𝛼𝑗

𝑗

  +     
∆𝜀𝐻𝑂𝜔𝐻𝑂

2

𝜔𝐻𝑂
2 − 𝜔2 + 𝑖𝜔𝛾𝐻𝑂

                         (3) 
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where 𝜀𝑝ℎ is the high-frequency contribution to the dielectric function obtained from the fits to IR 

reflectivity above ~50 cm
-1

, ∆𝜀𝑗 is the dielectric strength of the j-th Cole-Cole relaxation, Rj is 

the mean relaxation frequency of the j-th relaxation and 0 ≤ 𝛼𝑗 ≤ 1 describes the degree of 

broadening of the j-th Cole-Cole relaxation in the loss spectra (𝛼𝑗 = 0 corresponds to the Debye 

relaxation, 𝛼𝑗 → 1  describes the frequency-independent loss spectra, i.e. infinitely broad uniform 

distribution of Debye relaxations),  ∆𝜀𝐻𝑂, 𝜔𝐻𝑂 and 𝛾𝐻𝑂 is the dielectric strength, linear frequency 

and damping of the THz oscillator, respectively. 

 It is not possible to fit the whole spectra together including the IR range with a single 

model formula, because the relaxations yield unphysically high losses in the high-frequency 

range (far above the loss peaks) and do not fulfil the sum rule, see e.g. [31]. Therefore the fits 

with relaxations can be used at most up to the THz frequency range. 

III. IR-THz DATA - RESULTS 

 In Fig. 1 we plot the IR reflectivity spectra of PMN in the whole measured temperature 

range 10–900 K together with the calculated low-frequency part from the THz transmission data 

and fits using Eqs. 1 and 2 with up to 11 TO and LO oscillators. Below 300 K we have the 

measured data only below 650 cm
-1

, limited by the transparency spectral range of the 

polyethylene windows of the cryostat, and the ε∞ parameter was taken as temperature 

independent (model (i)).  
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FIG. 1. Measured unpolarized IR reflectivities (squares) of the PMN crystal together with the 

calculated THz data (circles) and the factorized formula fits using the Eqs. 1 and 2 (full lines) in 

the 10–900 K range (model (i)). The fitted reflectivities agree with the data within the limits of 

experimental accuracy. 

The real permittivity spectra calculated from the fits (together with the THz data) are plotted in 

the log-wavenumber scale in Fig. 2.  
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FIG. 2. Permittivity spectra (full lines) calculated from the reflectivity fits shown in Fig. 1 (model 

(i)) and the THz data (symbols). Note the log-wavenumber scale. 

Instead of the usually presented dielectric loss spectra εʺ(ω), in Fig. 3 we prefer to show the real 

optical conductivity data σ’ (ω) in the linear wavenumber scale, related by ).(''2)( 0    

The conductivity spectra have the advantage of fulfilling the well-known oscillator-strength sum 

rule, which relates the integral over the conductivity spectra to the total electric volume-unit 

charge which takes part in all the dynamic motion of ions and electrons in the material under 

question. In the case of one type of charges e with concentration N and mass m it sounds [32] 

∫ 𝜎′(𝜔)𝑑𝜔 =
𝜋

2

𝑁𝑒2

𝑚
                                                                      (4)

∞

0

 

It is expected to be essentially independent of temperature even if the system undergoes some 

phase transitions. Another advantage of the conductivity spectra is that, for a classical damped 

oscillator response, the conductivity maximum corresponds to the oscillator frequency ωHO for 

any damping, including overdamped oscillators (γHO > 2ωHO) [16]. It differs from the maximum 

of the oscillator response in the loss spectra εʺ(ω), which for low damping corresponds 

approximately to the same frequency, but for high damping its frequency decreases below ωHO, 

and for overdamped oscillators it approaches the frequency ωHO
2
/γHO.  
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FIG. 3. IR conductivity spectra (full lines) calculated from the fits in Fig. 1 (model (i)), including 

the THz data (symbols). Each spectrum is shifted by 50 S cm
-1

 with respect to the previous one 

and the values on the left-hand y axis match the spectrum at 10 K, while on the right-hand y-axis 

the proper scale is adapted for all the spectra. Arrows mark the three SM features analyzed below 

(see Fig. 6). 

