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Abstract—The diagnosis and prognosis of brain anomalies in
preterm neonates can be improved by the quantification of the
cerebral volumes of different brain areas, such as the ventricles
[1]. In the current clinical routine, a diagnosis is made based on
2D images of the brain, without making quantitative assessment
of the volumes of the cerebrospinal fluid in the ventricles. We
propose a semi-automated segmentation method to determine
the volume of the ventricles, the choroid plexus, the cavum
vergae and the cavum pellucidum in 3D ultrasound images of
the brain. The algorithm requires only three seed points given
by the operator. We show the good agreement between the
segmented contours and manually segmented images on clinical
data acquired with a commercial neonatal head probe.

I. INTRODUCTION

The diagnosis and prognosis of prematurely born children
can be improved with quantitative measurements of volumes
in the brain [1]. In particular, larger ventricles volumes are
correlated with neurodevelopmental impairments at 2 years,
such as cerebral palsy, hearing loss, blindness or delayed
cognitive performance as found in MRI [2], [3], [1]. Larger
ventricles are associated with intra-ventricular hemorrhage
or primitive ventricular dilatation, both of which are good
predictors of cerebral palsy of very preterm infants [4]. The
ventricular volumes allow to estimate the ventricular brain
ratio [3], which is strongly associated with brain lesions.
Indeed, the severity and the evolution of a ventricular dilatation
is a good prognosis indicator, in the case of white matter
atrophy (hydrocephalus ex-vacuo). Based on this evaluation,
a clinician decides whether to plan for surgery or not for
posthemorrhagic ventricular dilatation.

In current clinical practice, the ventricular dilatation is
evaluated based on measures in cross-sectional cranial ultra-
sound images. Yet, several procedures have been proposed to
quantify the dilatation [5], [6] in cross-sectional images, with
no accepted standard. Moreover, there is a large uncertainty
about the normal ranges [7], especially for very preterms
infants. New longitudinal reference curves have been proposed
in recent studies [8], yet it is clear that estimating ventricular
dilatation from 2D cross-sectional images is less precise and
less clinically relevant than directly estimating the volumes
directly in 3D.

It is currently feasible to acquire 3D ultrasound images of
the brain with manual sweeping, using standard commercial
neonatal head probes. This is rarely done in clinical routine

however, because of the lack of operational tools to make
quantitative, clinically relevant measurements on 3D images.
To estimate the ventricular dilatation, a manual segmentation
would be necessary, which is very time-consuming and im-
practical. To address this issue, we propose a semi-automated
method to segment the ventricles, the choroid plexus and
the septum pellucidum using only three seed points given by
the operator. A convex segmentation algorithm [9] has been
previously proposed to segment the ventricles. Compared with
this approach, our method requires less input from the user,
only 3 points whereas the work [9] requires annotation of
several planes to work. Instead, we use geometrical priors on
the location of the area of interest and a two-step segmentation
process. Notice, however, that we do not claim that our method
has the same robustness as in [9].

II. METHOD

A. Data acquisition

3D images are acquired with a Siemens Acuson 10V4
Transducer through the anterior fontanelle as depicted in
Fig. 1. The probe is oriented in the coronal plane and swept
manually at angles in a range of 90 degrees. Volumic images
are then reconstructed using the Siemens S2000 platform.
Because of the manual sweeping, the quality of the volumes
is operator dependent, and we keep in this study only volumes
with satisfactory quality.

B. Processing chain

The processing chain is shown in Fig. 2a. The images
are first registered (rotated) to conform to the standard ax-
ial/sagittal/coronal representation used in MRI. This facilitates
the reading of 3D ultrasound images for a physician trained
to read MRI images. Then a feature map is computed using
a phase asymmetry criterion [2], applied to denoised images,
which helps in the detection of the boundaries of the ventricles.
The user specifies three initialization seeds: one in each lateral
ventricle and one in the cavum septum pellucidum, overlap-
ping with the choroid plexus which appear as hyperechogenic
regions.

The segmentation is performed in two steps:
1) Segmentation 1: The hypoechogenic regions of the cere-

brospinal fluid in the ventricles, in the cavum septum
pellucidum and in the cavum vergae are segmented.



Fig. 2. (a) Processing chain including the user initialization, the preprocessing step and the two segmentations. (b) Example of a segmented volume, compared
with the expert reference.

Fig. 1. Anterior fontanelle sonography. Using manual angular sweeping, a
3D image can be reconstructed from a sequence of images.

2) Segmentation 2: The hyperechogenic regions of the
choroid plexus are segmented.

The segmentation algorithm is described in the next section.

C. Active contour segmentation

We propose an active contour segmentation where the
contour is parametrized implicitly using a level-set function.
Specifically, a point in the volume x belongs to the region of
interest A if φx ≥ 0 and belongs to the background region B
for φx < 0. The result of the segmentation is the contour which

minimizes an objective function E[φ ]. The objective function
contains a regularization Ereg[φ ], and a data term Edata[φ ].

