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Summary 
 
The flow of concentrated suspensions of solid particles  can be suddendly blocked by the formation of a percolated 
network of frictionnal contacts above a critical value of the applied stress. Suspensions of magnetic particles coated with 
a superplastifier molecule were shown to produce  a strong jamming transition. We find that, for these supensions with an 
abrupt discontinuous shear thickening , a model using a divergence of the viscosity at a volume fraction which depends 
on the applied stress does not well describe the observed behavior both below and above the critical stress. At a constant 
applied stress above the critical one, we have a stick  slip behavior of the shear rate whose period can be predicted  and 
scales as the square root of the relaxation time of the frictional contacts. The application of a small magnetic field allows 
to continuously decrease the critical shear rate and it appears that the yield stress induced by the magnetic fiekd does not 
contribute to the jamming transition. At  last it is shown that this jamming transition also appears in the extrusion of the 
suspension through a die, but with a much slower dynamics than in the case of  stress imposed on a rotational geometry. 
 

Introduction 
 
The shear thickening is an increase of viscosity with the shear rate contrary to a Newtonian fluid where the viscosity 
remains constant whatever the shear rate. In colloidal suspensions it is frequent to observe this shear thickening which is 
interpreted as due to  the formation of aggregated flocs under the increase of the shear force between particles which 
overcomes the potential barrier due to a coating polymer or an ionic layer. These flocs emprison the suspending liquid 
which then behave as a solid of the size of the floc. The result is an increase of the effective volume fraction  and so of the 
viscosity. A model of this mechanism was described in (1), (2). In hard sphere suspension where there are only 
hydrodynamic interactions, the viscosity does not depend on the shear rate and diverges at a maximum volume fraction 
Φmax which is close to the maximum random close packing: ΦRCP=0.64: 

p

0
max

( ) 1
−

 Φη Φ = η − Φ 
          (1) 

where p is an. exponent close to 2. Actually the experiments made in order to find the value of the exponent p and of Φmax 
suffer from inaccuracies related to the polydispersity, non negligible short range interactions, uncertainty in the 
measurement of volume fraction etc.. 
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In colloidal suspensions the thermodynamic stresses, which scale as kT/a3 -where a is the radius of the particles-are far from 
being negligible and are responsible for a first shear thinning behavior before a shear thickening one due to the formation of 
hydroclusters when hydrodynamic forces dominate at large Peclet number (3). Non Brownian suspensions are obtained with 
particles whose radius is typically larger than one micron. Still in these suspensions, sedimentation and Van der Waals forces 
are present and combine to provoke the agregation of the particles if  they are not coated with a polymer layer which 
generates an entropic repulsive force between the  adsorbed  layers on the surface of the particles. In these supensions 
formed with non Brownian particles, a shear thickening is observed when the volume fraction is increased (typically above 
50%) and above a critical volume fraction, this continuous shear thickening (CST) is replaced by a discontinuous one (DST), 
which appears as a decrease of the shear rate in a stress imposed ramp, or as a jump in stress in a shear rate imposed ramp. In 
a well monodisperse suspension this transition was shown to be due to the disparition of an ordered structure, formed of 
hexagonal planes sliding over each other ,above a critical stress able to destroy it (4), (5). Nevertheless this DST behavior 
also happens in suspensions where the distribution of particles is far from being monodisperse and can also have irregular 
shape as is the case with the well known cornstarch suspension (6), (7) .Many other systems based on silica (8), (9), gypsum 
(10), poly-methylmethacrylate (11), calcium carbonate (12), (13) etc.also show this jamming transition. There is some large 
evidence, supported by numerical simulation (14) and also by AFM measurement of forces between particles (15) , that this 
transition is related to the passage from lubricated contacts to frictional ones when the shear force increases enough to  
overcome the potential barrier formed by a stabilizing layer. The critical shear force needed to produce this transition 
depends on the characteristic of the adsorbed layer of polymer. For instance we have shown  that, for the same particles, we 
can observe a difference of critical stress  by a factor of three by changing the superpastifier and we have related this 
difference to the amplitude of the  repulsive force generated by the different polymers (13). If it is interesting in industrial 
processing of pastes to be able to repel this jamming transition at the highest possible value of stress by a proper choice of 
the coating polymer, it would be still more interesting to be able to control the critical stress by an external mean. That is 
what we have succeeded to do by using suspensions of magnetic particles whose interaction forces can be modulated by the 
application of a magnetic field (16). Indeed the critical shear rate is shown to decrease strongly with the amplitude of the 
magnetic field and contrarily to the expectation, the critical stress is not constant but increases with the magnetic field. 
 In a first part , we shall present some typical rheological behavior associated with the jamming transition  and we shall adapt 
the model of Wyart and Cates (17) in the presence of a yield stress  and discuss the ability of this model to represent this 
transition. In a second part we shall more specifically address the control of the jamming transition with a magnetic field and 
we shall try to understand why the critical stress increases in the presence of a magnetic field. The third section will be 
devoted to the study of the instabilities which occur in the regime of flow in the jammed state and the last section to a 
preliminary study of the jamming transition during the extrusion of the suspension through a die 
 

