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Summary 
 

The flow of concentrated suspensions of solid particles  can be suddendly blocked by the formation of a percolated 

network of frictionnal contacts above a critical value of the applied stress. Suspensions of magnetic particles coated 

with a superplastifier molecule were shown to produce  a strong jamming transition. We find that, for these 

supensions with an abrupt discontinuous shear thickening , a model using a divergence of the viscosity at a volume 

fraction which depends on the applied stress does not well describe the observed behavior both below and above the 

critical stress. At a constant applied stress above the critical one, we have a stick  slip behavior of the shear rate whose 

period can be predicted  and scales as the square root of the relaxation time of the frictional contacts. The application 

of a small magnetic field allows to continuously decrease the critical shear rate and it appears that the yield stress 

induced by the magnetic fiekd does not contribute to the jamming transition. At  last it is shown that this jamming 

transition also appears in the extrusion of the suspension through a die, but with a much slower dynamics than in the 

case of  stress imposed on a rotational geometry. 

 

Introduction 
 

The shear thickening is an increase of viscosity with the shear rate contrary to a Newtonian fluid where the 

viscosity remains constant whatever the shear rate. In colloidal suspensions it is frequent to observe this 

shear thickening which is interpreted as due to  the formation of aggregated flocs under the increase of the 

shear force between particles which overcomes the potential barrier due to a coating polymer or an ionic 

layer. These flocs emprison the suspending liquid which then behave as a solid of the size of the floc. The 

result is an increase of the effective volume fraction  and so of the viscosity. A model of this mechanism 

was described in (1), (2). In hard sphere suspension where there are only hydrodynamic interactions, the 

viscosity does not depend on the shear rate and diverges at a maximum volume fraction max which is close 

to the maximum random close packing: ΦRCP=0.64: 
p

0

max

( ) 1

−
 Φη Φ = η − Φ 

         (1) 
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where p is an. exponent close to 2. Actually the experiments made in order to find the value of the exponent p and of 

Φmax suffer from inaccuracies related to the polydispersity, non negligible short range interactions, uncertainty in the 

measurement of volume fraction etc.. 

In colloidal suspensions the thermodynamic stresses, which scale as kT/a3 -where a is the radius of the particles-are far 

from being negligible and are responsible for a first shear thinning behavior before a shear thickening one due to the 

formation of hydroclusters when hydrodynamic forces dominate at large Peclet number (3). Non Brownian suspensions 

are obtained with particles whose radius is typically larger than one micron. Still in these suspensions, sedimentation and 

Van der Waals forces are present and combine to provoke the agregation of the particles if  they are not coated with a 

polymer layer which generates an entropic repulsive force between the  adsorbed  layers on the surface of the particles. 

In these supensions formed with non Brownian particles, a shear thickening is observed when the volume fraction is 

increased (typically above 50%) and above a critical volume fraction, this continuous shear thickening (CST) is replaced 

by a discontinuous one (DST), which appears as a decrease of the shear rate in a stress imposed ramp, or as a jump in 

stress in a shear rate imposed ramp. In a well monodisperse suspension this transition was shown to be due to the 

disparition of an ordered structure, formed of hexagonal planes sliding over each other ,above a critical stress able to 

destroy it (4), (5). Nevertheless this DST behavior also happens in suspensions where the distribution of particles is far 

from being monodisperse and can also have irregular shape as is the case with the well known cornstarch suspension (6), 

(7) .Many other systems based on silica (8), (9), gypsum (10), poly-methylmethacrylate (11), calcium carbonate (12), 

(13) etc.also show this jamming transition. There is some large evidence, supported by numerical simulation (14) and 

also by AFM measurement of forces between particles (15) , that this transition is related to the passage from lubricated 

contacts to frictional ones when the shear force increases enough to  overcome the potential barrier formed by a 

stabilizing layer. The critical shear force needed to produce this transition depends on the characteristic of the adsorbed 

layer of polymer. For instance we have shown  that, for the same particles, we can observe a difference of critical stress  

by a factor of three by changing the superpastifier and we have related this difference to the amplitude of the  repulsive 

force generated by the different polymers (13). If it is interesting in industrial processing of pastes to be able to repel this 

jamming transition at the highest possible value of stress by a proper choice of the coating polymer, it would be still 

more interesting to be able to control the critical stress by an external mean. That is what we have succeeded to do by 

using suspensions of magnetic particles whose interaction forces can be modulated by the application of a magnetic field 

(16). Indeed the critical shear rate is shown to decrease strongly with the amplitude of the magnetic field and contrarily 

to the expectation, the critical stress is not constant but increases with the magnetic field. 

