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We introduce and test an algorithm that adaptively estimates large deviation functions
characterizing the fluctuations of additive functionals of Markov processes in the long-time
limit. These functions play an important role for predicting the probability and pathways of
rare events in stochastic processes, as well as for understanding the physics of nonequilibrium
systems driven in steady states by external forces and reservoirs. The algorithm uses methods
from risk-sensitive and feedback control to estimate from a single trajectory a new process,
called the driven process, known to be efficient for importance sampling. Its advantages
compared to other simulation techniques, such as splitting or cloning, are discussed and
illustrated with simple equilibrium and nonequilibrium diffusion models.

I. INTRODUCTION

We consider in this paper the problem of estimating large deviation functions characterizing
the fluctuations of time-integrated functionals of Markov processes in the long-time limit. These
functions have a wide range of applications in engineering and physical sciences, where they are
used to predict the probability of rare events [1–3] and to understand how these events arise via
transition paths or modified processes [4–6]. Large deviation theory also underlies now much of the
research on nonequilibrium systems driven in steady states by non-conservative forces or boundary
reservoirs [7–9]. In this context, large deviation functions play the role of nonequilibrium potentials,
similar to the entropy or free energy, that characterize the steady state and fluctuations of physical
quantities, such as energy or particle currents exchanged with reservoirs, as well as the presence of
symmetries [10] and phase transitions in fluctuations [11–14].

Recently, many efforts have been devoted to developing numerical algorithms for estimating large
deviation functions that go beyond the direct sampling of probabilities, which require prohibitively
large samples. The most popular algorithms are variations of two basic approaches used in rare
event simulations, namely: 1) splitting [15–17] or cloning [18–20] algorithms, which use population
dynamics to estimate probabilities or generating functions that have a multiplicative structure in
time, and 2) importance sampling [21–23] (including transition path sampling [24]), which modifies
the process to be simulated, so as to transform rare events into typical events that can be simulated
efficiently. Deterministic methods not based a priori on sampling can also be used, including spatial
discretizations of various spectral and optimal control representations of large deviation functions,
which work well for low-dimensional systems, in addition to action minimization methods, which
can be applied in the low-noise or low-temperature limit [25–27].

In this paper, we propose an algorithm that combines spectral methods with importance sampling
to efficiently estimate large deviation functions in an adaptive way. The core of the algorithm
comes from recent works on learning algorithms for risk-sensitive control of Markov chains [28–31],
which we adapt to continuous-time diffusion processes and to the problem of estimating large
deviation functions. The algorithm works by estimating or learning “on the fly” a modified process,
called the auxiliary or driven process, which corresponds to the process that is asymptotically
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equivalent to the original process conditioned on the rare event of interest [6] or, alternatively,
to the exponential tilting of the original process, known to be efficient for importance sampling
[32]. This modified process is given by a principal eigenvalue problem related to the Feynman–Kac
equation or, equivalently, by a stochastic optimal control problem [32] that we solve iteratively
using stochastic approximation and feedback control methods.

The main advantage of this algorithm, compared to splitting or cloning, is that it does not require
the simulation of many copies of the process considered – it runs on one long trajectory of that
process, modified with a feedback-reinforcement rule, to adaptively learn the driven process, thereby
reducing significantly the complexity of estimating large deviation functions. The calculation of
error bars for the estimated quantities is also simplified compared to other techniques, as the
algorithm is based on simple time averages and stochastic approximations [33–35]. Finally, the
errors incurred by discretizing continuous-time processes and functionals can be analysed in a
precise way, in principle, via Feynman–Kac semi-groups [36].

We discuss these advantages and test the algorithm in Sec. IV with simple equilibrium and
nonequilibrium diffusions, after introducing the general model and notations in Sec. II and the
algorithm in Sec. III. The results at this point are preliminary and are presented as a proof of
concept of the algorithm. More detailed results about the time-discretization and sampling errors
will be addressed in future works, together with more complex applications involving interacting
particle systems and higher-dimensional diffusions.

II. FRAMEWORK

A. Model and notations

We consider an ergodic diffusion (Xt)t≥0 evolving in a state space X ⊂ Rd according to the
following stochastic differential equation (SDE):

dXt = b(Xt) dt+ σ dWt, (1)

where b : X → Rd is a smooth function, called the drift, Wt is an m-dimensional Brownian motion,
and σ is a d×m matrix, assumed to be constant for simplicity.1 The generator of this diffusion
reads

L = b · ∇+
1

2
∇ ·D∇, (2)

where · denotes the scalar product and D = σσT, with T as the transpose, is the diffusion matrix,
assumed to be positive definite. This is the generator of the evolution semi-group PT , defined by

PTϕ(x) = E [ϕ(XT ) |X0 = x] , (3)

for all time T ≥ 0 and any smooth test function ϕ. The dual L† of L in the space L2(dx) of square-
integrable functions with respect to the Lebesgue measure is the generator of the Fokker-Planck
equation

∂tρ(x, t) = L†ρ(x, t), (4)

which gives the evolution of the probability density ρ(·, t) of Xt starting from some initial density
ρ(·, 0) for X0.

