
HAL Id: hal-01938671
https://hal.science/hal-01938671

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acyclic Strategy for Silent Self-Stabilization in Spanning
Forests

Karine Altisen, Stéphane Devismes, Anaïs Durand

To cite this version:
Karine Altisen, Stéphane Devismes, Anaïs Durand. Acyclic Strategy for Silent Self-Stabilization in
Spanning Forests. SSS 2018 - 20th International Symposium on Stabilization, Safety, and Security
of Distributed Systems, Nov 2018, Tokyo, Japan. pp.186-202, �10.1007/978-3-030-03232-6_13�. �hal-
01938671�

https://hal.science/hal-01938671
https://hal.archives-ouvertes.fr

Acyclic Strategy for Silent Self-Stabilization in Spanning Forests∗

Karine Altisen1, Stéphane Devismes1, and Anaı̈s Durand2

1Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
2IRISA, Université de Rennes, 35042 Rennes, France

November 28, 2018

Abstract

We formalize design patterns, commonly used in self-stabilization, to obtain general statements
regarding both correctness and time complexity. Precisely, we study a class of algorithms devoted
to networks endowed with a sense of direction describing a spanning forest whose characterization
is a simple (i.e., quasi-syntactic) condition. We show that any algorithm of this class is (1) silent and
self-stabilizing under the distributed unfair daemon, and (2) has a stabilization time polynomial in
moves and asymptotically optimal in rounds. To illustrate the versatility of our method, we review
several works where our results apply.

1 Introduction

Numerous self-stabilizing algorithms have been proposed so far to solve various tasks. Those works
also consider a large taxonomy of topologies: rings [5], (directed) trees [9, 26], planar graphs [19], arbi-
trary connected graphs [1], etc. Among those topologies, the class of directed (in-)trees is of particular
interest. Indeed, such topologies often appear, at an intermediate level, in self-stabilizing composite
algorithms. Composition is a popular way to design self-stabilizing algorithms [25] since it allows to
simplify both the design and the proofs. Numerous self-stabilizing algorithms [2, 4, 11] are actually
made as a composition of a spanning directed treelike (e.g., tree or forest) construction and some other
algorithms specifically designed for directed tree/forest topologies. Notice that, even though not manda-
tory, most of these constructions additionally achieve silence [17]: a silent algorithm converges within
finite time to a configuration from which the values of the communication registers used by the algo-
rithm remain fixed. Silence is a desirable property, as it usually implies more simplicity in the design,
and so allows to write simpler proofs; moreover, a silent algorithm may utilize fewer communication
operations and communication bandwidth. We consider here the locally shared memory model with
composite atomicity, where executions proceed in atomic steps and the asynchrony is captured by the
notion of daemon. The most general daemon is the distributed unfair daemon. Hence, solutions sta-
bilizing under such an assumption are highly desirable, because they work under any other daemon
assumption. The daemon assumption and time complexity are closely related. The stabilization time
(the main time complexity measure to compare self-stabilizing algorithms) is usually evaluated in terms
of rounds, which capture the execution time according to the speed of the slowest processes. But, another
crucial issue is the number of local state updates, called moves. Indeed, the stabilization time in moves
captures the amount of computations an algorithm needs to recover a correct behavior. Now, this com-
plexity can be bounded only if the algorithm works under an unfair daemon. If an algorithm requires
∗This study has been partially supported by the ANR projects DESCARTES (ANR-16-CE40-0023) and ESTATE (ANR-

16-CE25-0009), and by the Franco-German DFG-ANR project 40300781 DISCMAT.