IV. COMPARISON WITH THE HYPER-RAMAN SCATTERING 

 The recent HRS data [17] present the most accurate spectroscopic data below ~100 cm
-1

 

in the broad temperature range 30 – 900 K and suggest a new assignment of the observed SM 

doublet and triplet above and below ~300 K, respectively. The authors [17] suggest that the mode 

lying near 45 cm
-1

, which is present at all temperatures and is only weakly temperature 

dependent, is the F2g Raman mode activated due to a local doubling of the unit cell (local B-site 

one-to-one ordering) [10,11,13]. According to this picture, above ~300 K the SM seen below 40 

cm
-1

 is only a singlet which appears to be bilinearly coupled with the F2g mode due to the B-site 

disorder, which relaxes the selection rules. Below ~300 K the SM splits into two components due 

to the uniaxial anisotropy of the PNDs (almost frozen), as already earlier suggested from the 

analysis of the IR reflectivity based on EMA [25], with the F2g mode remaining between the SM 

components as the third phonon mode below 100 cm
-1

.  

 Our IR-THz data reveal qualitatively the same picture. For fitting the range below 100 

cm
-1

 using Eqs. 1 and 2 (model (i)) we have quite independently used two TO modes at T ≥ 300 

K and three TO modes for T < 300 K. For a more quantitative comparison we have used another 
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fitting model of the IR data, which is directly comparable to the HRS data: the low-frequency 

part below 100 cm
-1

 was fitted with two (for T ≥ 400 K) or three (for T  300 K) additive 

classical damped harmonic oscillators and the remaining higher-frequency part of the spectra was 

additively fitted with the factorized form of generalized oscillators, Eq. 1, with the fitting 

parameters generally differing from those used in model (i):  

                    𝜀(𝜔) = ∑
∆𝜀𝑘𝜔𝑘

2

𝜔𝑘
2 − 𝜔2 + 𝑖𝜔𝛾𝑘

𝑘

  + 𝜀∞ ∏
𝜔𝐿𝑂𝑗

2 − 𝜔2 + 𝑖𝜔𝛾𝐿𝑂𝑗

𝜔𝑇𝑂𝑗
2 − 𝜔2 + 𝑖𝜔𝛾𝑇𝑂𝑗

𝑗

                                 (5) 

where the first right-hand sum was used for fitting the range below 100 cm
-1

 and all the 

parameters were introduced above in Eqs. 1 and 3. First we have fixed the same frequencies and 

dampings as used for fitting the HRS spectra and fitted only the oscillator strengths, which have 

no relation to the HRS mode strengths. However, the fits were not of good quality and are not 

shown. In the next step we have fitted all the parameters of the additive low-frequency oscillators 

(model (ii)) and in Figs. 4 and 5 we plot the low-frequency part below 150 cm
-1

 of the fitted 

reflectivity and of the complex dielectric response with the THz data and our fits from Figs. 1-3.  

 In Fig. 4 we show the spectra for T  300 K and in Fig. 5 for T ≥ 400 K, but one can see 

that the fits are still not quite perfect. In Fig. 6 we have plotted our low-frequency fitting 

parameters of the additive oscillators (frequencies and dampings, model (ii)) for all the 

temperatures and compared them with those from the HRS spectra fits [17].  
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FIG. 4. Low-frequency and low-temperature part of the IR fits using the three additive oscillator 

fits in the log-wavenumber scale (model (ii), see the text) – full lines, as compared with the THz 

data – symbols and the fits from Figs. 1-3 (model (i)) – dashed lines. The values on the left-hand 

y-axis match the spectrum at 10 K, while on the right y-axis the proper scale is adapted for all the 

spectra. 
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FIG. 5. Low-frequency and high-temperature part of the IR fits using the two additive oscillator 

fits in the log-wavenumber scale (model (ii)) – full lines, as compared with the THz data – full 

symbols, fits from Fig. 1 – dashed lines, and fits using imaginary coupling between the oscillators 

(model (iii) - see text) – open symbols. The values on the left-hand y-axis match the spectrum at 

400 K, while on the right-hand y-axis the proper scale is adapted for all the spectra. 
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FIG. 6. Temperature dependences of the parameters of the three lowest-frequency TO phonon 

modes (marked by the arrows in the bottom of Fig. 3). Full symbols stand for the parameters 

from model (ii) in Figs. 4 and 5, open symbols stand for those from the fits to HRS data [17] – 

open symbols. The mode plasma frequency Ω is related to the oscillator strength ∆𝜀𝐻𝑂𝜔𝐻𝑂
2  (Eq. 

3)  by Ω = (∆𝜀𝐻𝑂𝜔𝐻𝑂
2 )1/2

 [24]. 

 The inspection of HRS spectra indicates that there might be an important coupling 

between the F2g mode and SM [17], which prevents their crossing at high temperatures. 