Rheological characteristics of the jamming transition 
 
When the volume fraction of a suspension of non Brownian particles is increased, the rheogram, as represented by the 
shear stress versus the shear rate will change progressively, passing from a quasi Newtonian behavior to a shear 
thickening one and finally will end up with the jamming transition as represented in Fig.(1). 
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These rheograms are obtained on a rheometer MCR 501 
(Anton Paar) in a plate plate geometry, the ramp of stress is 
made at typically 50Pa/mn which is slow enough to 
guarantee the absence of thixotropy. The suspension is 
made of carbonyl iron particles in a mixture of ethylene 
gycol and water where we have added 0.2% in mass of a 
superplastifier molecule which is a polyoxyethlene 
polyphosphonate used in the cement industry. This 
molecule strongly adsorbs on the calcium sites of the 
particles through the PO3

-- phosphonate ionic groups of the 
molecule. The polyoxyethylene tail is composed in average 
of 44 oxyethylene groups: CH2-CH2-O, which has a quite 
good affinity with water; in the following  we shall call this 
molecule PPP44(13). We see that even at a volume fraction 
as high as 57% the yield stress τy is quite low (around 15Pa) 
and that the dynamic viscosity is constant, so the whole 
rheogram is well represented by a Bingham 
law: y dτ = τ + η γɺ . At Φ =59% the behavior is already 
quite different with a strong  

increase of the viscosity above a shear rate of 60 s-1, 
followed by a domain with small oscillations. Then at 
Φ=61% we have a strong jamming transition with a sudden 
decrease of the shear rate followed by a regime of strong 
oscillations around a mean value of 35s-1. Finally, at 62% 

there is also a jamming transition but occurring at a lower shear rate. If we still increase the volume fraction, at some 
given value close to 66% the system is completely jammed and there is no flow at all when the stress is increased. 
Actually a definitive blocking of the system whatever the imposed stress will depend a lot of the plasticity of the 
particles, of the roughness of the walls of the cell, and of the non-dilatancy of the gap under large applied shear stress. 

The DST transition can be more or 
less abrupt. For instance, in Fig.2 we 
have reported the jamming transition 
for carbonyl iron particles (average 
diameter 1.2µm), for carbonate 
calcium particles (average diameter 
4µm), and for silica particles (average 
diameter 5µm). The three suspensions 
are in water but the two first ones are 
stabilized by 0.2% in mass of the 
molecule PPP44 whereas there is no 
surfactant with silica whose 
stabilization is due to its natural 
ionization in water. The iron particles 
present the stronger transition with, 
above the critical shear stress 
τc=100Pa, large fluctuations of the 
shear rate -we shall come back to this 
point in the third section. The calcium 
carbonate at Φ=68% has also an 
abrupt transition for τc =147Pa but 
followed by some much smaller 
oscillations of the shear rate. Last, for 
the suspension of silica particles there 
is a continuous decrease of the shear 

rate above τc=12Pa  but without a clear regime of oscillation. Note also that the abrupt increase of shear rate at τ=165 Pa 
is just due to the expulsion of the suspension out of the gap between the two plates. It is worth noting that other systems 
do not show a decrease of the shear rate but only a stop of its increase which corresponds to a vertical line, on the stress-
shear rate graph; this is the case for cornstarch suspension in water or silica particles in mineral oil (18). These different 

 

Fig.1 Evolution of the rheology of a suspension of carbonyl iron 
particles  for different volume fractions  

 

Fig.2  Jamming transition for suspensions composed of iron particles (red 
symbols), calcium carbonate particles (solid blue line) and silica particles (solid 

green line) 
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regimes depend likely on the deformability of the particles and on the softness of the repulsive barrier formed by a 
coating polymer or an ionic layer. 
In Figs (1) and (2), the rheogram corresponds to a ramp of shear stress that is to say to a continuous increase of the torque 
on the upper plate. In this situation, a transformation of the suspension in a jammed state can produce a decrease of the 
rotation speed or even its complete stop. On the other hand, if the motor imposes a ramp of velocity, when the shear rate 
exceeds the critical one, we expect a jump in the shear stress which will recover, if it exists, the branch where the shear 
rate begins again to increase in the regime of imposed stress. Actually, in the suspensions with an abrupt jamming 
transition, the jump of stress above the critical shear rate, is very high and well above the rheometer maximum torque. 
Furthermore, the stress generated is transmitted radially and ejects the particles outside the suspension (19). In a plate-
plate geometry the suspension goes out of the gap while in cylindrical Couette geometry particles are pushed outside the 
free surface and air enters the suspension, producing a foam at the surface. In order to get rid of a free interface and also 
to have a high enough torque capacity, we have used a high torque viscosimeter developed by CAD company, mainly to 
measure the viscosity of concrete. We have designed a cell where the suspension is confined by a teflon seal (Fig.3a). To 
prevent slipping we have used either a vane or a double helix as the rotating tool; also the outside wall is serrated with 
stripes of depth 0.2mm.  
 

 

 
Fig. 3a  Sketch of the confined cell Fig.3b  Ramp of shear rate. Iron suspension, Φ=62% 
 
This rheometer works in the imposed velocity mode and in Fig 3b we have reported the stress measured during a ramp of 
shear rate. We see that there is an abrupt jump of stress which reaches 80kPa, nevertheless this stress does not remain at 
this high level but oscillates between the flowing and a jamming state which increases with the shear rate. In this case, the 
structure of the suspension manages to come back transiently to the flowing state despite the fact that the shear rate is 
above the critical one. We shall discuss this point in the section devoted to the application of a magnetic field. 