 In a first part , we shall present some typical rheological behavior associated with the jamming transition  and we shall 

adapt the model of Wyart and Cates (17) in the presence of a yield stress  and discuss the ability of this model to 

represent this transition. In a second part we shall more specifically address the control of the jamming transition with a 

magnetic field and we shall try to understand why the critical stress increases in the presence of a magnetic field. The 

third section will be devoted to the study of the instabilities which occur in the regime of flow in the jammed state and 

the last section to a preliminary study of the jamming transition during the extrusion of the suspension through a die 

 

Rheological characteristics of the jamming transition 
 

When the volume fraction of a suspension of non Brownian particles is increased, the rheogram, as represented by the 

shear stress versus the shear rate will change progressively, passing from a quasi Newtonian behavior to a shear 

thickening one and finally will end up with the jamming transition as represented in Fig.(1). 
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The rheograms are obtained on a 
rheometer MCR 501 (Anton Paar) in a 
plate plate geometry, the ramp of stress is 
made at typically 50Pa/mn which is slow 
enough to guarantee the absence of 
thixotropy (13). The suspension is made of 
particles of calcium carbonate (Omnya) in 
water where we have added 0.2% in mass 
of a superplastifier molecule which is a 
polyoxyethlene polyphosphonate used in 
the cement industry. This molecule 
strongly adsorbs on the calcium sites of 
the particles through the PO3

-- 
phosphonate ionic groups of the molecule. 
The polyoxyethylene tail is composed in 
average of 44 oxyethylene groups: CH2-
CH2-O, which has a quite good affinity 
with water (13); in the following  we shall 
call this molecule PPP44. We see that 
even at a volume fraction as high as 58% 
the yield stress τy is quite low (around 
15Pa) and that the dynamic viscosity is 
constant, so the whole rheogram is well 

represented by a Bingham law: y dτ = τ + η γ& . At Φ =59% the behavior is already quite different with a strong 
increase of the viscosity above a shear rate of 60 s-1, followed by a domain with small oscillations. Then at Φ=61% 
we have a strong jamming transition with a sudden decrease of the shear rate followed by a regime of strong 
oscillations around 35s-1. Finally, at 62% there is also a jamming transition but occurring at a lower shear rate. If we 
still increase the volume fraction, at some given value close to 68% the system is completely jammed and there is no 
flow at all when the stress is increased. Actually a definitive blocking of the system whatever the imposed stress will 
depend a lot of the plasticity of the particles, of the roughness of the walls of the cell, and of the non-dilatancy of the 
gap under large applied shear stress. 

The DST transition can be more or 

less abrupt. For instance, in Fig.2 

we have reported the jamming 

transition for carbonyl iron 

particles (average diameter 

1.2µm), for carbonate calcium 

particles (average diameter 4µm), 

and for silica particles average 

diameter 5µm). The three 

suspensions are in water but the 

two first ones are stabilized by 

0.2% in mass of the molecule 

PPP44 whereas there is no 

surfactant with silica whose 

stabilization is due to its natural 

ionization in water. The iron 

particles present the stronger 

transition with, above the critical 

shear stress τc=100Pa, large 

fluctuations of the shear rate -we 

shall come back to this point in 

the third section. The calcium 

carbonate at Φ=68% has also an 

abrupt transition for τc =147Pa but 

followed by some much smaller 

oscillations of the shear rate. Last, for the suspension of silica particles there is a continuous decrease of the shear rate 

above τc=12Pa but without a clear regime of oscillation. Note also that the abrupt increase of shear rate at τ=165 Pa is 

just due to the expulsion of the suspension out of the gap between the two plates. It is worth noting that other systems 

 

Fig.1 Evolution of the rheology of a suspension of calcium carbonate in water in 

the presence of the PPP44 molecule 

 

Fig.2  Jamming transition for suspensions composed of iron particles (red 

symbols), Carbonate calcium particles (solid blue line) and silica particles (solid 

green line) 
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do not show a decrease of the shear rate but only a stop of the increase which corresponds to a vertical line, on the 

stress-shear rate graph; this is the case for cornstarch suspension in water or silica particles in mineral oil (18). These 

different regimes depend likely on the deformability of the particles and on the softness of the repulsive barrier 

formed by a coating polymer or an ionic layer. 

In Figs (1) and (2), the rheogram correspond to a ramp of shear stress that is to say to a continuous increase of the 

torque on the upper plate. In this situation, a transformation of the suspension in a jammed state can produce a 

decrease of the rotation speed or even its complete stop. On the other hand, if the motor imposes a ramp of velocity, 

when the shear rate exceeds the critical one, we expect a jump in the shear stress which will recover, if it exists, the 

branch where the shear rate begins again to increase in the regime of imposed stress. Actually, in the suspensions with 

an abrupt jamming transition, the jump of stress above the critical shear rate, is very high and well above the 

rheometer maximum torque. Furthermore, the stress generated is transmitted radially and ejects the particles outside 

the suspension (19). In a plate-plate geometry the suspension goes out of the gap while in cylindrical Couette 

geometry particles are pushed outside the free surface and air enters the suspension, producing a foam at the surface. 