Therefore in Fig. 5 we have also included imaginary coupling [33] into our latter two-mode IR 

fits at 400 – 900 K. We see that the fit quality using the coupled oscillator formula (model (iii)) is 

improved and is comparable to the fits with model (i). Since it is well-known that the same 

spectra may be obtained with real as well as imaginary coupling constants [33], we also 

recalculated the same spectra using the real coupling constants by obtaining the same fitted 

spectra. However, the bare mode frequencies from both types of couplings do not correspond to 

the temperature dependences suggested from the HRS [17] and do not indicate SM behavior of 

any of the bare modes. In fact, the effective softening of the lower-frequency dressed mode in the 

coupled–mode approach appears only due to a strong increase of the coupling constant, which is 

not physically appealing and does not correspond to the HRS picture. So, there are appreciable 

differences among the temperature dependences of the parameters in the IR and HRS spectra 

above 300 K, which show that the agreement between the HRS and IR spectra is not quite 

perfect, see the discussion below. At 300 K and below, both HRS and our THz-IR spectra reveal 
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three modes below ~100 cm
-1

. As seen from Fig. 4, the fits with model (ii)) are also not quite 

perfect, particularly at 300 K. Even a trial coupling of the two lower-frequency modes (not 

shown) has not improved the fits sufficiently.  

V. MODELLING WITH EFFECTIVE MEDIUM APPROXIMATION 

 As a further attempt of evaluation, we used an alternative method, fitting procedure based 

on the EMA modelling used in Ref. [25] at room temperature, assuming that the slowly 

fluctuating or frozen PNDs are dielectrically anisotropic with a random orientation of the local 

polarization Pl. Using this modelling, the higher-frequency (~45 cm
-1

) mode at T ≥ 300 K is 

assigned to the A1-component of the SM doublet rather than to the F2g mode. For fitting the 

spectra at T < 300 K we had to account for the weak third mode, not seen at 300 K in [25], 

assigned in Ref. [17] to the F2g mode. We first added this mode only to the A1-response (E  Pl), 

which is usually more active in the Raman response. However, for good fits below 300 K we had 

to add an extra mode near 70 cm
-1

 also to the E-response, which could be assigned to the second 

component of the weakly split F2g mode. For EMA modelling we have used two models with a 

threshold-limiting or weak percolation of the A1-response [26,31]: Bruggeman model used in [25] 

(at the percolation threshold) and Lichtenecker model with a small positive α exponent (weak 

percolation) [31]. Recently, we have successfully used similar models for modelling the IR 

reflectivity spectra of alumina ceramics with highly anisotropic grains using the knowledge of the 

sapphire single-crystal spectra [34]. The fitted reflectivities with Bruggeman-EMA modelling 

(model (iv)) are shown in Fig. 7, compared with the THz data and model (i) fits used in Figs. 1-3. 

The fit quality by using the Lichtenecker model (not shown here) is quite comparable to that by 

Bruggeman, only the small reflectivity features near 430 cm
-1

 due to so-called geometrical 

resonance [25] are better resolved in the Bruggeman model.  
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FIG. 7. IR reflectivity fits using the Bruggeman-EMA model (iv) in the whole temperature range 

– full lines, as compared with the THz data (circles) and IR reflectivity data (squares).  
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FIG. 8. Temperature dependences of the parameters from the Bruggeman-EMA fits (model (iv)) 

shown in Fig. 7. The mode frequencies are shown in the log-wavenumber scale for better 

distinguishing the SM behavior. Open symbols – A1 spectra, full symbols – E spectra. Modes 

below 100 cm
-1

 represent the Last mode (SM), modes between 200 and 400 cm
-1

 the Slater mode 

and modes above 500 cm
-1

 the Axe mode. 

 Temperature dependences of the fitting parameters in both the A1 and E spectra are shown 

in Fig. 8. In Figs. 9(a) and 9(b) we plot the temperature dependent complex dielectric spectra of 

the A1 (E  Pl) and E (E  Pl) symmetry, respectively. 
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FIG. 9. Complex dielectric spectra of (a) A1 (E  Pl) and (b) E (E  Pl) symmetry as evaluated 

from the fits in Figs. 7 and 8 (model (iv)) at selected temperatures (log-wavenumber scale).  

 In Fig. 10 we plot the temperature dependence of the static permittivity from our 

dielectric spectra of model (iv) (Fig. 9). It appears that the dielectric anisotropy is rather 

pronounced, the E-response ( Pl) being higher and particularly the softening and the dielectric 

maximum at 400 K appear only in the E-response. To illustrate better the pronounced SM 

anisotropy between the A1 and E response, in Fig. 11 we plot the conductivity spectra of the SM 

for both components for all the temperatures. One can see that the E-symmetry overdamped soft 

mode has the lowest frequency near 400 K, whereas the A1-symmetry SM exhibits only a rather 

shallow minimum near 600 K. 