1

a stronger daemon to stabilize, e.g., a weakly fair daemon, then it is possible to construct executions
whose convergence is arbitrarily long in terms of atomic steps (and so in moves), meaning that, in such
executions, there are processes whose moves do not make the system progress towards the convergence.
In other words, these latter processes waste computation power and so energy. Such a situation should
be therefore prevented, making solutions working under the unfair daemon more desirable. There are
many self-stabilizing algorithms proven under the distributed unfair daemon, e.g., [1, 12, 20]. However,
analyses of the stabilization time in moves is rather unusual and this may be an important issue. Indeed,
recently, several self-stabilizing algorithms which work under a distributed unfair daemon have been
shown to have an exponential stabilization time in moves in the worst case, e.g., the silent leader elec-
tion algorithms from [12] (see [1]), the Breadth-First Search (BFS) algorithm of Huang and Chen [21]
(see [16]).
Contribution. We formalize design patterns, commonly used in self-stabilization, to obtain general
statements regarding both correctness and time complexity. Precisely, we study a class of algorithms
for networks endowed with a sense of direction describing a spanning forest (e.g., a directed tree, or a
network equipped with a spanning tree) whose characterization is a simple (i.e., quasi-syntactic) con-
dition. We show that any algorithm of this class is (1) silent and self-stabilizing under the distributed
unfair daemon, and (2) has a stabilization time which is polynomial in moves and asymptotically opti-
mal in rounds. Our condition mainly uses the concept of acyclic strategy, which is based on the notions
of top-down and bottom-up actions. Our first goal has been to formally define these two paradigms.
We have combined this formalization together with a notion of acyclic causality between actions and a
last criteria called correct-alone (n.b., only this criteria is not syntactic) to obtain the notion of acyclic
strategy. We show that any algorithm following an acyclic strategy reaches a terminal configuration in
a polynomial number of moves, assuming a distributed unfair daemon. Hence, if its terminal configura-
tions satisfy the specification, the algorithm is both silent and self-stabilizing. Unfortunately, we show
that this condition is not sufficient to obtain an asymptotically optimal stabilization time in rounds. So,
we enforce the acyclic strategy with the property of local mutual exclusivity to have an asymptotically
optimal round complexity. We also propose a simple method to make any algorithm, that follows an
acyclic strategy, locally mutually exclusive. This method has no overhead in moves. Finally, to show
the versatility of our approach, we review works where our results apply.
Related Work. General schemes and efficiency are usually understood as orthogonal issues. For exam-
ple, the general scheme proposed in [23] transforms almost any algorithm working on an asynchronous
message-passing identified system of arbitrary topology into its corresponding self-stabilizing version.
Such a universal transformer is, by essence, inefficient in space and time complexities: its purpose is
only to demonstrate the feasibility of the transformation. However, few works [18, 13, 3] target both gen-
eral self-stabilizing algorithm patterns and efficiency in rounds. In [18, 13], authors propose a method
to design silent self-stabilizing algorithms for a class of fix-point problems. Their solution works in
non-bidirectional networks using bounded memory per process. In [18], they consider the locally shared
memory model with composite atomicity assuming a distributed unfair daemon, while in [13], they
bring their approach to asynchronous message-passing systems. In both papers, they establish a stabi-
lization time in O(D) rounds, where D is the network diameter, that holds for the synchronous case
only. Moreover, move complexity is not considered. The rest of the related work only concerns the
locally shared memory model with composite atomicity assuming a distributed unfair daemon. In [3],
labeling schemes [24] are used to show that every static task has a silent self-stabilizing algorithm which
converges within a linear number of rounds in an arbitrary identified network, however no move com-
plexity is given. To our knowledge, until now, only two works [10, 15] conciliate general schemes for
stabilization and efficiency in both moves and rounds. In [10], Cournier et al propose a general scheme
for snap-stabilizing wave, henceforth non-silent, algorithms in arbitrary connected and rooted networks.
Using their approach, one can obtain snap-stabilizing algorithms that execute each wave in polynomial
number of rounds and moves. In [15], authors propose a general scheme to compute, in a linear number

2

of rounds, spanning directed treelike data structures on arbitrary networks. They also show polynomial
upper bounds on its stabilization time in moves holding for several instantiations of their scheme. Our
approach is then complementary to [15].
Roadmap. In Section 2, we define the model. In Section 3, we define the acyclic strategy and propose a
toy example. In Section 4, we study the move complexity of algorithms that follow an acyclic strategy.
In Section 5, we analyze our case study regarding our results. In Section 6, we consider the round com-
plexity issue. In Section 7, we review several existing works where our method applies. We conclude in
Section 8.