In order to get rid of a free interface and also to have a high enough torque capacity, we have used a high torque 

viscosimeter developed by CAD company, mainly to measure the viscosity of concrete. We have designed a cell 

where the suspension is confined by a teflon seal (Fig.3a). To prevent slipping we have used either a vane or a double 

helix as the rotating tool; also the outside wall is serrated with stripes of depth 0.2mm. This rheometer works in the 

imposed velocity mode and in Fig 3b we have reported the stress measured during a ramp of shear rate. We see that 

there is an abrupt jump of stress which reaches 80kPa, nevertheless this stress does not remain at this high level but 

oscillates between the flowing and a jamming state which increases with the shear rate. In this case, the structure of 

the suspension manages to come back transiently to the flowing state despite the fact that the shear rate is above the 

critical one. We shall discuss this point in the section devoted to the application of a magnetic field. 

 

 
Fig.3a   Schematic of the confined cell Fig.3b  Ramp of shear rate. Iron suspension, Φ=62% 

 

.    

 Rheological model of the jamming transition 
 
It is now quite well established that the DST is generated by the transition from lubricated to frictional contacts as 

shown by numerical simulations (20). The key parameter is the fraction of frictional contacts: f(σ) which is expected 

to be a growing function of the stress. It is needed to relate the viscosity to this function; this can be done directly by 

assuming that the viscosity should diverge when a given fraction of frictional contacts is reached (13) or indirectly by 

the mean of the volume fraction as proposed in (17). In this last approach two limiting volume fractions are 

considered corresponding to f(σ)=0 and f(σ)=1. The first one Φ0 corresponds to the maximum packing fraction of the 

suspension in the absence of frictional contacts. It would be the random close packing Φ0=0.64 for monodisperse 

spheres, although the structure formed by the flow can change this diverging volume fraction which can reach 0.7 and 

may correspond to the stacking of FCC multilayers rafts  (21) For polydisperse suspensions it can be much higher, 

around Φ=0.8 (21). The second critical volume fraction is the one corresponding to the jamming of the actual 

suspension: Φm where all the contacts are frictional and the suspension can no longer flow whatever the stress. Then, 



5 

 

 

 

 

Phil. Trans. R. Soc. A. 

 

 

 

for a given stress, the authors assume that the viscosity will follow the usual law of divergence of the viscosity, but 

with a maximum volume fraction  Φm<Φj(σ)<Φ0 ; 

( )0 p

j

1
( ) with p 2

1 / ( )
η σ = η =

− Φ Φ σ
      (2) 

The diverging volume fraction Φj(σ) must be related to the function f(σ) since its two limits correspond to f=0 and 

f=1 and the simplest hypothesis is  a linear dependence : 
 

( ) ( ) ( )( )j m 0f 1 fΦ σ = Φ σ + Φ − σ        (3) 

As f(σ) is a growing function of the stress, the maximum packing fraction will decrease with the stress and so the 

viscosity will increase (cf Eq.(2)). If the viscosity η(σ) grows faster than σ, then the shear rate ( ) / ( )γ σ = σ η σ& will 

begin to decrease, corresponding to the beginning of the DST transition. We are going to see how this model can be 

used to reproduce our experimental data. In Fig. 4 we have reported the rheograms obtained on a suspension of 

carbonyl iron with 0.2% in weight of superplastifier and different volume fractions. At Φ=56% we have a shear 

thickening behavior followed by a slight “S-shape” characteristic of the DST transition. At Φ=58% the S-shape is 

more pronounced and at Φ=62% and Φ=64%, the S shape has been replaced by an abrupt decrease of the shear rate 

followed by an oscillation regime. 

 
Fig.4 Rheograms of a suspension of carbonyl iron with 0.2%wt of PPP44 for different volume fractions 

 
We are going to fit the curve presenting the characteristic S-shape at Φ=58% with the help of Eqs. (2)-(3). The 

maximum volume fraction at which the suspension is completely jammed from the beginning is Φm=66%. As already 

discussed, the maximum packing fraction without friction can be taken as Φ0=0.8 for a polydisperse suspension. The 

shape of the function f(σ) is unknown, it is just a monotonous growing function between 0 and 1. The choice of the 

simple function: 1-exp(-σ/σc) where σc is the critical shear stress can be done (17) but it is convenient to introduce a 

parameter λ which will determine the steepness of the function and will help to fit the experimental result. In this case 

we shall have: f(σ)=1-exp(-λ.σ/σc). The two remaining parameters λ and η0 can be obtained by requiring first that the 

curve passes by the point c c( , )σ γ& and second that the derivative 

c

d

d
0

σ=σ

γ
σ

=&
 at this point. This last condition 

links λ to p and it is expressed by: 

( )
c c

0 m
c y

c yjc jc

p. ( )dLog( ) df ( ) 1
1

d dσ=σ σ =σ

Φ Φ − Φη σσ − τ = → =
σ σ σ − τ Φ Φ − Φ 

                                 (4) 