 
FIG. 10. Temperature dependence of the static permittivity calculated from the model (iv). 

Circles and squares correspond to the E and A1 response, respectively. 
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FIG. 11. Temperature dependence of the conductivity spectra for the SM components of the A1 

(dashed) and E response (full lines) from model (iv). Each spectrum at the corresponding 

temperature is shifted by 200 S cm
-1

 with respect to the previous temperature and the values on 

the left-hand y-axis match the spectra at 10 K, while on the right y-axis the proper scale is 

adapted for all the spectra.  

VI. MICROWAVE AND HIGH-FREQUENCY DATA 

 In Fig. 12 we have collected our earlier dielectric data [19,23] and the new THz data 

between 10
6
 and 10

12
 Hz (MHz – THz) at several temperatures between 100 and 500 K and their 

fits using Eq. 3 with one or two Cole-Cole relaxations. The fits include also the lower-frequency 

E-component of the SM, fitted by a single (mostly overdamped) harmonic oscillator, called CM 

in our previous papers [19,22]. The resulting temperature dependences of the fitting parameters 

are plotted in Fig. 13 with a small constant 𝜀𝑝ℎ of ~15-30. From Fig. 12 it is seen that the fit 

quality, particularly at lower temperatures, is not very satisfactory. It appears that broader spectra 

with higher values of α for both Cole-Cole relaxations would give better fits, but their 

(unphysical) contribution to the THz range would spoil the fits in the CM region. Therefore here 

we prefer the realistic fits in the CM range of 10
11

-10
12

 Hz with a negligible influence of the 

lower-frequency relaxations. In Fig. 13 we also plotted the rough fits of the two relaxation 

frequencies using the Vogel-Fulcher dependence for the lower-frequency relaxation and 

Arrhenius dependence for the higher-frequency one, in agreement with the literature in the lower-

frequency relaxational range [2,20,23].  
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FIG. 12. Complex dielectric spectra of PMN above 1 MHz at selected temperatures in the 100–

500 K range and their fits using Eq. 3: (a) temperatures below 300 K, (b) temperatures above 

300 K. 
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FIG. 13. Temperature dependences of the fitting parameters from Fig. 12 using Eq. 3. 

Frequencies of the Cole-Cole relaxations are for ωRi, frequencies of the overdamped THz 

oscillator are given for 𝜔𝐻𝑂
2 /𝛾𝐻𝑂. Dashed and dash-dotted lines are Arrhenius (𝜔 =

𝜔0 𝑒𝑥𝑝(−𝐸/𝑇)) and Vogel-Fulcher (𝜔 = 𝜔0 𝑒𝑥𝑝[−𝑈/(𝑇 − 𝑇𝑉𝐹)]) fits of the temperature 

dependences of relaxation frequencies, respectively, with parameters shown in the figure. Only 

the temperature range  350 K, where both relaxations were resolved, was fitted. Full lines are 

guides for the eyes.  

VII. DISCUSSION 

 The good fits of the IR reflectivity in Fig. 1 using Eqs. 1 and 2 need 11 generalized 

oscillators, which is much more than expected for perovskites with a simple cubic structure, 

which have only 3 F1u IR active TO phonon modes. Nevertheless, the conductivity spectra in Fig. 

3 show three main (slightly split) peaks, which can be clearly assigned to the 3 F1u modes, which, 

on increasing frequency, have predominantly the eigenvectors of so-called Last, Slater and Axe 

mode [24]. The weak extra mode at ~430 cm
-1

 seen in Fig. 3 is known to be the geometrical 

resonance resulting from the EMA-based fits [25]. In Fig. 14 we plot the temperature 

dependences of the mode-plasma frequencies Ω𝑚 of these 4 modes calculated from our fits 

(models (i) and (iv)) according to the formula [24]  
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For our model (i), out of the 11 oscillators using Eq. 6, on increasing frequency the first 3 below 

100 cm
-1

 are involved into the Last mode, the next 5 modes between 150 and 400 cm
-1

 into the 

Slater mode, the mode at around 430 cm
-1

 is considered to be geometrical resonance (GR) [25] 

and the last two modes between 550 and 670 cm
-1

 are involved in the Axe mode. As expected 

[24], the strongest mode is predominantly of the Slater type and the weakest one, which 

corresponds to the SM, is of the Last type. The slight temperature dependence of the Last mode-

plasma frequency (particularly in Fig. 14 a, b) indicates some weak temperature dependence of 

the SM eigenvector. In Fig. 14 we show also the total mode-plasma frequency, calculated as  

Ω𝑡𝑜𝑡
2 = ∑ Ω𝑚

24
𝑚=1      (7) 

which is expected to be temperature independent if the coupling of polar phonons with the 

electronic excitations can be neglected or is temperature independent. One can see that this is 

well satisfied for our spectra, which gives a good credibility to our data. 