1 See [6] for a treatment of diffusions with multiplicative noise.
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Our goal here is to study the fluctuations of time-integrated functionals of Xt, called observables,
having the general form

AT =
1

T

∫ T

0
f(Xt) dt+

1

T

∫ T

0
g(Xt) ◦ dXt, (5)

where f : X → R and g : X → Rd are reasonably smooth functions (e.g. continuous) and ◦ denotes
the Stratonovich product [37]. Such a functional defined over the time horizon [0, T ] can represent,
for example, a control cost associated with the state Xt and its increments [38] or a physical
quantity integrated in time, such as the work performed on a particle by external forces or the heat
exchanged by a particle with its environment [39].

Assuming that the process is ergodic with respect to an invariant measure µ(dx) = ρ∗(x) dx
with smooth density ρ∗, we have

AT
T→∞−−−−→

∫
X
f(x)ρ∗(x) dx+

∫
X
g(x) · J∗(x) dx = a∗, (6)

almost surely, where

J∗(x) = b(x)ρ∗(x)− D

2
∇ρ∗(x) (7)

is the stationary current field associated with ρ∗ [32]. The theory of large deviations [2] refines this
ergodic theorem, generalized here with the additional g term, by providing estimates for the rate at
which the probability distribution of AT concentrates on its ergodic value a∗. Such estimates can
be derived under general conditions (see [2]) and take, in the simplest case, the form

lim
T→∞

− 1

T
logP(AT ∈ B) = min

a∈B
I(a), (8)

for any Borel subset B of R, where I : R→ R+ is a positive function such that I(a∗) = 0. When
this limit exists, AT is said to satisfy the large deviation principle (LDP) with rate function I.
Formally, this means that

P(AT ∈ da) = e−TI(a)+o(T )da, (9)

where o(T ) denotes corrections in the exponential that grow slower than linearly in T . Thus, we
see that the rate function provides useful information about the fluctuations of AT : the likelihood
that AT = a decays exponentially with time for all a 6= a∗, since I(a) > 0 in this case, and
converges otherwise to 1 as T →∞, since I(a∗) = 0. Moreover, the rate function is in general not
a parabola, meaning that it describes fluctuations that are generally not Gaussian. In this sense,
large deviation theory is often seen as an extension of both the ergodic theorem, which describes
the concentration of AT towards its mean, and the central limit theorem, which describes the local
Gaussian fluctuations of AT around its mean [2].

B. Large deviation functions and driven process

In practice, the rate function I(a) can be calculated in many different ways other than by direct
sampling, which requires exponentially large samples with T [21]. The most common method
proceeds from the scaled cumulant generating function (SCGF), defined for k ∈ R by

λ(k) = lim
T→∞

1

T
logE

[
ekTAT

]
. (10)
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By the Gärtner-Ellis Theorem [2], the Legendre–Fenchel transform of this function yields the rate
function:

I(a) = sup
k∈R
{ka− λ(k)}, (11)

provided, essentially, that λ(k) is differentiable; see [2] for more precise conditions.
For the SDE (1) and the additive functional (5), the SCGF is known to be given by the principal

eigenvalue of the operator

Lk = b · (∇+ kg) +
1

2
(∇+ kg) ·D(∇+ kg) + kf, (12)

which is the generator of the Feynman–Kac semi-group P kT , defined by

P kTϕ(x) = E
[
ϕ(XT ) eTkAT

∣∣∣X0 = x
]
, (13)

for any smooth function ϕ; see Appendix A.2 of [6]. In the end, the rate function can thus be
computed by solving the spectral problem

Lkhk = λ(k)hk, (14)

where λ(k) is the principal eigenvalue of Lk and hk its corresponding eigenvector. This holds
provided that this operator has reasonable spectral properties, made precise in the following
assumption.

Assumption 1. The operator Lk defined in (12) acting on L2(µ) has an isolated largest eigenvalue
λ(k). Its multiplicity is one and it is associated with a regular eigenvector hk ∈ L2(µ) such that for
all x ∈ X , hk(x) > 0.

This assumption holds for many systems, in particular when X is bounded [36, 40] or when
b and g are gradient fields with appropriate growth conditions; see [41, Sec. 2.5]. In practice,
the spectral problem (14) can be solved numerically using standard projection or discretization
(Galerkin) methods, which work well for low-dimensional systems [42], or more involved real space
renormalization methods when dealing with higher-dimensional systems [43]. Note that, for g = 0,
Lk is the usual Feynman–Kac generator with source term kf . Moreover, for k = 0, L0 = L is the
generator of the SDE, so that λ(0) = 0 and h0 = 1, the constant unit function.

The numerical method that we propose in the next section attempts to estimate the spectral
elements λ(k) and hk in a different way using the fact that they are solutions of the family of
eigenproblems

P kThk = eTλ(k)hk, ∀T > 0, (15)

which can be approximated stochastically. The method also exploits a connection between large
deviations and control theory showing that λ(k) is the ergodic limit of an optimal control cost
satisfying a stochastic Hamilton–Jacobi–Bellman equation [44], and that hk determines the controlled
diffusion achieving the optimal cost, which is the driven process mentioned in the introduction.
These results are explained in detail in [32] (see also references therein); for the purpose of this
paper, we only state them without proofs.