 

We have introduced the yield stress τy which is often found at high volume fraction. Together with Eq. (2), it imposes 

for the viscosity η(σc) at the critical point to satisfy the Bingham law. In this expression Φjc is the value of Φj for 

σ=σc. It appears that with the value p=2 for the divergence of the viscosity and f(σ)=1-exp(-λ.σ/σc), there is no value 
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of λ  which can fulfil Eq.(4) to represent the S shape at Φ=0.58 with the corresponding critical point  σc=927 Pa and 

γc=536s-1. A more stronger divergence of the viscosity would be needed (p=4) to satisfy Eq. (4). Instead we have used 

a sigmoid function for f(σ) which allows to satisfy this condition with p=2: 
 

c

1
f ( )

1 exp 1

σ =
  σ+ −λ −  σ  

                                                                    (5) 

 

The value of η0 is fixed by the condition:     
( )

c y

0

c j c

1
 σ − τ Φη = −  γ Φ σ &

    (6) 

 
In Fig. 5, we have plotted the experimental curves of Fig. 4 for Φ=0.58 and Φ=0.62 together with the theoretical 

expressions given by Eqs (2), (3) and (5). The values of λ and η0 obtained from Eqs (4) and (6) are for Φ=0.58: 

η0=0.076Pa.s, λ=3.12 and for Φ=0.62: η0=0.077Pa.s, λ=2.51. The yield stress was taken respectively as 7 Pa and 20 

Pa. We first note that the model reproduces qualitatively the S-shape at Φ=0.58 but not at all the abrupt decrease at 

Φ=0.62. In order to have this abrupt decrease, the viscosity should increase abruptly, but the divergence of the 

viscosity (Eq.(2)) with Φj(σ)>Φm=0.67 can't reproduce it because it will smoothly tend towards ηmax=(1-Φ/Φm)-2 and 

then end up with a Newtonian behavior at high stress as we see on the figure (black solid line). A possible explanation 

of this failure would be the onset of instability at the turning point. We shall discuss this hypothesis in the third 

section. Concerning the parameter η0 it is interesting to note that it remains almost the same for the two volume 

fraction, but it does not represent the viscosity of the suspending fluid, that in our case is equal to 0.08Pa.s 

 
Fig.5    Fit of the experimental rheograms with the Eqs(2),(3),(5)for Φ=0.58 (blue solid line) and Φ=0.62  

(black solid line) 

 

 

Effect of a magnetic field on the jamming transition 
 

The jamming transition is provoked by the failure of the repulsive coating  layer, adsorbed on the particles to prevent 

a direct contact between the surfaces,above a given applied stress. The applied stress is a key parameter since we 

expect that the force which pushes two particles against each other will behave like: Fa =πa2 σa where σa is the 

applied stress. Above a given applied force we suppose that the compression of the polymer layer is large enough to 

be able to push away the molecules adsorbed on the surface, and then to induce the transition from a lubricated to a 

frictional regime. So for σa>σc the transition should occur. If  we add an external attractive  force between the 

particles,  such as a magnetic force, we could expect that the transition will take place at a lower hydrodynamic stress 
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, σh ,since we have now the condition σh+ τy >σc where τy is the magnetic stress which is  approximately equivalent to 

the  yield stress due to the application of the magnetic field  (22), (23). Then the  condition: 

( )0 c y c2

j c

1

1 / ( )
η γ + τ = σ

− Φ Φ σ
&          (7) 

 states that if τy increases the critical shear rate should decrease, at least if Φj(σc) does not vary too much with the 

magnetic field. This is what we observe in Fig. 6 where we present a complete sweep of amplitudes of magnetic field 

for a volume fraction of carbonyl iron particles with Φ=63% suspended in a mixture of water and ethylene glycol. In 

these experiments we have used a plate-plate geometry and the field is perpendicular to the surface of the rotating 

disk. 
 

 
Fig.6  Ramp of stress for different amplitudes of magnetic field 

Φ=63%. A magnetic field of 10kA/m is equivalent to an induction of 

12.5  10-3 Tesla 

 
We actually observe the decrease of the critical shear rate as the amplitude of the magnetic field increases and also a 

regular increase of the critical stress σc. In the two following figures we have reported (Fig 7a) the critical stress 

corresponding to Fig.6 and the difference between the critical stress and the yield stress (Fig.7b). We observe in fig.7a 

that the final critical stress is about two times the initial one. On the other hand, if we subtract the yield stress from 

the critical one in order to keep only the hydrodynamic component of the stress, then this component does not 

increase with the magnetic field (Fig.7b). It indicates that it is the hydrodynamic component which drives the 

jamming transition, the magnetic one just modify the yield stress and the dynamic viscosity of the suspension (since 

the slope of the curve increases steadily with the field) but does not contribute directly to the force which will sweep 

out the coating polymer. 