Rheological model of the jamming transition 
 
It is now quite well established that the DST is generated by the transition from lubricated to frictional contacts as shown 
by numerical simulations (20). The key parameter is the fraction of frictional contacts: f(σ) which is expected to be a 
growing function of the stress. It is needed to relate the viscosity to this function; this can be done directly by assuming 
that the viscosity should diverge when a given fraction of frictional contacts is reached (13) or indirectly by the mean of 
the volume fraction as proposed in (17). In this last approach two limiting volume fractions are considered corresponding 
to f(σ)=0 and f(σ)=1. The first one Φ0 corresponds to the maximum packing fraction of the suspension in the absence of 
frictional contacts. It would be the random close packing Φ0=0.64 for monodisperse spheres, although the structure 
formed by the flow can change this diverging volume fraction which can reach 0.7 and may correspond to the stacking of 
FCC multilayers rafts (21). For polydisperse suspensions it can be much higher, around Φ=0.8 (22). The second critical 
volume fraction is the one corresponding to the jamming of the actual suspension: Φm where all the contacts are frictional 
and the suspension can no longer flow whatever the stress. Then, for a given stress, the authors assume that the viscosity 
will follow the usual law of divergence of the viscosity, but with a maximum volume fraction  Φm<Φj(σ)<Φ0 ; 

( )0 p

j

1
( ) with p 2

1 / ( )
η σ = η =

− Φ Φ σ
      (2) 
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The diverging volume fraction Φj(σ) must be related to the function f(σ) since its two limits correspond to f=0 and f=1 
and the simplest hypothesis is  a linear dependence : 
 

( ) ( ) ( )( )j m 0f 1 fΦ σ = Φ σ + Φ − σ        (3) 

As f(σ) is a growing function of the stress, the maximum packing fraction will decrease with the stress and so the 
viscosity will increase (cf Eq.(2)). If the viscosity η(σ) grows faster than σ, then the shear rate ( ) / ( )γ σ = σ η σɺ will 

begin to decrease, corresponding to the beginning of the DST transition. We are going to see how this model can be used 
to reproduce our experimental data. In Fig. 4 we have reported the rheograms obtained on a suspension of carbonyl iron 
with 0.2% in weight of superplastifier and different volume fractions. At Φ=56% we have a shear thickening behavior 
followed, at high shear rates by a slight “S-shape” characteristic of the DST transition. At Φ=58% the S-shape is more 
pronounced and at Φ=62% and Φ=64%, the S shape has been replaced by an abrupt decrease of the shear rate followed 
by an oscillation regime. 

 
Fig.4 Rheograms of a suspension of carbonyl iron with 0.2%wt of PPP44 for different volume fractions 

 
We are going to fit the curve presenting the characteristic S-shape at Φ=58% with the help of Eqs. (2)-(3). The maximum 
volume fraction at which the suspension is completely jammed from the beginning is Φm=67%. As already discussed, the 
maximum packing fraction without friction can be taken as Φ0=0.8 for a polydisperse suspension. The shape of the 
function f(σ) is unknown, it is just a monotonous growing function between 0 and 1. The choice of the simple function: 1-
exp(-σ/σc) where σc is the critical shear stress was done in (17) but it is convenient to introduce a parameter λ which will 
determine the steepness of the function and will help to fit the experimental result. In this case we can take: f(σ)=1-exp(-
λ.σ/σc). The two remaining parameters λ and η0 can be obtained by requiring first that the curve passes by the 

point c c( , )σ γɺ and second that the derivative 

c

d

d
0

σ=σ

γ
σ

=ɺ
 at this point. This last condition links λ to p and it is 

expressed by: 

( )
c c

0 m
c y

c yjc jc

p. ( )dLog( ) df ( ) 1
1

d dσ=σ σ =σ

Φ Φ − Φη σσ − τ = → =
σ σ σ − τ Φ Φ − Φ 

                             (4) 

 
We have introduced the yield stress τy which is often present at high volume fraction. Together with Eq. (2), it imposes 
for the viscosity η(σc) at the critical point to satisfy the Bingham law. In this expression Φjc is the value of Φj for σ=σc. It 
appears that with the value p=2 for the divergence of the viscosity and f(σ)=1-exp(-λ.σ/σc), there is no value of λ  which 
can fulfil Eq.(4) to represent the S shape at Φ=0.58 with the corresponding critical point  σc=927 Pa and γc=536s-1. A 
more stronger divergence of the viscosity would be needed (p=4) to satisfy Eq. (4). Instead we have used a sigmoid 
function for f(σ) which allows to satisfy this condition with p=2: 
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c

1
f ( )

1 exp 1

σ =
  σ+ −λ −  σ  

                                                                    (5) 

 