The controlled diffusion, denoted by (X̃t)t≥0, satisfies the SDE

dX̃t = bk(X̃t) dt+ σ dWt, (16)
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where

bk(x) = b(x) +D[kg(x) +∇ log hk(x)] (17)

is the optimal control drift defined for all x ∈ X . Under Assumption 1, this modified diffusion is
ergodic with respect to a new invariant measure µk, whose density is

ρk(x) = hk(x)lk(x), (18)

where lk is the dual of hk in L2(dx) satisfying L†klk = λ(k)lk [6, Sec. 3.3]. These two functions are
normalized such that ∫

X
hk(x)lk(x) dx = 1,

∫
X
lk(x) dx = 1. (19)

Because of the change of process, the observable AT must concentrate on a new value, which
can be shown to be given by λ′(k), that is,

AT
T→∞−−−−→ λ′(k) = ak, (20)

almost surely with respect to (X̃t)t≥0. Similarly, the control cost

CT = kAT −RT , (21)

where

RT =
1

2T

∫ T

0
[b(X̃t)− bk(X̃t)] ·D−1[b(X̃t)− bk(X̃t)]dt, (22)

reaches in the ergodic limit the value λ(k), so that

CT
T→∞−−−−→ λ(k) (23)

almost surely under (X̃t)t≥0 [32, Sec. 4]. Finally, it can be shown by Legendre duality that the rate
function at the value ak = λ′(k) is given by the ergodic limit of RT above, leading to

RT
T→∞−−−−→ I(ak), (24)

almost surely with respect to (X̃t)t≥0 [32, Sec. 4]. Note that the diffusion is not modified for k = 0,
so that a0 = a∗, λ′(0) = a∗, and I(a∗) = 0.

These ergodic limits provide direct estimators of the SCGF and the rate function, based on a
single trajectory of the driven process, which can be simulated for different values of the parameter
k ∈ R. For the SCGF, there are in fact three possible estimators:

1. From (20): The value of AT , integrated numerically with the condition λ(0) = 0.

2. From (23): The value of CT .

3. The eigenvalue returned by the algorithm proposed in Sec. III.

In practice, we find that the last estimator is more stable, although the first and second are more
adapted to obtain error bars.

For the rate function, we have two possible estimators:
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1. The Legendre transform (11) of the SCGF, given in parametric form by

I(ak) = kak − λ(k), (25)

where ak is either estimated from AT or by taking the numerical derivative of λ(k).

2. From (24): The value of RT obtained for the value of AT , giving the couple (AT , RT ).

In practice, we find that the first estimator based on the Legendre transform is more reliable. By
comparison, the computation of I(a) based on (22) involves the optimal drift bk and, therefore, the
logarithmic derivative of hk, which is more difficult to estimate in a stable way.

In all cases, error bars can be constructed from the same trajectory by estimating, in principle,
the variance of AT , CT and RT using covariance techniques for Markov processes [33–35]. This
is an advantage over splitting and cloning algorithms, for which the calculation of errors bars is
difficult, as they involve correlated copies or “clones” of the simulated process [45–47].

In closing, it is interesting to note that the driven process can also be interpreted as the change
of process in the importance sampling of the probability P(AT ∈ B) that is optimal in the sense of
logarithmic or asymptotic efficiency [21]. Therefore, it can be used not only to estimate the SCGF
and rate function, but also to estimate the actual probability P(AT ∈ B) in an efficient way [28].
The optimal change of process in this case is known to correspond to the exponential tilting of the
original process [21], which is a time-dependent process in general; see Appendix D of [6]. In the
ergodic limit, this process converges to a homogeneous process corresponding exactly to the driven
process (16). We refer to [32] for more details about these results.

III. ADAPTIVE ALGORITHM

We are now ready to present the algorithm for estimating the SCGF and the rate function of AT
for continuous-time diffusions. The algorithm is based, as mentioned, on prior algorithms proposed
in [28–31] for Markov chains and exploits the fact that

e−Tλ(k)(P kTϕ)
T→∞−−−−→ hk

∫
X
ϕ(x) lk(x) dx, (26)

for any smooth test function ϕ. This result follows under Assumption 1; see [6, Sec. III.B] or [36,
Sec. 6.1] for a proof. The algorithm that we propose works from this limit by approximating the
action of the Feynman–Kac semi-group P kT in a stochastic way as a time average computed over a
long trajectory of the diffusion. Moreover, it continuously modifies the diffusion as we estimate
hk to construct the driven process (X̃t)t≥0, which underlies the estimators of the large deviation
functions.

The algorithm is presented next. Our contribution compared to [28–31] is to consider general
time-continuous processes, time-additive functionals of these processes that depend on both their
state and increments, and, more importantly, to construct the driven process explicitly so as to
estimate the SCGF and the rate function adaptively using the estimators introduced in the previous
section.