 
FIG. 14. Temperature dependence of the mode-plasma frequencies 𝛺𝑚 of the main modes and 

the total plasma-mode frequency (from (a) model (i) and (b, c) model (iv)). GR stays for the 

geometrical resonance. 

 Comparison of IR fits with HRS in the SM frequency range below ~100 cm
-1

 (Fig. 6) 

shows that the main differences appear at low temperatures. Even the EMA-based fitting (Fig. 8) 

does not reduce the difference between both types of experiments. The existence of the IR 

doublet in the 60-90 cm
-1

 range was in fact indicated also by the raw HRS data, but due to their 

overlapping it was fitted with one oscillator only. More striking is the absence of any IR mode 

near 45 cm
-1

, which is quite pronounced in HRS. One possible reason for the difference could be 

the different wavelength of the probing wave, which is in the order of 0.1-1 mm for the THz 

wave, but only 500 nm for the HRS wave, i.e. 3 orders of magnitude less. In the latter case of 

HRS, the size of sample nano-inhomogeneities (PNDs) might be not quite negligible compared to 

the wavelength. Moreover, HRS spectra may involve contributions of non-polar modes, therefore 

not active in IR spectra. Also, each spectroscopy probes different sample depth: a near surface 

layer in IR reflectivity (~ 1 µm), a thicker layer in the THz experiment (~40 µm), and in HRS the 

laser beam was focused relatively deep inside the bulk (~200 µm). Therefore any sample 

inhomogeneities in these scales below the sample surface, as observed in electric field by 

comparison of neutron and X-ray diffraction techniques [35], can also result in some differences 

between IR and HRS response. Finally, let us mention the difference between the studied 
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samples: single crystal in the case of HRS [17] and ceramics [26] in the case of our THz 

experiment. However, our new low-temperature THz data agree well with our earlier data on a 

single crystal [21]. 

 Let us now discuss the dielectric response below the THz range (Figs. 12 and 13). Even if 

the available high-frequency data are limited to the temperatures below 500 K, in agreement with 

the appearing deviations from the Curie-Weiss law [2,23,36], it can be accepted that the 

dispersion in this range emerges below the Burns temperature TB and can be connected with the 

appearance of dynamic PNDs, as suggested first time in Ref. [20]. On cooling from high 

temperatures, near T* the microwave dispersion appears to split into two parts which we fitted 

with two Cole-Cole relaxations which slow down and broaden on cooling. The dielectrically 

dominant is the lower-frequency relaxation which follows a fast slowing-down from the GHz 

range roughly according to the Vogel-Fulcher law with the freezing temperature Tf ≈ TVF ≈ 200 K 

(see also Ref. [2] and references therein). This relaxation accounts for the frequency-dependent 

temperature maximum of the permittivity and dielectric losses. But in addition to it, the higher-

frequency relaxation slows down and broadens from the 10 GHz range roughly according to the 

Arrhenius law, as also evaluated from the lower-frequency dispersion [2,37]. The higher-

frequency relaxation persists above the MHz range with decreasing strength down to the lowest 

temperatures. It seems to be natural that below Tf the losses can occur only due to fluctuations of 

the PND boundaries, so-called breathing of PNDs, since the Pl in the PND bulk is frozen. On the 

other hand, close but below TB, where the local polarization Pl of the PNDs grows on cooling 

from very small values, the dominant dynamics is due to the flipping of Pl, which must, however, 

slow down to zero near Tf. Therefore, to the first approximation, our two dispersion regions can 

be assigned to the breathing of PNDs and flipping of Pl, respectively. This assignment, suggested 

already in Ref. [20], seems to be qualitatively justified independently of the microscopic picture 

of PNDs, particularly of their shape, size and whether their boundaries are sharp or diffuse. 

However, we stress that our EMA-modelling approach assumes that the dielectrically appreciably 

anisotropic PNDs occupy (with sharp boundaries) the whole sample volume with random 

orientation of Pl, irrespectively of their size. On the other hand, concerning the relaxational 

dispersion of PNDs in relaxor perovskites, a mesoscopic theory based on the Landau approach 

close to the morphotropic phase boundary was suggested in Ref. [38], which explains well 

particularly the low-temperature response (T < Tf) of frequency-independent losses (within the 

limits of accessible frequency range) and their temperature dependence. The theory [38] is based 

on the assumption that the total dielectric response is due to a composite of frozen PNDs, which 

do not contribute to the relaxational response, and of dynamic dipoles at the PND boundaries, 

which can still flip between their possible orientations over some temperature independent 

statistical distribution of potential energy barriers.  