 

 
Fig.7a    Critical stress of the jamming transition 

versus the applied magnetic field for Φ=63% 

Fig7b   The critical stress minus the yield stress for 

the same  experiment  than in Fig.7a   
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In other words, it means that it is not so much the compression of the polymer layer that is needed to get rid of it but 

rather a shear force which is provided by the hydrodynamic stress. If it was a compression force which was required 

to remove the polymer then since both the magnetic and the hydrodynamic one contribute to the compression, the 

critical stress should remain constant instead of increasing as shown in Fig. 7a. 

Another interesting situation is obtained if we impose a given shear rate and raise the magnetic field. The result of 

this experiment is shown in Fig. 8. 
A shear rate of 30s-1 was applied from the 

beginning. and we raised progressively the 

amplitude of the magnetic field. The jump of stress 

occurs a few second after the step of 21kA/m. The 

jump of stress corresponds to two orders of 

magnitude, and is actually limited by the maximum 

torque of the rheometer (here 0.3N.m). Using the 

homemade rheometer with the cell shown in fig. 3a, 

we found that the yield stress can jump up to 

150kPa for field of only 8kA/m. Furthermore, 

instead of oscillating between a jammed state and a 

flowing state as it is the case in the absence of field 

(cf Fig. 3b), it remains in the jammed state (24) 

which allows to use this field induced jamming 

transition for applications in force or torque 

transmission. 

We have seen that above the jamming transition we 

observe large fluctuations of the shear rate during a 

ramp of stress (Fig. 2) or of the stress during a ramp 

of shear rate (Fig. 3b). We are now going to analyse 

more specifically this instability which occurs 

above the critical point both in absence and in 

presence of a magnetic field 
 

 

 

 

 

 

Analysis of the instabilities above the jamming transition 
 

No magnetic field 
 

Contrarily to what is observed with cornstarch suspensions or some silica suspensions where we have a soft transition 

which manifests by a S-shape, as is the case also at the lowest volume fraction (cf Fig. 4), we have here an immediate 

decrease of the shear rate followed by a regime of strong oscillations (cf Fig.1-2). Some of them were observed at 

imposed shear rate (8), and imposed stress (25), (26) in shear thickening suspensions. If we conduct an experiment at 

a fixed stress above the critical one in a plate-plate geometry, we see in Fig. (9) that we have some regular oscillations 

with a saw tooth shape. At the lowest stress, just above the transition, the shear rate can even change of sign as we 

previously observed in calcium carbonate suspensions (13), meaning that the rotational velocity of the upper disk is 

inverted during a short interval of time. The second observation is that, at higher imposed stress, the oscillations are 

of smaller amplitude and of higher frequency. We previously (13) gave an explanation of these oscillations with a 

saw tooth shape by introducing the inertia of the tool in the equation of motion in the presence of a rheological model 

presenting a S-shape but with a simple equilibrium model where the viscosity was supposed to diverge as η(f)=η0 (f-

fM)-p where fM was a parameter. We are now reconsidering this model with the viscosity represented by Eqs (2), (3). 

We are also including the yield stress, τy in the two dynamical equations for the stress and the fraction of frictional 

contacts: 
 

 
Fig.8  Increase of the field step by step at a constant 

shear rate of 30s-1. Volume fraction Φ=0.61 
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a y

I
(t) (t) (f (t)) (t)

C
γ = σ − η γ − τ&& &   or: s a y

I
(t) (t) (t) (f (t)) (t)

C
σ = σ − γ = η γ + τ&& &

 (8) 

 

e s

f 1
(f f ( ))

t

∂ = − − σ
∂ τ

          

 (9) 

 
In Eq. (8) I=9.36 10-5 is the inertia of the tool plus the one of the motor which is attached on the same axis and 

C=�R4/2h =2.51 10-4 is a constant specific to the plate-plate geometry having a gap h =1mm and a radius R=20mm. 

The term: �dv/dt expressing the inertia of the suspension does not appear since it is negligible compared to the 

mechanical inertia. Nevertheless; this term which gives a spatially variable stress, is responsible also for an instability 

but at much higher frequencies (27) than those appearing in Fig (9). 

 
Fig.9  Shear rate versus time for a constant applied stress of  120 Pa  and then 150Pa. Carbony iron 

suspension at Φ=0.62 with 0.2% weight of PPP44  

 
An important point is that the real stress acting on the suspension is not the supposed applied one but the applied one 

plus the one coming from the inertia of the tool as was demonstrated in (26). Consequently the fraction of frictional 

contacts should depend on the actual stress:σs which is different from the applied stress, σa, because of the inertia 

term given by Eq. (8). The  yield stress τy introduced in this Eq. (8) can arise from any attractive force including the 

magnetic one and a generalization of σm in Eq. (7). 

We can apply a linear stability analysis to Eqs. (8) and (9) in order to predict the frequency of the oscillations. 