A. Time discretization

The first step required in the algorithm is to discretize in time the SDE (1) and its associated
Feynman–Kac semi-group (13) by transforming the Markov diffusion (Xt)t≥0 into a Markov chain
(xn)n∈N with a small time step. Many discretization schemes can be used for the SDE; see, for
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instance, [48]. Here we use the standard Euler–Maruyama scheme with constant time step ∆t,
given by

xn+1 = xn + b(xn)∆t+ σ
√

∆t ξn, (27)

where (ξn)n≥0 is a sequence of independent standard d-dimensional Gaussian random variables.
The corresponding discretization of the evolution semi-group PT over a time step ∆t is denoted by
Q∆t, so that

Q∆tϕ(x) = E [ϕ(xn+1)|xn = x] , (28)

for any test function ϕ and x ∈ X . We refer to [41, 48] for more information about the discretization
of SDEs and their weak error analysis.

Many discretizations also exist for the Feynman–Kac semi-group P kT . Here, we use the natural
scheme where the diffusion is discretized as above and the integral of AT is discretized as a Riemann
sum with the left-point rule for the integral involving f and the mid-point rule for the Stratonovich
integral involving g [36]. The action of P kT is thus replaced by

Qk∆tϕ(x) = E
[
e
k
[
f(xn)∆t+g

(
xn+1+xn

2

)
·(xn+1−xn)

]
ϕ(xn+1)

∣∣∣∣ xn = x

]
. (29)

For our purposes, hk will be approximated by recursive applications of Qk∆t, based on the following
assumption.

Assumption 2. There exist a time step ∆t∗ > 0 and p > 0 such that, for 0 < ∆t ≤ ∆t∗,

Qk∆thk,∆t = e∆tλ∆t(k)hk,∆t, (30)

where

hk,∆t = hk +O(∆tp), λ∆t(k) = λ(k) +O(∆tp). (31)

This assumption means that the time-discretized operator Qk∆t admits hk as an approximate
eigenvector with approximate eigenvalue λ(k). This applies, for example, when X is compact. In
this case, precise estimates for the errors in (31) are obtained for g = 0 in [36] and can be extended
to g 6= 0.

In the following, we will drop the subscript ∆t on hk,∆t and λ∆t(k) to simplify the notations,
and will present the algorithm essentially as if hk were an exact eigenvector of Qk∆t with exact
eigenvalue λ(k). However, we should keep in mind that this is only approximately true due to the
errors in ∆t. We will comment on this in Sec. IV with specific numerical examples.

B. Stochastic approximation and annealing

The main ingredient of the algorithm is the limit (26) of the Feynman–Kac semi-group, which
shows that hk and λ(k) can be computed by successively applying Qk∆t to an initial guess ϕ, so as
to obtain

(Qk∆t)
nϕ ∼ en∆tλ(k)hk

∫
X
ϕ(x) lk(x) dx (32)
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as n → ∞. To perform this iteration, which is a functional version of the well-known power
method for matrices [49], we apply a stochastic approximation [30, 35, 50] whereby the expectation
appearing in the action of Qk∆t is replaced by the iterates of the Markov chain:

Qk∆tϕ(xn) = E
[
e
k
[
f(xn)∆t+g

(
xn+1+xn

2

)
·(xn+1−xn)

]
ϕ(xn+1)

∣∣∣∣ xn]
≈ e

k
[
f(xn)∆t+g

(
xn+1+xn

2

)
·(xn+1−xn)

]
ϕ(xn+1),

(33)

where xn+1 is a random variable distributed according to Q∆t(xn, ·). This approximation is known
to reproduce the expectation as a statistical average in the ergodic limit n→∞ [29, 30, 35].

In our case, we simulate not the Markov chain xn, but a modified chain, corresponding to the
discretization of the driven process (16), which we express as

x̃n+1 = x̃n + [b(x̃n) + Fn(x̃n)]∆t+ σ
√

∆t ξn, (34)

where

Fn = D(kg +∇ log hnk) (35)

is the extra biasing force derived, according to (17), from the estimate hnk of hk at time n. In this
case, the evolution (33) is modified by Girsanov formula [37] to

Qk∆tϕ(x̃n) = E
[
e
k
[
f(x̃n)∆t+g

(
x̃n+1+x̃n

2

)
·(x̃n+1−x̃n)

]
ϕ(x̃n+1)Rn(x̃n, x̃n+1)

∣∣∣∣ x̃n = x

]
≈ e

k
[
f(x̃n)∆t+g

(
x̃n+1+x̃n

2

)
·(x̃n+1−x̃n)

]
ϕ(x̃n+1)Rn(x̃n, x̃n+1),

(36)

where

Rn(x̃n, x̃n+1) = exp

(
− 1

2σ2
F 2
n(x̃n)∆t−

√
∆t

σ2
Fn(x̃n) · ξn

)
(37)

is the Radon–Nikodym derivative of the transition kernel of xn with respect to that of x̃n.
In the end, we also apply an annealing scheme, commonly used in stochastic approximations,

which consists in replacing the update rule (32), defined by ϕ0 = ϕ and ϕn+1 = Qk∆tϕ
n, by the

scheme

ϕn+1 = ϕn + an

(
Qk∆tϕ

n − ϕn
)
, (38)

where (an)n∈N is a decreasing sequence, often called the adaptation or learning sequence, which
acts as a smoothing parameter, filtering here the noisy update of the eigenfunction. This sequence
is usually chosen in such a way that∑

n≥0

an =∞,
∑
n≥0

a2
n <∞, (39)

with the understanding that an should not be decreased too slowly, so as to limit noise, nor too fast,
so as to reach the “correct” fixed point. These conditions can be relaxed under stability assumptions
or by an averaging procedure [50]; see [35] for more details.
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C. Spatial projection