E[φ ] = αEreg[φ ]+βEdata[φ ]+ γEgeom[φ ] (1)

Ereg[φ ] =
∫

∂A
dx = Surf(∂A) (2)

where ∂A is the boundary of region A. The smoothing term
Ereg[φ ] is proportional to the area of the boundary. The data
term is based on the local intensity Ix and the value of a
boundary map FAx, the Feature Asymmetry (FA), described
below. Assuming that Ix and FAx are random variables with
distributions P1

A(I), P2
A(FA) in region A (P1

B(I), P2
B(FA) in

region B), the data term is proportional to the log of the
likelihood of a given contour [10] [11]:

Edata[φ ] =−∑
x∈A

log
(
P1

A(Ix)P2
A(FAx)

)
+(· · ·)A↔B (3)

where (· · ·)A↔B is the same term with A exchanged with B.
The probability density function P1

A(I) is estimated using a
Parzen estimate, in a non-parametric way [12]:

P1
A(I) = ∑x∈A Kζ (Ix− I)/NA (4)

where NA is the number of voxels in A and Kζ is Gaussian
of standard deviation ζ . The density functions P1

A and P1
B are

updated at each step of the gradient descent used to minimize
E[φ ].

The geometric term Egeom is used when there is a geomet-
rical prior on the location of the area of interest:

Egeom[φ ] = ∑
x∈A

gx (5)



Regions with positive cost gx > 0 are penalized and regions
with gx < 0 are favored. The geometric term is used in the
segmentation 1, and constrains the segmentation to remain in
the central cranial region, away from the cranial bones and or
shadow areas at the boundaries of the image. In segmentation
2, the geometric term is used to constrain the segmentation
to stay close to the ventricles and septum pellucidum found
in the first segmentation. This criterion is applied mostly in
the frontal region, where the choroid plexus can not have far
extensions. In order to implement this constraint of being far
from/being away from a region C, we compute a distance map
dC(x) of point x to the closest point in C. The geometric con-
straint “being close to C” is obtained with gx = |dC(x)−d0|+
where d0 is the allowed distance and |x|+ = (|x|+ x)/2 is the
positive part. The geometric constraint “being far from C” is
gx = |d0−dC(x)|+.

D. Feature asymmetry (FA) map

The images are first denoised using 3D complex
wavelets [13]. Then, as in Ref. [14], the monogenic transform
of the volume is computed [15], which allows one to define
even/odd quadrature components of the image Ix as:

fe = I ∗G (6)

fo =
√

(I ∗G ∗hx)2 +(I ∗G ∗hy)2 +(I ∗G ∗hz)2 (7)

We use a Log-Gabor filter G , and Riesz functions hi(k) =
− j〈k,ei〉/|k| in Fourier space, and ∗ stands for 3D convo-
lution. The feature asymmetry is then computed from the
even/odd components following [16]:

FA(x) =
∑p || fe,p(x)|− | fo,p(x)|−TM|+

∑p
√

fe,p(x)2 + fo,p(x)2 + ε
(8)

where ε = 10−4, p denotes the 5 different scales of filtering,
TM is a threshold and |.|+ is the positive part. The parameters
have been optimized for best accuracy of the contours. Fig. 2
shows the feature map around the ventricle area. The role of
the feature map is to increase the accuracy of the ventricle
segmentation in narrow regions.

III. RESULTS

We assert the precision of the proposed method on a volume
with manually drawn reference, shown in Fig. 2b. In order to
quantify the error, we compute the Mean Absolute Distance
(MAD) defined as follows. Let us call S the boundary of the
segmented volume and NS the number of voxels in it. We
define dS↔R

i the shorter distance between the i-th voxel in the
boundary S to any voxel in the reference surface R. Then the
MAD is the mean distance MAD= 1

NS
∑

NS
i=1 dS↔R

i . We find that
the MAD of the segmented contour to the reference is of 5.4
pixels, or 2.7 mm.

Fig. 3 shows a different case and three axial slices, com-
pared with the manual reference contour. The in-plane MAD
is of MAD = 1.24,1.62,0.90 mm on the three slices shown.
The agreement between the expert annotations and the seg-
mentation is excellent on this case.

IV. CONCLUSION

This work is a step towards segmenting more brain regions
and make more thorough volume estimations for the neonate
brain. In MRI, full brain segmentation has been demonstrated,
allowing to use multi-criterion prognosis. The purpose of
bringing such tools in ultrasound is to make longitudinal
studies with several repeated examinations, which would be
costly and not feasible in MRI. Ultrasound is also used in
clinical routine, making it possible to put forward systematic
3D ultrasound imaging and volume estimations as a clinical
diagnostic and prognosis tool.
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