The value of η0 is fixed by the condition:     
( )

p

c y
0

c j c

1
 σ − τ Φη = −  γ Φ σ ɺ

    (6) 

but  does not correspond to the viscosity of the suspending fluid. In Fig. 5, we have plotted the experimental curves of 
Fig. 4 for Φ=0.58 and Φ=0.62 together with the theoretical expressions given by Eqs (2), (3) and (5). The values of λ and 
η0 obtained from Eqs (4) and (6) are for Φ=0.58: η0=0.076Pa.s, λ=3.12 and for Φ=0.62: η0=0.077Pa.s, λ=2.51. The yield 
stress was taken respectively as 7 Pa and 20 Pa. We first note that the model reproduces qualitatively the S-shape at 
Φ=0.58 but not at all the abrupt decrease at Φ=0.62. In order to have this abrupt decrease, the viscosity should increase 
abruptly, but the divergence of the viscosity (Eq.(2)) with Φj(σ)>Φm=0.67 can't reproduce it because it will smoothly tend 
towards ηmax=(1-Φ/Φm)-2 and then end up with a Newtonian behavior at high stress as we see on the figure (black solid 
line). A possible explanation of this failure would be the onset of instability at the turning point. We shall discuss this 
hypothesis in the third section. Concerning the parameter η0 it is interesting to note that it remains almost the same for the 
two volume fraction. 
 

 
Fig.5    Fit of the experimental rheograms with the Eqs(2),(3),(5)for Φ=0.58 (blue solid line) and Φ=0.62  (black solid 
line) 
 

 

Effect of a magnetic field on the jamming transition 
 
The jamming transition is provoked by the failure of the repulsive coating  layer, adsorbed on the particles to prevent a 
direct contact between the surfaces,above a given applied stress. The applied stress is a key parameter since we expect 
that the force which pushes two particles against each other will behave like: Fa =πa2 σa where σa is the applied stress. 
Above a given applied force we suppose that the compression of the polymer layer is large enough to be able to push 
away the molecules adsorbed on the surface, and then to induce the transition from a lubricated to a frictional regime. So 
for σa>σc the transition should occur. If  we add an external attractive  force between the particles,  such as a magnetic 
force, we could expect that the transition will take place at a lower hydrodynamic stress , σh ,since we have now the 
condition σh+ τy >σc where τy is the magnetic stress which is  approximately equivalent to the  yield stress due to the 
application of the magnetic field  (23), (24). Then the  condition: 

( )0 c y c2

j c

1

1 / ( )
η γ + τ = σ

− Φ Φ σ
ɺ          (7) 
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 states that if τy increases the critical shear rate should decrease, at least if Φj(σc) does not vary too much with the 
magnetic field. This is what we observe in Fig. 6 where we present a complete sweep of amplitudes of magnetic field for 
a volume fraction of carbonyl iron particles with Φ=63% suspended in a mixture of water and ethylene glycol. In these 
experiments we have used a plate-plate geometry and the field is perpendicular to the surface of the rotating disk. 
 

 
Fig.6  Ramp of stress for different amplitudes of magnetic field Φ=63%. A 
magnetic field of 10kA/m is equivalent to an induction of 12.5  10-3 Tesla 

 
We actually observe the decrease of the critical shear rate as the amplitude of the magnetic field increases and also a 
regular increase of the critical stress σc. In the two following figures we have reported the critical stress (Fig 7a) and the 
difference between the critical stress and the yield stress (Fig.7b). We observe in fig.7a that the final critical stress is 
about two times the initial one. On the other hand, if we subtract the yield stress from the critical one in order to keep 
only the hydrodynamic component of the stress, then this component does not increase with the magnetic field (Fig.7b). It 
indicates that it is the hydrodynamic component which drives the jamming transition, the magnetic one just modify the 
yield stress and the dynamic viscosity of the suspension (since the slope of the curve increases steadily with the field) but 
does not contribute directly to the force which will sweep out the coating polymer. 

 

 
Fig.7a    Critical stress of the jamming transition versus 
the applied magnetic field for Φ=63% 

Fig7b   The critical stress minus the yield stress for the 
same  experiment  than in Fig.7a   

 
In other words, it means that it is not so much the compression of the polymer layer that is needed to get rid of it but 
rather a shear force which is provided by the hydrodynamic stress. If it was a compression force which was required to 
remove the polymer, then since both the magnetic and the hydrodynamic one contribute to the compression, the critical 
stress should remain constant instead of increasing as shown in Fig. 7a. 
Another interesting situation is obtained if we impose a given shear rate and raise the magnetic field. The result of this 
experiment is shown in Fig. 8. 
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A shear rate of 30s-1 was applied from the beginning. 
and we raised progressively the amplitude of the 
magnetic field. The jump of stress occurs a few second 
after the step of 21kA/m. This jump of stress 
corresponds to two orders of magnitude, and is actually 
limited by the maximum torque of the rheometer (here 
0.3N.m). Using the homemade rheometer with the cell 
shown in fig. 3a, we found that the yield stress can 
jump up to 150kPa for field of only 8kA/m. 
Furthermore, instead of oscillating between a jammed 
state and a flowing state as it is the case in the absence 
of field (cf Fig. 3b), it remains in the jammed state (25) 
which allows to use this field induced jamming 
transition for applications in force or torque 
transmission. 
We have seen that above the jamming transition we 
observe large fluctuations of the shear rate during a 
ramp of stress (Fig. 2) or of the stress during a ramp of 
shear rate (Fig. 3b). We are now going to analyse more 
specifically this instability which occurs above the 
critical point both in absence and in presence of a 
magnetic field 
 