 High-frequency dynamics of PNDs in PMN was alternatively investigated using inelastic 

light scattering [14]. Below TB, Koreeda et al. [14] observed an increase of the reduced intensity 

of the quasi-elastically scattered light, which followed power-law dependence in a broad 

frequency range of 1-2000 GHz. The relevant exponent  (evaluated from a more restricted 

frequency range) decreased from 2 near TB to 1.33 at Tf and remained constant below Tf. Koreeda 

et al. [14] used percolation theory for disordered systems and explained it by the percolation of 

polar nanoregions below Tf. If we assume that the underlying physical mechanism of inelastic 

light scattering (i.e dynamics of PNDs) is the same as for dielectric losses, the reduced intensity 

of the scattered quasielastic light multiplied by frequency (see Fig. 3 in Ref. [14]) should be 

proportional to the AC conductivity spectra )(''2)( 0   . In Fig. 15 we plotted our ’(ω) 
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spectra for selected temperatures and it is seen that our exponent  evaluated from the range of 

~10
6
-10

11
 Hz decreases from ~1.6 at 500 K to ~1 below Tf. The value  = 1 (see all our data 

above the MHz range at 100 K) corresponds to frequency-independent loss ”(ω) generally 

appearing in relaxors below Tf (also known as the 1/f noise) [38], see Fig. 12(a). It can be 

obtained from a very broad (much broader than the experimentally probed frequency range) 

uniform distribution of Debye relaxation times, corresponding to Cole-Cole relaxation (Eq. 3) 

with α approaching 1 [39]. The maximum value  = 2 corresponds to low-frequency tails of the 

Debye relaxation (as well as damped/overdamped harmonic oscillator) for the Cole-Cole limit α 

= 0. In our high-frequency spectra below 1 GHz it appears near ~350 K, see Fig. 15 as well as 

Fig. 13. In the microwave range near 350 K we obtained  = 0.9. We see that our ’(ω) spectra 

do not follow any universal power-law dependence and correspond rather to our 

phenomenological fitting models. Apparently, the assumption that the absorption mechanisms 

determining ’(ω) are the same as those for the light scattering processes is not justified. 

Therefore we can conclude that our ’(ω) spectra differ from the inelastic light scattering spectra 

of Ref. [14] and do not support any percolation picture. 

 
FIG. 15. Frequency dependences of the AC conductivity of PMN at selected temperatures 

calculated from the dielectric loss spectra in Fig. 12. Symbols correspond to the experimental 

data, solid lines for 100 and 350 K correspond to the power-law fits of the high-frequency and 

microwave data, dash-dotted lines correspond to our fits using Eq. 3 at 250 and 350 K.  
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 Let us now discuss the SM behavior. From the dielectric as well as HRS experiment it 

appears that, on cooling from high temperatures, only the lower-frequency component of the SM 

(E-component in the EMA modelling) softens reaching the minimum effective loss-peak 

frequency of ~3 cm
-1

 (~10
11

 Hz) near T* ≈ 400 K contributing about 2000 to the effective static 

permittivity (see Fig. 13). Near this temperature the relaxational contribution (in the 10
10

 Hz 

range) has already comparable dielectric strengths and at lower temperatures it dominates in the 

dielectric spectra. This masks any anomaly or maximum in the low-frequency dielectric 

permittivity near T*. The fact that only the E-symmetry SM component is softening, which 

accounts for the response perpendicular to Pl, can be understood from softening of the multi-well 

potential for the anharmonic vibrations of the off-centered Pb ions, which essentially contribute 

to the SM eigenvector, mostly in this plane perpendicular to Pl.  

 Let us more discuss the softening of the E-response. It is clearly reasonable that the 

maximum in the corresponding permittivity 𝜀0⊥
′  (Fig. 10) is much higher than the maximum in 

the effective static response without relaxations (Fig. 13), since the A1-response does not show 

any anomaly. In Fig. 16 we plot the temperature dependence of the inverse permittivity 1/𝜀0⊥
′  

and compare it with the corresponding temperature dependent frequency of the E-SM response. 

One can see a nearly perfect agreement with the Curie-Weiss (C-W) law 𝜀0⊥
′ = C/(T-TC) with the 

C-W constant C = 1.7 x 10
5
 K and Curie temperature TC = 380 K.  

 
FIG. 16. Temperature dependence of the reciprocal static permittivity 1/𝜀0⊥

′  (full circles) from 

Fig. 10 fitted with the Curie-Weiss law 𝜀0⊥
′ = C/(T-TC) (C = 1.7 x 10

5
 K, TC = 380 K) (full line) 

and compared with the temperature dependence of the overdamped E-component of the SM 

characterized by 𝜔𝐸
2/𝛾𝐸 – full squares.  