The perturbations are givens in the usual way: with respect to the equilibrium values: 

( ) .t .t

e a af f f with f A.e and B.eΩ Ω= σ + δ γ = γ + δγ δ = δγ =& & & &     (10) 

The viscosity is a function of f through the equations (2) and (3) and needs to be developed as: 



10 

 

 

 

Phil. Trans. R. Soc. A.  

 

 

 

e

ef

(f ) (f ) f
f

∂ηη = η + δ
∂

  and we have also      ( )e s e a s a

a

f
f ( ) f ( ) ¨

σ

∂σ = σ + σ −σ
∂σ

    (11) 

Taking into account that (cf Eq. (8) ) : s a (I / C)σ − σ = − γ&&  and that esin ce 0γ = δγ γ =&& && &&  at equilibrium, and 

inserting Eqs. (10) and (11) into Eqs (8) and (9), we end up, after keeping only the linear terms in the perturbation, 

with: 

a a

a

I
( )

C f
f 0

σ

∂η Ω + η σ δγ + γ  ∂ 
δ =& &       and     

a

I f
(1 )

C
f 0

σ

∂ Ω δγ + + τ Ω
∂σ

δ =&    (12) 

 

The condition of a zero discriminant of these two equations gives the following equation for Ω: 

2 a
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&
       with      I a 4
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C. ( ) ( ) R
τ σ = =

η σ η σ π
             (13) 

where τI is the inertial time which depends strongly on the radius of the upper disk. To derive Eq. (13) we have used: 

( )a

aa a a a

f 1
1

f σ σ σ σ

 η σ∂η ∂ ∂η ∂γ= = − 
∂ ∂σ ∂σ γ τ ∂σ  

&

&
 

In these equations σa is the applied stress and aγ&  the corresponding shear rate in the absence of instability. The result 

for the angular frequency is then: 

2
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0.5 ¨

( ) ( ) . ( )σ σ
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& &
  

 (14) 

If the first term becomes negative then the term exp(Ωt) diverges and we have the growth of the instability whose 

period is given by : 

c I cT 2 / 2 . ( )= π Ω = π τ τ σ          

 (15) 

In principle, we see that the parameter τ describing the rate at which the percolation fraction returns to its equilibrium 

value can be deduced from the experimental period of the oscillations. We have compared in Figs.10 and 11 the 

predictions of the dynamical model (Eqs 8-9 ) both for the ramp of stress and for the two stationary values of 120 Pa 

and 150 Pa which are above the critical stress σc=97Pa. In Figs.9-11 the experimental curves correspond to the same 

suspension of carbonyl iron in water at Φ=62% with 0.2% of superplastifier 

  

 

 
Fig.(10)  Φ= 62% iron particles  in water with 0.2% 

PPP44. Purple experimental shear rate versus applied 

Fig.(11) Oscillations of shear rate at constant applied stress. 

Blue losange: experiment at 120Pa. Solid blue line:model at 
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stress . Blue: Model with Eqs(8)-(9). 120Pa. Black dotted line:model at 150Pa 

 

In Fig. (10), the theoretical curve (in blue) was obtained with τy=15Pa ; λ=2.48 for the sigmoid (Eq. (5)) and 

η0=0.059 for the viscosity (Eq. (2)).These two last values are those which match the critical point to the experimental 

one obtained with Eqs.( 4) and (6). We can see that, given these constraints at 0γ =&  and at 
1

c 34s−γ = γ =& & , the 

theoretical curve is quite different from the experimental one. Actually the theoretical model is based on a progressive 

shear thickening before the DST transition since the jamming volume fraction Φj(σ) decreases continuously when σ 

increases, which results in an increasing viscosity with σ. On the contrary the experiment (purple curve in Fig.10) can 

be represented by a Bingham law up to the transition point, meaning that the fraction of percolating contacts remains 

low and suddenly increases at the critical stress. As in the experiment, above the critical stress, we obtain strong 

oscillations of the shear rate, but with two differences: the amplitude of these oscillations is smaller than in the 

experiment and their maximum value remains close or slightly above cγ& . This is more visible in Fig.(11) where we 

have plotted the experimental  oscillations of the shear rate for a constant applied stress of 120 Pa (blue losanges) 

together with the prediction of the model (solid blue line). We see that the theoretical oscillations are well above the 

experimental ones. In order to get the same period as the experimental one: Texp=0.16s we have taken τ=2ms. The 

theoretical period given by Eq. (15) with τ=2ms is slightly smaller: Tth=0.11s, this is not surprising because it comes 

from a linear approximation valid when the instability just begins to develop. 

At last we see in Fig. 11 that for a higher stress σ=150 

Pa the period of the oscillation has slightly 

decreased:(black dotted line) with Tth=0.12s. This is 

coherent with the experimental observation (cf Fig. 