 

 
 
 
 

Analysis of the instabilities above the jamming transition 
 

No magnetic field 
 
Contrarily to what is observed with cornstarch suspensions or some silica suspensions where we have a soft transition 
which manifests by a S-shape, as is the case also at the lowest volume fraction (cf Fig. 4), we have here an immediate 
decrease of the shear rate followed by a regime of strong oscillations (cf Fig.1-2). Some of them were observed at 
imposed shear rate (8), and imposed stress (26), (27) in shear thickening suspensions. If we conduct an experiment at a 
fixed stress above the critical one in a plate-plate geometry, we see in Fig. (9) that we have some regular oscillations with 
a saw tooth shape. At the lowest stress, just above the transition, the shear rate can even change of sign as we previously 
observed in calcium carbonate suspensions, meaning that the rotational velocity of the upper disk is inverted during a 
short interval of time. The second observation is that, at higher imposed stress, the oscillations are of smaller amplitude 
and of higher frequency. We previously (13) gave an explanation of these oscillations with a saw tooth shape by 
introducing the inertia of the tool in the equation of motion in the presence of a rheological model presenting a S-shape 
but with a simple equilibrium model where the viscosity was supposed to diverge as η(f)=η0 (f-fM)-p where fM was a 
parameter. We are now reconsidering this model with the viscosity represented by Eqs (2), (3). We are also including the 
yield stress, τy in the two dynamical equations for the stress and the fraction of frictional contacts: 
 

a y

I
(t) (t) (f (t)) (t)

C
γ = σ − η γ − τɺɺ ɺ  or: s a y

I
(t) (t) (t) (f (t)) (t)

C
σ = σ − γ = η γ + τɺɺ ɺ  (8) 

 

e s

f 1
(f f ( ))

t

∂ = − − σ
∂ τ

          (9) 

 
In Eq. (8) I=9.36 10-5 is the inertia of the tool plus the one of the motor which is attached on the same axis and C=πR4/2h 
=2.51 10-4 is a constant specific to the plate-plate geometry having a gap h =1mm and a radius R=20mm. The term: 
ρdv/dt expressing the inertia of the suspension does not appear since it is negligible compared to the mechanical inertia. 

 
Fig.8  Increase of the field step by step at a constant shear rate 
of 30s-1. Volume fraction Φ=0.61 
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Nevertheless; this term which gives a spatially variable stress, is responsible also for an instability but at much higher 
frequencies (28) than those appearing in Fig (9). 

 
Fig.9  Shear rate versus time for a constant applied stress of  120 Pa  and then 150Pa. Carbony iron suspension in 

water at Φ=0.62 with 0.2% weight of PPP44 
 
An important point is that the real stress acting on the suspension is not the supposed applied one but the applied one plus 
the one coming from the inertia of the tool as was demonstrated in (27). Consequently the fraction of frictional contacts 
should depend on the actual stress:σs which is different from the applied stress, σa, because of the inertia term given by 
Eq. (8). The  yield stress τy introduced in this Eq. (8) can arise from any attractive force including the magnetic one  
We can apply a linear stability analysis to Eqs. (8) and (9) in order to predict the frequency of the oscillations. 
The perturbations are givens in the usual way: with respect to the equilibrium values: 

( ) .t .t
e a af f f with f A.e and B.eΩ Ω= σ + δ γ = γ + δγ δ = δγ =ɺ ɺ ɺ ɺ       (10) 

The viscosity is a function of  f(σ) through the equations (2) and (3) and needs to be developed as: 

e

ef
(f ) (f ) f

f

∂ηη = η + δ
∂

  and we have also      ( )e s e a s a

a

f
f ( ) f ( ) ¨

σ

∂σ = σ + σ −σ
∂σ

       (11) 

Taking into account that (cf Eq. (8) ) : s a (I / C)σ − σ = − γɺɺ  and that esin ce 0γ = δγ γ =ɺɺ ɺɺ ɺɺ  at equilibrium, and 

inserting Eqs. (10) and (11) into Eqs (8) and (9), we end up, after keeping only the linear terms in the perturbation, with: 

a a

a

I
( )

C f
f 0

σ

∂η Ω + η σ δγ + γ  ∂ 
δ =ɺ ɺ       and     

a

I f
(1 )

C
f 0

σ

∂ Ω δγ + + τ Ω
∂σ

δ =ɺ       (12) 

 
The condition of a zero discriminant of these two equations gives the following equation for Ω: 

2 a

I a Ia

( )1 1
0

( ) σ

 η σ ∂γΩ + Ω + + = 
τ σ τ ∂σ τ τ  

ɺ
       with      I a 4

a a

I I 2h
( )

C. ( ) ( ) R
τ σ = =

η σ η σ π
           (13) 
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where τI is the inertial time which depends strongly on the radius of the upper disk. To derive Eq. (13) we have used: 