 The local ferroelectric transition in PNDs, which concerns just the ε response 

perpendicular to Pl, appears to be of the second order within the limits of experimental accuracy 

and assuming justification of the Bruggeman EMA modelling. Also, the E-SM frequency 𝜔𝐸
2/𝛾𝐸 

(corresponding to the peak in 𝜀⊥
′′(ω)) is well proportional to 1/ε, as expected for a classical SM-

driven ferroelectric transition. The C-W parameters are in good agreement with C = 1.25 x 10
5
 K 

and TC = 398 K obtained from the high-temperature (up to 800 K) low-frequency (10
5
 Hz) 

permittivity fitting [36], where deviations from the C-W behavior appear below ~600 K. The 

latter slightly smaller C value is in agreement with our EMA approach, which assumes a weaker 

divergence of the effective response due to the mixing of the critical E-response with the non-

anomalous A1-response along Pl, and the deviations from the C-W behavior below ~600 K are 
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due to the appearance of relaxational dispersion caused by the dynamical PNDs, also in 

agreement with our results.  

Let us discuss our EMA-fitting results (model (iv) indicating that near T* the PMN 

possibly undergoes a local ferroelectric instability within the PNDs. For example, assuming that 

the PNDs have uniaxial polar symmetry with rhombohedral symmetry (as ferroelectric domains 

with space group R3m) and local polarization along (111) (c-axis of the rhombohedral phase) 

[40,41], above T*, the local symmetry of PND could be still lower below T*, either monoclinic 

(point group m) or just point group 1 (no symmetry element). It appears that the low-temperature 

structural data [40,41] do not exclude such a structure, but they indicate that the regions among 

the PNDs with inhomogeneous polarization could be quite broad, comparable to their diameter. 

This feature, of course, is not described by our model (iv).  

 In Fig. 17 we compare the temperature dependence of our SM frequencies with those 

obtained from different relevant experiments (HRS [17], Raman [3,13], INS [3,6,8,9]). We plot 

the oscillator frequency ω0 if the oscillator is underdamped with γ < ω0 and 𝜔0
2/𝛾 if γ > ω0, since 

in the latter case this quantity can be experimentally more accurately determined (as the CM 

halfwidth from the scattering experiments). In the case of Raman data [3,13], only the lowest 

phonon mode can be evaluated, since at higher frequencies the hard F2g mode is dominating. One 

can see that each type of experiment yields somewhat different data with different softening. Our 

data are in the best agreement with those from HRS, showing the same minimum SM frequency 

near T* ≈ 400 K. Particularly, the Raman data [3,13] yield the temperature of minimum SM 

frequency much lower, near 270 K. As seen from Fig. 17, the available INS data on SM do not 

reveal the T* temperature either and give no information about the E-symmetry SM component 

below T*.  

 

 
FIG. 17. SM frequencies from our THz-IR data (symbols) compared with other experiments: 

HRS [17], Raman [3,13], INS [3,6,8,9], where we have substituted the data points by some 

averaged lines with error bars indicating the data scattering. In cases of the lowest-frequency IR, 

HRS and Raman modes the oscillator frequencies 𝜔0 and 𝜔0
2/𝛾 are plotted for underdamped and 

overdamped modes, respectively. There the oscillators are mostly overdamped; underdamped 

modes are only at 10 K for the EMA-based fits, below 50 and above 800 K for the HRS data and 

below 200 and above 470 K for the Raman data [13]. All INS data are for the underdamped 

modes. 
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 It is now better understandable why the softening of the SM seen in other available 

experiments is not complete not showing features expected for a standard ferroelectric transition. 

For the effective response it might be understood as due to the mixing of the soft E with the hard 

A1-response. Since the size of PNDs is substantially smaller than the wavelengths of IR and 

optical probes, also these experiments can probe only an effective response based on EMA, 

averaged in a specific way over all orientations of the anisotropic PNDs. 

 Let us now comment on the assignment of the higher component of the SM doublet seen 

above room temperature. The present IR reflectivity and THz spectra confirm the findings of the 

HRS experiments [17] in the sense that both modes persists well above the Burns temperature. 

Moreover, the temperature dependence of the corresponding mode frequencies and, in particular, 

their plasma frequencies from model (ii) in Fig. 6(c) suggest the scenario of the avoided mode 

crossing and consequent mode eigenvector mixing, similar to that inferred from HRS [17], even 

if our coupled-mode fit failed. From that point of view, the interpretation in terms of a single, 

primary IR active SM, accidentally interacting with a weakly IR active hard mode represent the 

most appealing interpretation for both the IR and HRS data. 