The iteration just described for approximating hk can be performed numerically by discretizing
the state space X into small cells (grid discretization). For high-dimensional systems, however, it
is more convenient to use a Galerkin-type approximation of the eigenvalue and eigenfunction [30],
obtained by projecting the problem onto a set of basis functions {φj}Mj=1 with φj : X → R [42]. Let

us denote by HM = Span{φj}Mj=1 the space spanned by these functions. Then the M -dimensional
eigenproblem that we need to solve is

Qk∆th = e∆tλh, h ∈ HM , (40)

using, for notational convenience, the same symbols h and λ for the exact and the projected spectral
elements. We also drop from now on the parameter k, which will be implicit.

The eigenfunction h is expressed in that basis as

h(x) =
M∑
j=1

αjφj(x) = αTφ(x), (41)

where α = [α1, . . . , αM ]T and φ(x) = [φ1(x), . . . , φM (x)]T. Multiplying (40) by φi for i ∈ {1, . . . ,M}
and integrating over any measure η on X yields

M∑
j=1

αj

∫
X
φi(Q

k
∆tφj) dη = e∆tλ

M∑
j=1

αj

∫
X
φiφj dη, i ∈ {1, . . . ,M}. (42)

As a result, we see that the vector of coefficients α ∈ RM is the principal solution of the eigenproblem

Aα = ΛBα, λ =
1

∆t
log Λ, (43)

where

A =

∫
X
φ(Qk∆tφ

T) dη, B =

∫
X
φφT dη. (44)

Note that the matrix B is invertible as soon as the {φj}Mj=1 form a linearly independent family.

D. Algorithm

We are now ready to describe all the steps of the algorithm that estimates the principal eigenvalue
of Lk and its corresponding eigenfunction. For a fixed k ∈ R, we initiate the process at a position
x0 ∈ X and define a first approximation h0 of h as

h0 = (α0)Tφ, (45)

where φ is the vector of basis functions and α0 is the initial vector of coefficients, chosen such that
h0 is constant. At each iteration, we then perform the following steps:

1. Draw a new position x̃n+1 according to the Markov chain (34).

2. Compute the extra bias Fn according to (35), which in the function basis takes the form

Fn = D

(
kg +

∑M
j=1 α

n
j∇φj∑M

j=1 α
n
j φj

)
. (46)
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3. Compute the Girsanov weight Rn according to (37).

4. Compute the matrices An+1 and Bn+1 using the formulae

An+1 =
1

n+ 1

n∑
m=0

e
k
[
f(x̃m)∆t+g

(
x̃m+1+x̃m

2

)
(x̃m+1−x̃m)

]
φ(x̃m)φ(x̃m+1)TRm(x̃m, x̃m+1),

Bn+1 =
1

n+ 1

n∑
m=0

φ(x̃m)φ(x̃m)T, (47)

which follow by projecting (36) and (44), respectively.

5. Update the coefficient vector αn, giving the decomposition of the iterate hn, as

αn+1 = αn + an

(
B−1
n An
hn(x0)

− Id

)
αn, (48)

where Id is the identity matrix of size M [30].

6. Estimate the eigenvalue as

λn+1 =
n

n+ 1
λn +

1

(n+ 1)∆t
log (hn(x̃0)) , (49)

which follows from (43).

Repeating these steps, it can be proved that the iterates hn and λn converge to the solution of
the spectral problem (40), following the analysis found in [28–30]; see also [35]. Moreover, because
hn → h, the Markov chain (x̃n)n∈N samples in the long run the Euler–Maruyama discretization of
the driven process (16).

E. Remarks

The following are technical remarks worth noting about the algorithm:

1. The matrix An can be updated at each step using

An+1 =
n

n+ 1
An +

1

n+ 1
e
k
[
f(x̃n)∆t+g

(
x̃n+1+x̃n

2

)
(x̃n+1−x̃n)

]
φ(x̃n)φ(x̃n+1)TRn, (50)

instead of the sum shown in (47). Similarly, the matrix Bn can be updated, following [30],
using the Shermann–Morrisson–Woodburry formula, which leads here to

B−1
n+1 =

n+ 1

n
B−1
n −

n+ 1

n

B−1
n φ(x̃n+1)φ(x̃n+1)TB−1

n Rn+1

n
n+1 + φ(x̃n+1)TB−1

n φ(x̃n+1)Rn+1

. (51)

The advantage of this formula is that the computation required for updating the coefficient
αn scales with the number M of basis vectors as M2, as is common in the power method
[49], whereas the typical cost of inverting the matrix B scales as M3.
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2. We normalize the eigenfunction at every iteration by setting h(x̃0) = 1 at an arbitrary
location, taken here to be the initial state x̃0 [28]. This prevents the norm of the eigenfunction
from diverging or decaying to zero, as is common in the power method, and provides an
estimate of λ(k) through (49). This normalization step can be based on other norms, at the
expense of computing integrals.