( )a

aa a a a

f 1
1

f σ σ σ σ

 η σ∂η ∂ ∂η ∂γ= = − 
∂ ∂σ ∂σ γ τ ∂σ  

ɺ

ɺ
 

In these equations σa is the applied stress and aγɺ  the corresponding shear rate in the absence of instability. The result for 

the angular frequency is then: 

2

a a

I a I a I aa a

( ) ( )1 1 4
0.5 ¨

( ) ( ) . ( )σ σ

    η σ η σ∂γ ∂γ Ω = − + ± + −       τ σ τ ∂σ τ σ τ ∂σ τ τ σ     

ɺ ɺ
     (14) 

If the first term becomes negative then the term exp(Ωt) diverges and we have the growth of the instability whose period 
is given by : 

c I cT 2 / 2 . ( )= π Ω = π τ τ σ              (15) 

In principle, we see that the parameter τ describing the rate at which the percolation fraction returns to its equilibrium 
value can be deduced from the experimental period of the oscillations. We have compared in Figs.10 and 11 the 
predictions of the dynamical model (Eqs 8-9 ) both for the ramp of stress and for the two stationary values of 120 Pa and 
150 Pa which are above the critical stress σc=97Pa. In Figs.9-11 the experimental curves correspond to the same 
suspension of carbonyl iron in water at Φ=62% with 0.2% of superplastifier 
  

 
 

Fig.(10)  Φ= 62% iron particles  in water with 0.2% 
PPP44. Purple : experimental shear rate versus applied 
stress . Blue: Model with Eqs(8)-(9). 

Fig.(11) Oscillations of shear rate at constant applied stress. 
Blue losange: experiment at 120Pa. Solid blue line:model at 
120Pa. Black dotted line:model at 150Pa 

 
In Fig. (10), the theoretical curve (in blue) was obtained with τy=15Pa ; λ=2.48 for the sigmoid (Eq. (5)) and η0=0.059 for 
the viscosity (Eq. (2)).These two last values are those which match the critical point to the experimental one obtained 

with Eqs.( 4) and (6). We can see that, given these constraints at 0γ =ɺ  and at 1
c 34s−γ = γ =ɺ ɺ , the theoretical curve is 

quite different from the experimental one. Actually the theoretical model is based on a progressive shear thickening 
before the DST transition since the jamming volume fraction Φj(σ) decreases continuously when σ increases, which 
results in an increasing viscosity with σ. On the contrary the experiment (purple curve in Fig.10) can be represented by a 
Bingham law up to the transition point, meaning that the fraction of percolating contacts remains low and suddenly 
increases at the critical stress. As in the experiment, above the critical stress, we obtain strong oscillations of the shear 
rate, but with two differences: the amplitude of these oscillations is smaller than in the experiment and their maximum 

value remains close or slightly above cγɺ . This is more visible in Fig.(11) where we have plotted the experimental  

oscillations of the shear rate for a constant applied stress of 120 Pa (blue losanges) together with the prediction of the 
model (solid blue line). We see that the theoretical oscillations are well above the experimental ones. In order to get the 
same period as the experimental one: Texp=0.16s we have taken τ=2ms. The theoretical period given by Eq. (15) with 
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τ=2ms is slightly smaller: Tth=0.11s, this is not surprising because it comes from a linear approximation valid when the 
instability just begins to develop. 

At last we see in Fig. 11 that for a higher stress σ=150 Pa 
the period of the oscillation has slightly decreased:(black 
dotted line) with Tth=0.12s. This is coherent with the 
experimental observation (cf Fig. (9)) although the 
decrease is more pronounced with Texp=0.083s. 
Qualitatively, this decrease of the period is related to the 
decrease of τI(σ) (Eqs (13) and (15)) since the viscosity 
increases with the stress 
 
In order to reproduce the large value of the oscillations 
observed in Fig. (9), it is needed to use a different model 
for the divergence of the viscosity. For instance in Fig. 
(12) we have used a stronger divergence of the viscosity 
with p=4 instead of p=2. Comparing the black curve to the 
red one we see that the amplitude of the oscillations is 
increased and, also that the drop of the shear rate is more 
abrupt like the one of the experimental curve (blue 
triangle). Nevertheless the major difference with the 
experimental curve is that the upper value of the shear rate 
remains close to the critical one whereas in the 
experiments, after the abrupt recoil of the shear rate, the 
oscillations never reach again the critical one (cf Fig. 10 or 
Fig.(1)). The fact to use p=4 in Eq. (2) for the viscosity has 

no theoretical justification, it just emphasizes the need for a more abrupt increase of the viscosity with the stress or in 
other words to generate a stronger negative slope in the S-shape of the stress versus shear rate curve. We believe that, 
since the jamming transition generates a frictional stress, there is no reason to stick to a dependence of the viscosity 
which is only justified in the presence of lubrication and soft repulsive forces.  
In (13) we took η(f)=η0 (f(σ)-fM)-p which is somewhat arbitrary but takes into account that the divergence of the viscosity 
is directly driven by a critical fraction of frictional contacts rather than by a critical volume fraction, even if this critical 
fraction should be a function of the volume fraction of the suspension. 
 