 On the other hand, the present IR reflectivity and THz spectra were also fitted by the 

EMA model (iv) as in Ref. [25], and these fits turned out to be remarkably good in the entire 

temperature range. This model was based on the assumption that the lower and upper frequencies 

of the split polar bands correspond to the polarization fluctuations along and perpendicular to the 

Pl within the individual PNDs [25]. The results of this work, showing the clear signatures of the 

band splitting and the successful adjustment of the IR spectra to the EMA model even at 

temperatures well above the Burns temperature TB imply that the local anisotropy cannot be 

explained only by PNDs appearing only below TB. Indeed, most of the current theories (see Ref. 

[42] and references therein) assume that the PMN relaxor above TB should behave as a usual 

paraelectric material.  

 There are, however, at least two circumstances that may have similar influence on the 

vibrations of polar modes in the temperature range above TB as the PNDs would have. Firstly, the 

chemical disorder on the perovskite B-sites and off-centered positions of the Pb ions even above 

TB [41] that certainly act as sources of the random electric fields. Secondly, dynamics of the SM 

at high temperatures still remains largely dissipative and of rather low frequency, which might 

have a similar effect as PNDs to polar vibrations. Since the dynamics of SM is strongly 

temperature dependent, it seems that the former aspect could be a more natural explanation. In 

fact, it has been convincingly argued that the random fields are important ingredients of the 

relaxor behavior of PMN [42,43]. So, even though we do not have a clear understanding of the 

link between the random fields and the two-component SM response of PMN, which shows 

features of the avoided crossing with a weakly polar mode, we think that these observations 

constitute an important clue to disentangling the puzzle of the outstanding relaxor dynamics of 

the PMN crystal.  

VIII. CONCLUSIONS 

 Our evaluation of the THz-IR data of PMN in the broad temperature range has shown 

that, even if the expected three main modes (with Last, Slater and Axe eigenvectors according to 

the increasing frequency) dominate in the dielectric function, the detailed fitting requires up to 11 

generalized oscillators by using the factorized form of the dielectric function. An equally good fit 

can be achieved using Bruggeman EMA modelling with somewhat less fitting parameters, 

assuming that the PMN mesostructure consists of randomly oriented uniaxially anisotropic 
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regions with two local dielectric functions, whose axes are given by the local dipole moments of 

PNDs or, perhaps, by the local random electric fields at high temperatures above TB. The 

dielectric function perpendicular to the unique axis reveals a SM, which softens from high 

temperatures towards T* and the corresponding permittivity component follows a classical Curie-

Weiss law ε = C/(T-TC) with C = 1.7 x 10
5
 K and TC = 380 K. On the other hand, the dielectric 

response parallel to the unique axis reveals no appreciable softening from high temperatures, only 

some hardening on cooling below room temperature. It indicates a local ferroelectric transition 

near T*, which implies freezing of the local polarization perpendicular to the (111) direction and 

further lowering of the local symmetry of PNDs. 

 Detailed comparison with the most recent HRS data [17] shows only small quantitative 

differences in the SM parameters and their temperature behavior. Comparison with other 

published experiments characterizing the SM behavior in PMN (Raman, Brillouin, INS) indicates 

some differences among the data, which can be caused by the lengthscale of the mesoscopic 

disorder in the PMN structure and its relation to the wavelengths of the probes and by different 

selection rules for absorption and scattering processes. The THz-IR data at high temperatures 

allow the interpretation in terms of a single paraelectric SM having an accidental anticrossing 

with a weakly IR active or disorder induced hard mode near 45 cm
-1

. Nevertheless, the success of 

the EMA modelling has re-open the possibility that the higher-frequency SM component above 

room temperature belongs predominantly to the A1 component of the SM, at higher temperatures 

possibly related to the response along the direction of the local random electric field. We believe 

that these results will stimulate further clarification of the relation between the random electric 

fields, PNDs and the two-component SM response in this canonical relaxor material. 

 The relaxational response below the THz range due to the PND dynamics (flipping of Pl) 

emerges below the Burns temperature TB ≈ 620 K and on cooling dominates over the SM 

response so that no low-frequency permittivity anomaly is seen near T*. The dispersion splits into 

two parts in the frequency spectra and strongly broadens on cooling so that below the freezing 

temperature Tf ≈ 200 K only rather strong frequency-independent losses appear up to the GHz 

range. They are assigned to fluctuations of the PND boundaries (PND breathing) and remind a 

very similar behavior of the relaxor PLZT [38]. 
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