3. The algorithm can be run with the original (unbiased) process Xt, but the estimation of the
matrices A and B in this case typically suffers from large statistical errors due to the high
variance of the underlying estimator. This is a known problem related to the estimation of
Feynman–Kac functionals and exponential integrals in general [51–54]. Biasing the dynamics
with the driven process X̃t reduces this variance in an optimal way (in the sense of asymptotic
or logarithmic efficiency) by forcing the exploration of the process in important regions of
the state space where the integrand of the generating function E[ekTAT ] is largest [32].

4. As the dynamics is biased towards the driven process X̃t, the vector αn of basis coefficients
representing hk converges towards the solution of the eigenproblem (43), with the matrices A
and B computed as ergodic averages under X̃t, so that η = µk in (44). Even for a small number
of basis functions, it would be a priori impossible to compute these matrices by numerical
quadrature. This shows that the algorithm can be used to obtain good approximations of hk
even for high-dimensional systems, provided that enough basis functions are used to represent
the support of µk, which is typically concentrated on a subset of X .

5. The algorithm is stable despite the fact that it includes the Girsanov reweighting factor,
which is exponential in time. The reason for this stability, already noted in [29], is that the
Girsanov weight is computed and accumulated incrementally over single time steps.

6. The learning sequence (an)n∈N is chosen here in the following way:

(a) For 0 ≤ n ≤ N1, we take an = 0, so there is no adaption at the level of h and λ,
although the matrices A and B are evolved. This “burn-in” period allows for a better
initial guess of the various functions estimated through their ergodic averages.

(b) For N1 < n ≤ N1 + Niter − N2, we take an = 1, that is, the full information of the
process is taken into account.

(c) For N1 + Niter −N2 < n ≤ N1 + Niter, we take an = C/(n − (N1 + Niter −N2)) with
constant C > 0, so the process learns less with time, smoothing the noise in the long
run. In the following, we choose C = 1.

The times N1 and N2 can be fixed or can be chosen dynamically according to some stopping
rule.

7. In practice, we can perform independent simulations with different values of k to obtain
an interpolation of the SCGF over some range, say, [kmin, kmax], which can then be used to
obtain the rate function by Legendre transform. Alternatively, we can do a simulation in
which k is slowly increased from k = 0 in a “quasi-static” way, so as to adaptively update the
biasing force over a range of values for k [55] or to reach some prescribed value of the SCGF
for an unknown k [28].
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IV. APPLICATIONS

We apply in this section the algorithm to two simple test cases involving one-dimensional
diffusions. The first is the Ornstein-Uhlenbeck process, for which the large deviation functions of the
area per unit time are known exactly [6], while the second is a driven diffusion on the circle, often
used in physics as a model of nonequilibrium systems, including Josephson junctions perturbed by
thermal noise and Brownian particles controlled by external forces [56–58]. We discuss for both the
convergence and efficiency of the algorithm.

A. Ornstein-Uhlenbeck process

The first example that we consider is the mean area or mean position

AT =
1

T

∫ T

0
Xt dt (52)

of the Ornstein-Uhlenbeck process on R satisfying the SDE

dXt = −2θXt dt+
√

2 dWt, (53)

where θ > 0. In the notations of Sec. II, we thus have b(x) = −2θx, σ =
√

2, f(x) = x and g(x) = 0,
so that

L = −2θx
d

dx
+

d2

dx2
, (54)

and Lk = L+ kx.
For this process and observable, it can be checked [6] that the SCGF, corresponding to the

dominant eigenvalue of Lk, is

λ(k) =
k2

4θ2
, (55)

so that I(a) = θ2a2 from (25). This is expected, since the integral of a Gaussian process is also
Gaussian. Moreover, the associated dominant eigenfunction is

hk(x) = e
k
2θ
x, (56)

leading with (17) to the optimal drift

bk(x) = −2θx+ 2(log hk(x))′ = −2θx+
k

θ
. (57)

This shows that a fluctuation of AT is created in an optimal way by adding a constant to the drift,
which “moves” the Gaussian stationary density of the Ornstein-Uhlenbeck process

ρ∗(x) =

√
θ

π
e−θx

2
(58)

to

ρk(x) =

√
θ

π
e−θ(x−mk)2

, mk =
k

2θ2
, (59)
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FIG. 1. Large deviations of the mean area for the Ornstein-Uhlenbeck process. Left: Evolution of the
estimated SCGF in time. Right: Evolution of the biasing potential Vk(x) in time for the linear basis (curves
from top to bottom), compared with the final estimate for the Hermite basis and the exact result.

leading to

AT
T→∞−−−−→ mk = ak (60)

almost surely with respect to X̃t, in agreement with (20).
We compare the algorithm against these exact results using a simple mesh discretization (first-

order finite elements), defined by the basis functions

φj(x) =


x−xj
δ + 1, x ∈ [xj − δ, xj ],
−x−xj

δ + 1, x ∈ [xj , xj + δ],
0, otherwise,

(61)

where the points xj define the centers of each “cell” of width δ > 0. In the following, we refer to
this basis simply as the linear basis. To illustrate the flexibility of the algorithm, we also perform
simulations using a Hermite polynomial basis, which forms a complete orthonormal basis in L2(ρ∗).
We run the algorithm with k = 1, θ = 1/2, x0 = 0, T = 2× 104, T1 = N1∆t = T2 = N2∆t = 2× 103

with ∆t = 5× 10−3, which a standard time step used in simulations relative to the basic timescale
of the dynamics, corresponding here to 1/(2θ) = 1. For the linear basis, we use M = 61 equally
spaced cells with δ = 0.25 around x = 0, whereas for the Hermite basis we use only M = 10 basis
functions.