Influence of a magnetic field on the oscillating regime  
  
As we have seen previously in Fig.(6)  the application of a magnetic field allows to decrease the critical shear rate of the 
jamming transition. We are going to investigate the effect of the magnetic field on the oscillation regime above the 
transition. This effect is shown in Fig.(13) where we have increased step by step the magnetic field ,keeping constant the 
applied stress, always at a volume fraction of 62%. The oscillations of  the shear rate quickly  decreases when we increase 
the field and their frequency increases. Then their shape becomes more irregular and finally above 10kA/m they have 
totally disappeared (solid green line). 

 
Fig(12)  Comparison of two divergences of the viscosity 
(Eq.(2)) with either p=2 (black triangles) or p=4 (red 
triangles) The blue triangles are from experiment.  
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Fig. (13) Oscillating regime for the shear rate at constant applied stress: σa=120Pa, for different  magnetic fields. 

Volume fraction of carbonyl iron  Φ=62% 
   
Actually, as shown in Fig. (6),when we increase the magnetic field  we also increase  the critical stress above which the 
instability appears. It is then understandable that, if we apply a constant stress (here 120 Pa) and increase the magnetic 
field, the critical stress will go above the applied one and we shall fall inside the stable region, so the instability will 
disappear. Nevertheless, if we apply the model described above by increasing progressively the critical stress between 
100Pa (the critical stress in the absence of the field) to 120 Pa in order to represent he effect of the magnetic field ,we do 
not observe the same behavior as the one described in Fig. (13): the amplitude and the frequency of oscillations remain 
practically constant until a critical stress of 119.5Pa is reached where the oscillations suddenly disappear. Once again it 
appears that the description of the evolution of the viscosity with the stress (Eqs. (2)-(3)-(5)) is not well adapted to 
systems where the fraction of frictional contacts vary abruptly with the stress.   
 

Jamming transition in a capillary 
 
Until now, we have considered rotational geometries, but in many industrial processes like the injection of pastes or 
ceramics inside molds, the suspension is pushed inside a capillary, so it is important to see how this jamming transition 
behave in a capillary. To achieve this aim, we have used a Malvern RH7 capillary rheometer whose diameter of the barrel 
was 9.5mm and its length 28 cm. The diameter of the capillary was d=2R= 0.75mm and its length L=3mm. The pressure 
sensor was placed inside a hole perpendicular to the axis of the barrel and close to its end where the capillary is screwed. 
For a viscous medium, the shear rate at the wall of the capillary and the pressure drop are respectively given by: 
 

3 3
vis4Q /( R ) and P 8L Q /( R )γ = π = η πɺ            (16) 

Where η is the viscosity of the suspension, Q the volume flow rate and L the length of the capillary. The experiment was 
done with a volume fraction of iron Φ=64% in a mixture of ethylene glycol and water always with 0.2% of 
superplastifier. The viscosity of the suspension was η= 5.4Pa.s. The pressure versus the shear rate is represented in Fig. 
(14a) for two different ramps of shear rate. 
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Fig.(14a) Pressure versus shear rate in a capillary 
rheometer. Suspension of iron Φ=64%. Red curve :slow 

increase of shear rate (see Fig 13b). 
Black curve:fast increase (60s-1/mn) 

Fig. (14b) : Evolution of shear rate (blue curve) and of the 
pressure(red curve) with time. It corresponds to the red curve 

of  the left figure. 

 
The first one corresponds to a ramp with a constant shear rate of 50s-1 during 300s and then a ramp from 50s-1 to 300 s-1 
in 700s; the second one to a ramp of shear rate from 0 to 180s-1 in 175s. In Fig. 14b we have plotted, for the slow ramp, 
the pressure and the shear rate versus time. We can observe that, when the shear rate is raised slowly, we have an abrupt 
transition at the last step of shear rate with the pressure rising from 0.02MPa to 0.3MPa .This is the signature of a 
jamming transition otherwise the pressure should vary linearly with the shear rate (cf Eq. (16)). After this peak, if the 
shear rate is kept constant, the pressure decreases slightly and fluctuates around 0.22MPa. If, on the contrary, we increase 
the shear rate more rapidly, then we still observe an increase of pressure which is not at all linear with time but does not 
show this abrupt transition. The pressure steps observed in Fig. 14a (black line) correspond to the shear rate steps. If we 
calculate the pressure at the maximum shear rate of 130s-1 from Eq. (16), that is to say for the flow of a viscous 
suspension, we obtain a pressure drop of 0.011 MPa instead of 0.22 MPa. It means that we no longer have a suspension 
flowing in the capillary, but a less concentrated suspension flowing through a jammed skeleton of particles forming a 
porous media. Although it is not related to a jamming transition, this phenomenon is well known in extrusion of pastes 
where a plug of solid particles is formed and the liquid of the suspension filtrates through this porous plug (29), (30). It 
was also studied  in  suspensions of PMMA particles, with a suspending liquid of  about the same refractive index in 
order to visualize the flow, which was sucked inside a syringe (31). If instead of a viscous flow we consider a flow of the 
suspending liquid through a porous medium made of a network of the solid particles ,the pressure drop can be obtained 
from the Carman-Kozeny equation: 

3 2

por 2 2

Q 1 d
P L. . with K

.R K 180(1 )

ε= µ =
π − ε

           (17) 

K is the Carman-Kozeny constant for a bed of spherical particles of diameter d; ε=1−Φ is the porosity and µ the viscosity 
of the suspending fluid. For the maximum shear rate, we have now Ppor=13.6MPa. This is much bigger than the observed 
pressure. A possible explanation is that the jamming does not occur inside the capillary but rather before its entrance (29), 
so the superficial velocity Q/(πR2) and the filtration pressure would be much lower than predicted by Eq. (17) since R is 

no longer the radius of the capillary. It is also coherent with the high value of the critical shear rate: 1130 s−γ ≈ɺ  with 

respect to the one obtained in rotational geometry which is around 30s-1, meaning that the jamming does not occur in the 
capillary. The fluctuations of pressure observed at constant shear rate are likely produced by the intermittent collapse of 
jammed structure at the entrance of the die as observed in (26). 
 