(9)) although the decrease is more pronounced with 

Texp=0.083s. Qualitatively, this decrease of the period 

is related to the decrease of τI(σ) (Eqs (13) and (15)) 

since the viscosity increases with the stress 

 

In order to reproduce the large value of the oscillations 

observed in Fig. (9), it is needed to use a different 

model for the divergence of the viscosity like the one 

used in (13). For instance in Fig. (12) we have used a 

stronger divergence of the viscosity with p=4 instead 

of p=2. Comparing the black curve to the red one we 

see that the amplitude of the oscillations is increased 

and, also that the drop of the shear rate is more abrupt 

like the one of the experimental curve (blue triangle). 

Nevertheless the major difference with the 

experimental curve is that the upper value of the shear 

rate remains close to the critical one whereas in the 

experiments, after the abrupt recoil of the shear rate, 

the oscillations never reach again the critical one (cf 

Fig. 10). The fact to use p=4 in Eq. (2) for the viscosity has no theoretical justification, it just emphasizes the need for 

a more abrupt increase of the viscosity with the stress or in other words to generate a stronger negative slope in the S-

shape of the stress versus shear rate curve. We believe that, since the jamming transition generates a frictional stress, 

there is no reason to stick to a dependence of the viscosity which is only justified in the presence of lubrication and 

soft repulsive forces.  

In (13) we took η(f)=η0 (f(σ)-fM)-p which is somewhat arbitrary but takes into account that the divergence of the 

viscosity is directly driven by a critical fraction of frictional contacts rather than by a critical volume fraction, even if 

this critical fraction should be a function of the volume fraction of the suspension. 

 

Influence of a magnetic field on the oscillating regime  
  

As we have seen previously in Fig.(6)  the application of a magnetic field allows to decrease the critical shear rate of 

the jamming transition. We are going to investigate the effect of the magnetic field on the oscillation regime above 

the transition. This effect is shown in Fig.(13) where we have increased step by step the magnetic field ,keeping 

constant the applied stress, always at a volume fraction of 62%. The oscillations of  the shear rate quickly  decreases 

when we increase the field and their frequency increases. Then their shape becomes more irregular and finally above 

10kA/m they have totally disappeared (solid green line). 

 
Fig(12)  Comparison of two divergences of the viscosity 

(Eq.(2)) witheither p=2 (black triangles) or p=4 (red 

triangles) The blue triangles are tfrom experiment.  
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Fig. (13) Oscillating regime for the shear rate at constant applied stress: σa=120Pa, for differents magnetic fields. 

Volume fraction of carbonyl iron  Φ=62% 

   

Actually, as shown in Fig. (6),when we increase the magnetic field  we also increase  the critical stress above which 

the instability appears. It is then understandable that, if we apply a constant stress (here 120 Pa) and increase the 

magnetic field, the critical stress will go above the applied one and we shall fall inside the stable region, so the 

instability will disappear. Nevertheless, if we apply the model described above by increasing progressively the critical 

stress in order to represent he effect of the magnetic field ,we do not observe the same behavior as the one described 

in Fig. (13): the amplitude and the frequency of oscillations remain practically constant until a critical stress of 

119.5Pa is reached where the oscillations suddenly disappear. Once again it appears that the description of the 

evolution of the viscosity with the stress (Eqs. (2)-(3)-(5)) is not well adapted to systems where the fraction of 

frictional contacts vary abruptly with the stress.   

 

Jamming transition in a capillary 
 

Until now, we have considered rotational geometries, but in many industrial processes like the injection of pastes or 

ceramics inside molds, the suspension is pushed inside a capillary, so it is important to see how this jamming 

transition behave in a capillary. To achieve this aim, we have used a Malvern RH7 capillary rheometer whose 

diameter of the barrel was 9.5mm and its length 28 mm. The diameter of the capillary was d=2R= 0.75mm and its 

length L=3mm. The pressure sensor was placed inside a hole perpendicular to the axis of the barrel and close to its 

end where the capillary is screwed. 

For a viscous medium, the shear rate at the wall of the capillary and the pressure drop are respectively given by: 

 
3

vi

4

s4Q /( R ) and P 8L Q /( R )γ = π = η π&            (16) 

Where η is the viscosity of the suspension, Q the flow rate and L the length of the capillary. The experiment was done 

with a volume fraction of iron Φ=64% in a mixture of ethylene glycol and water always with 0.2% of superplastifier. 

The viscosity of the suspension was η= 5.4Pa.s. The pressure versus the shear rate is represented in Fig. 14a for two 

different ramps of shear rate. 
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Fig.(14a) Pressure versus shear rate in a capillary 

rheometer. Suspension of iron Φ=64%. Red curve :slow 

increase of shear rate (see Fig 13b). 

 Black curve:fast increase (60s-1/mn) 

Fig. (14b) : Evolution of shear rate (blue curve) and of the 

pressure(red curve) with time. It corresponds to the red curve 

of  the left figure.  