Figure 1 illustrates the results of a typical simulation, starting on the left with the evolution of
the estimate of the SCGF, given by (49), as time increases. We observe a very good agreement
in the long run with the exact value, which for the parameters used is equal to 1, with a faster
convergence observed for the Hermite basis compared to the linear basis. As mentioned before, we
can also recover the SCGF by recording the stationary value of AT , which corresponds as above to
mk = ak = λ′(k), and numerically integrate the result in k from λ(0) = 0. The results obtained are
similar to those obtained from the eigenvalue estimate (49), and are not shown for this reason.

To understand the convergence of the eigenvalue at the process level, we show in the right plot
of Fig. 1 the evolution of the effective potential Vk(x) associated with the modified drift bk(x)
according to

bk(x) = −V ′k(x). (62)
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SCGF and on the averaging of the biasing force (using the Hermite basis), compared with the exact result.

We show the results for both the linear basis and the Hermite basis, with the zero of the potential
arbitrarily set at Vk(0) = 0. We see from these that the tail of the potential takes longer to be
estimated correctly, as the process starts to explore values away from m0 = 0. After the convergence
time, there is a good agreement with the parabola

Vk(x) = θ(x−mk)
2, (63)

which is the exact solution predicted by (59). The small errors are due to the finite time step ∆t
used and the finite basis function set. The small “wiggles” seen in the potential obtained with
the linear basis come from the fact that this basis is piecewise linear, so that Vk(x) is piecewise
logarithmic. The potential obtained with the Hermite basis is smoother, as expected.

Repeating the simulations for other values of k, we can recover λ(k), as shown in the left plot of
Fig. 2. The result is in good agreement with the exact solution (55). Estimating λ′(k) with (20)
leads to an estimated rate function, by the Legendre transform (25), which also agrees well with the
exact rate function, shown in the right plot of Fig. 2. By comparison, the rate function obtained
from the time average (24) of the extra biasing force (with the Hermite basis) is not as good: it
lies above the exact rate function and shows a larger offset or error as k increases, which does not
decrease by reducing ∆t or increasing the number of basis functions.

To understand this error, we show in the left plot of Fig. 3 the evolution of the extra biasing
force Fn for k = 1, estimated at the current location of the system, which should approach the
constant 2, following (57). The evolution is noisy, as can be seen, which is expected, since Fn is
estimated by the logarithmic derivative

Fn(x) = 2
(hn(x))′

hn(x)
, (64)

computed in the function basis from (46). The derivative amplifies the Monte Carlo errors inherent
in the estimate hn. In addition, the denominator often takes small values away from the mean
position mk, which makes the estimation of the optimal force still more difficult. The right plot of
Fig. 3 shows that the noise on Fn is considerably filtered out by the time average underlying the
estimator RT of the rate function, although a bias remains even after the convergence time of the
SCGF, which leads to the offset seen in Fig. 2. The results in both cases are more noisy for the
linear basis because the derivative is not continuous across the different cells.
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The offset on RT remains more or less constant by running independent simulations (error bars
on 30 simulations are too small to show), and so appears to be a systematic error or bias. Many
factors can account for this bias. First, the rate function estimated from the limit shown in (24)
is known to be an upper bound on the true rate function [32], which is tight if and only if the
modified drift estimated in the simulation is the optimal control drift (17). Here, Fn is not constant,
as predicted from (57), so we expect the estimate RT to lie above its expected value. Second, we
have noticed in simulations that AT underestimates ak for large k, which has the effect of further
“pushing” the estimate of the rate function above I(a). This is most likely due again to Fn being
non-constant. Finally, the time average of Fn involves the ratio of two functions, according to
(64), which fluctuate in time via the updating of αn in (46). As a result, we expect this additional
randomness to artificially increase the second moment of Fn, leading to a further bias.

It is difficult to isolate these factors, and all, in fact, seem to play a role. In future works, it
would be interesting to study the bias observed in RT by computing, for example, the time average
of F 2

n using the final estimate of hk rather than the time-evolved estimate hn. Different annealing
sequences or averaging techniques could also be used to “filter” the time average of F 2

n and mitigate
the bias on RT . For now, the most efficient and reliable way to compute the rate function is to use
the estimator based on the SCGF and its Legendre transform.