Conclusion 
 
In this paper we have presented experimental results showing a strong discontinuous shear thickening obtained with a 
suspension of carbonyl iron particles in the presence of a superplastifier molecule. The jump of stress at imposed velocity 
can reach more than 100kPa. The model proposed in (17) can reproduce the S-shape observed at the lowest volume 
fraction, but in this model the transition is preceded by a shear thickening behavior that is practically absent in our 
experiments at high volume fraction. Introducing a relaxation time,τ, for the fraction of frictional contacts and the inertia 
of the tool used in rotational rheometry has allowed to recover the right frequency of the oscillations with only one 
supplementary parameter: τ. A linear stability analysis show that the period of the oscillations is simply related to the 
square root of the product of τ and of the inertia time (Eq. 15) allowing to obtain directly this relaxation time from the 
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experimental period. The amplitude of the oscillations obtained with the model of Wyart and Cates (17)  appears too 
small. In order to reproduce both the amplitude and the shape of these oscillations a stronger dependence of the viscosity 
with the stress is needed. The jamming transition of this suspension of iron particles is very sensitive to the application of 
a magnetic field and the critical shear rate decreases quickly with the amplitude of the magnetic field, but simultaneously 
the critical stress increases. Nevertheless, if we subtract the magnetic stress to the applied one, the difference remains 
constant, indicating that it is the hydrodynamic stress which drives the jamming transition. We also have found that this 
jamming transition also occurs in capillaries and manifests itself by the building of a porous media constituted of particles 
in frictional contact. The dynamics of this transition is much slower than in rotational geometry and is likely related to the 
formation of a plug at the entrance of the die. Further investigations, especially in the presence of a magnetic field, are 
needed to understand the dynamics of formation of this plug and the influence of the sedimentation on its time of 
formation. Depending on these results, we can envisage several applications based on the control of the pressure at 
imposed flow rate or of the flow rate at imposed pressure, with a small magnetic field. 
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Figure captions 
 
Fig.1 Evolution of the rheology of a suspension of carbonyl iron particles in the presence of the PPP44 molecule 
 
Fig.2  Jamming transition for suspensions composed of iron particles (red symbols), Carbonate calcium particles (solid 
blue line) and silica particles (solid green line) 
 
Fig.3a   Sketch of the confined cell 
 
Fig.3b  Ramp of shear rate. Iron suspension, Φ=62% 
 
Fig.4 Rheograms of a suspension of carbonyl iron with 0.2%wt of PPP44 for different volume fractions 
 
Fig.5    Fit of the experimental rheograms with the Eqs(2),(3),(5)for Φ=0.58 (blue solid line) and Φ=0.62  (black solid 
line) 
 
Fig.6  Ramp of stress for different amplitudes of magnetic field Φ=63%. A magnetic field of 10kA/m is equivalent to an 
induction of 12.5  10-3 Tesla 
 
Fig.7a    Critical stress of the jamming transition versus the applied magnetic field for Φ=63% 
 
Fig7b   The critical stress minus the yield stress for the same  experiment  than in Fig.7a   
 
Fig.8  Increase of the field step by step at a constant shear rate of 30s-1. Volume fraction Φ=0.61 
 
Fig.9  Shear rate versus time for a constant applied stress of  120 Pa  and then 150Pa. Carbony iron suspension at Φ=0.62 
with 0.2% weight of PPP44 
 
Fig.(10)  Φ= 62% iron particles  in water with 0.2% PPP44. Purple experimental shear rate versus applied stress . Blue: 
Model with Eqs(8)-(9). 
 
Fig.(11) Oscillations of shear rate at constant applied stress. 
Blue losange: experiment at 120Pa. Solid blue line:model at 120Pa. Black dotted line:model at 150Pa 
 
Fig(12)  Comparison of two divergences of the viscosity (Eq.(2)) with either p=2 (black triangles) or p=4 (red triangles) 
The blue triangles are from experiment 
 
Fig. (13) Oscillating regime for the shear rate at constant applied stress: σa=120Pa, for different  magnetic fields. Volume 
fraction of carbonyl iron  Φ=62% 
 
Fig.(14a) Pressure versus shear rate in a capillary rheometer. Suspension of iron Φ=64%. Red curve :slow increase of 
shear rate (see Fig 13b). Black curve:fast increase (60s-1/mn) 
 
Fig. (14b) : Evolution of shear rate (blue curve) and of the pressure(red curve) with time. It corresponds to the red curve 
of the left figure 
 