 

The first one corresponds to a ramp with a constant shear rate of 50s-1 during 300s and then a ramp from 50s-1 to 300 

s-1 in 700s; the second one to a ramp of shear rate from 0 to 180s-1 in 175s. In Fig. 14b we have plotted, for the slow 

ramp, the pressure and the shear rate versus time. We can observe that, when the shear rate is raised slowly, we have 

an abrupt transition at the last step of shear rate with the pressure rising from 0.02MPa to 0.3MPa .This is the 

signature of a jamming transition otherwise the pressure should vary linearly with the shear rate (cf Eq. (16)). After 

this peak, if the shear rate is kept constant, the pressure decreases slightly and fluctuates around 0.22MPa. If, on the 

contrary, we increase the shear rate more rapidly, then we still observe an increase of pressure which is not at all 

linear with time but does not show this abrupt transition. The pressure steps observed in Fig. 14a (black line) 

correspond to the shear rate steps. If we calculate the pressure at the maximum shear rate of 130s-1 from Eq. (16), that 

is to say for the flow of a viscous suspension, we obtain a pressure drop of 0.011 MPa instead of 0.22 MPa. It means 

that we no longer have a suspension flowing in the capillary, but a less concentrated suspension flowing through a 

jammed skeleton of particles forming a porous media. Although it is not related to a jamming transition, this 

phenomenon is well known in extrusion of pastes where a plug of solid particles is formed and the liquid of the 

suspension filtrates through this porous plug (28), (29). It was also studied  in  suspensions of PMMA particles, with a 

suspending liquid of  about the same refractive index in order to visualize the flow, which was sucked inside a syringe 

(30). If instead of a viscous flow we consider a flow of the suspending liquid through a porous medium made of a 

network of the solid particles ,the pressure drop can be obtained from the Carman-Kozeny equation: 
3 2

por 2 2

Q 1 d
P L. . with K

.R K 180(1 )

ε= µ =
π − ε

           

 (17) 

K is the Carman-Kozeny constant for a bed of spherical particles of diameter d; ε=1−Φ is the porosity and µ the 

viscosity of the suspending fluid. For the maximum shear rate, we have now Ppor=2190MPa. This is much bigger than 

the observed pressure. A possible explanation is that the jamming does not occur inside the capillary but rather before 

its entrance (28), so the superficial velocity Q/(πR2) and the filtration pressure would be much lower than predicted 

by Eq. (17) since R is no longer the radius of the capillary but rather the radius of the barrel. Even in this case it is still 

higher than the experimental one:Pbarrel=13.6MPa meaning that this porous media is not consolidated. It is also 

coherent with the high value of the critical shear rate: 
1130 s−γ ≈&  with respect to the one obtained in rotational 

geometry which is around 30s-1, meaning that the jamming does not occur in the capillary. The fluctuations of 

pressure observed at constant shear rate are likely produced by the intermittent collapse of jammed structure at the 

entrance of the die as observed in (28). 

 

Conclusion 
 

In this paper we have presented experimental results showing a strong discontinuous shear thickening obtained with a 

suspension of carbonyl iron particles in the presence of a superplastifier molecule. The jump of stress at imposed 

velocity can reach more than 100kPa. The model proposed in (17) can reproduce the S-shape observed at the lowest 

volume fraction, but in this model the transition is preceded by a shear thickening behavior that is practically absent 

in our experiments at high volume fraction. Introducing a relaxation time,τ, for the fraction of frictional contacts and 
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the inertia of the tool used in rotational rheometry has allowed to recover the right frequency of the oscillations with 

only one supplementary parameter: τ. A linear stability analysis show that the period of the oscillations is simply 

related to the square root of the product of τ and of the inertia time (Eq. 15) allowing to obtain directly this relaxation 

time from the experimental period. The amplitude of the oscillations obtained with the model of Wyart and Cates (17)  

appears too small. In order to reproduce both the amplitude and the shape of these oscillations a stronger dependence 

of the viscosity with the stress is needed. The jamming transition of this suspension of iron particles is very sensitive 

to the application of a magnetic field and the critical shear rate decreases quickly with the amplitude of the magnetic 

field, but simultaneously the critical stress increases. Nevertheless, if we subtract the magnetic stress to the applied 

one, the difference remains constant, indicating that it is the hydrodynamic stress which drives the jamming 

transition. We also have found that this jamming transition also occurs in capillaries and manifests itself by the 

building of a porous media constituted of particles in frictional contact. The dynamics of this transition is much 

slower than in rotational geometry and is likely related to the formation of a plug at the entrance of the die. Further 

investigations, especially in the presence of a magnetic field, is needed to understand the dynamics of formation of 

this plug and the influence of the sedimentation on its time of formation. Depending on these results, we can 

emphasize several applications based on the control of the pressure at imposed flow rate or of the flow rate at 

imposed pressure, with a small magnetic field. 
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