B. Periodic diffusion

We consider for the second test a diffusion on the unit circle satisfying the SDE

dXt = (−V ′(Xt) + γ)dt+
√

2 dWt, (65)

with the periodic potential V (x) = cos(2πx) and γ ∈ R a constant drive. For γ 6= 0, the total drift
cannot be expressed as the gradient of a smooth periodic function, so Xt is a nonequilibrium process
violating detailed balance [56]. The observable studied for this process is the winding number

AT =
1

T

∫ T

0
dXt, (66)
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FIG. 4. Current large deviations of the driven periodic diffusion. Left: Evolution of the estimated SCGF with
time for different time steps ∆t. Right: Estimated eigenfunction hk for different time steps ∆t compared
with the reference Fourier solution.

calculated with the real rather than periodic state, which can be interpreted physically as the mean
velocity or current of a Brownian particle moving around the circle [59]. In the notation of Sec. II,
we have b(x) = −V ′(x) + γ, σ =

√
2, f(x) = 0, and g(x) = 1.

The SCGF and the rate function of this observable are not known exactly, but Galerkin
approximations can easily be found by Fourier series, using the basis functions φj(x) = ej2πix with
j ∈ Z [59–61]. This basis is used to compute reference values for the SCGF and the rate function,
devoid of ∆t errors, by projecting the spectral problem (14) in Fourier space and by ensuring that
enough basis functions are used. We find in practice that M = 41 Fourier modes are sufficient. We
use the same Fourier basis for the algorithm, also with M = 41 modes, in addition to T = 2× 104

and T1 = T2 = 2× 103 for the integration times, as in the first test.
We show in Fig. 4 the results of a typical simulation for γ = 1 and k = 1. The left plot in this

figure shows the evolution in time of the estimated SCGF from the eigenvalue iteration (49), while
the right plot shows the final estimated eigenfunction hk for different time steps ∆t, compared
with the reference Fourier solution. We see that the results for the eigenvalue and the eigenvector
significantly depart from the reference solutions for ∆t = 0.05, but converge to them as ∆t is
decreased, in accordance with Assumption 2 and the theoretical results of [36]. For the same time
step used for the Ornstein-Uhlenbeck process, namely, ∆t = 5× 10−3, we see no notable difference
between the estimated eigenfunction and the reference values, leading to a precise estimation of
the SCGF. The convergence of the eigenvalue here is much faster than for the Ornstein-Uhlenbeck
process because the space explored is compact, being limited to [0, 1] with periodic boundary
conditions.

As for the Ornstein-Uhlenbeck process, we can repeat these simulations over a range of values
for k to obtain the SCGF and the rate function. The left plot of Fig. 5 shows that the SCGF is in
good agreement with the Fourier solution for ∆t = 5× 10−3, and so is the rate function estimated
by Legendre transform. However, as seen before, the rate function estimated with the time average
RT of the biasing force shows an offset, although smaller this time, which comes from the noisy
estimation of Fn. As before, the estimator of the rate function that should be used is the one based
on the Legendre transform of the SCGF, with ak estimated by AT .
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V. CONCLUSION

We have presented a new algorithm for estimating the large deviation functions of time-integrated
observables of Markov processes, which characterize the likelihood of their fluctuations in the long-
time limit. The algorithm draws on earlier results on stochastic control [28–31], and works by
adaptively estimating the principal eigenvalue and eigenfunction of a spectral problem related to
the large deviation problem. The adaptive part consists in modifying the process considered, using
feedback and reinforcement learning, so as to reach the so-called driven process, which is known
to be optimal for the purpose of estimating large deviation functions using importance sampling
[32]. In this sense, the algorithm relates to many adaptive importance sampling methods that
have been proposed recently for rare event simulations; see, for instance, [62–65]. It is also closely
related to diffusion Monte Carlo methods [45, 66, 67], which attempt to estimate the ground-state
wavefunction of a many-body quantum system by simulating a related stochastic process.

The proposed algorithm can be applied to diffusions, as illustrated here, but also to Markov
chains in discrete or continuous time, and works for both equilibrium and nonequilibrium systems,
that is, reversible and non-reversible processes, respectively. Moreover, although the test cases that
we have presented are simple, they clearly show that the algorithm has the potential to improve
upon other simulation methods, especially cloning methods, since it runs on a single simulation of
the process and provides information about how fluctuations are created in time by constructing
the driven process in a non-parametric form and with no prior information. A modification of the
original cloning algorithm was proposed recently [46] to construct the driven process, but it is based
on a different feedback rule that compares two time-dependent histograms, whose estimation is
noisy and requires a large number of clones. The results presented here show that a single clone,
evolving over a long-enough time, is sufficient. This obviously cuts the computational complexity of
estimating large deviations, but also simplifies, as mentioned, the error and convergence analyses of
the algorithm.

As with any new proposal, more work is needed to understand the benefits and limitations of the
algorithm, to test its applicability to realistic systems, and to benchmark it against other numerical
methods. Of particular importance is to derive precise error estimates associated with the space
and time discretizations of the spectral elements, large deviation functions, and the driven process.
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Recent results about the discretization errors in ∆t for the SCGF can be found in [36]. These
discretization errors are also present in cloning algorithms when applied to diffusions, so they are
not specific to the algorithm presented here. The use of Galerkin discretizations is also common
to both algorithms and requires further investigations, particularly in the low-noise limit and for
processes involving many interacting particles.
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