2 Preliminaries
A network is made of a set of n interconnected processes. Communications are bidirectional. Hence,
the topology of the network is a simple undirected graph G = (V,E), where V is a set of processes
and E is a set of edges that represents communication links, i.e., {p, q} ∈ E means that p and q can
directly exchange information. In this latter case, p and q are said to be neighbors. For any process p,
we denote by p.Γ the set of its neighbors. We also note ∆ the degree of G. A distributed algorithm A is
a collection of n = |V | local algorithms, each one operating on a single process: A = {A(p) : p ∈ V }
where each process p is equipped with a local algorithm A(p) = (V arp, Actionsp): V arp is the finite
set of variables of p, and Actionsp is the finite set of actions. Notice that A may not be uniform. We
identify each variable involved in Algorithm A by the notation p.x ∈ V arp, where x is the name of
the variable and p the process that holds it. Each process p runs its local algorithm A(p) by atomically
executing actions. If executed, an action of p consists of reading all variables of p and its neighbors,
and then writing into a part of the writable variables of p. For any process p, each action in Actionsp is
written as follows: L(p) :: G(p) → S(p). L(p) is a label used to identify the action in the discussion.
The guard G(p) is a Boolean predicate involving variables of p and its neighbors. The statement S(p) is
a sequence of assignments on writable variables of p. A variable q.x is said to be G-read by L(p) if q.x
is involved in predicate G(p) (in this case, q is either p or one of its neighbors). Let G-Read(L(p)) be
the set of variables that areG-read by L(p). A variable p.x is said to be written by L(p) if p.x appears as
the left operand in an assignment of S(p). Let Write(L(p)) be the set of variables written by L(p). An
action can be executed by a process p only if it is enabled, i.e., its guard evaluates to true. By extension,
a process is enabled when at least one of its actions is enabled. The state of a process p is a vector of
valuations of its variables. A configuration of an algorithmA is a vector made of a state of each process
in V . For any configuration γ, we denote by γ(p) (resp. γ(p).x) the state of process p (resp. the value
of the variable x of process p) in γ.

The asynchrony of the system is modeled by the daemon. Assume that the current configuration of
the system is γ. If the set of enabled processes in γ is empty, then γ is said to be terminal. Otherwise, a
step of A is performed as follows: the daemon selects a non-empty subset S of enabled processes in γ,
and every process p in S atomically executes the statement of one of its actions enabled in γ, leading the
system to a new configuration γ′. The step (ofA) from γ to γ′ is noted γ 7→ γ′: 7→ is the binary relation
over configurations defining all possible steps of A in G. An execution of A is a maximal sequence
γ0γ1...γi... of configurations such that γi−1 7→ γi for all i > 0. The term “maximal” means that the
execution is either infinite, or ends at a terminal configuration. We define a daemonD as a predicate over
executions. An execution e is then said to be an execution under the daemon D if e satisfies D. Here,
we assume that the daemon is distributed and unfair. “Distributed” means that, unless the configuration
is terminal, the daemon selects at least one enabled process (maybe more) at each step. “Unfair” means
that there is no fairness constraint, i.e., the daemon might never select a process unless it is the only
enabled one.

We measure the time complexity using two notions: rounds and moves. A process moves in γi 7→
γi+1 when it executes an action in γi 7→ γi+1. The definition of round uses the concept of neutralization:

3

a process v is neutralized during a step γi 7→ γi+1, if v is enabled in γi but not in configuration γi+1,
and it is not activated in the step γi 7→ γi+1. The first round of an execution e = γ0γ1... is its minimal
prefix e′ such that every process that is enabled in γ0 either executes an action or is neutralized during a
step of e′. If e′ is finite, then the second round of e is the first round of the suffix γtγt+1... of e starting
from the last configuration γt of e′, and so forth.

Let A be a distributed algorithm for a network G, SP a predicate over the configurations of A,
and D a daemon. A is silent and self-stabilizing for SP in G under D if the following two conditions
hold: (1) every execution of A under D is finite, and (2) every terminal configuration of A satisfies
SP . In this case, every terminal (resp. non-terminal) configuration is said to be legitimate w.r.t. SP
(resp. illegitimate w.r.t. SP). The stabilization time in rounds (resp. moves) of a silent self-stabilizing
algorithm is the maximum number of rounds (resp. moves) over every execution possible under the
considered daemon to reach a terminal (legitimate) configuration.

3 Algorithm with Acyclic Strategy

Let A be a distributed algorithm running on some network G = (V,E).
Variable Names. We assume that every process is endowed with the same set of variables and we
denote by Names the set of names of those variables, namely: Names = {x : p ∈ V ∧ p.x ∈ V arp}.
We also assume that for every name x ∈ Names, for all processes p and q, variables p.x and q.x have
the same definition domain. The set of names is partitioned into two subsets: ConstNames, the set of
constant names, and V arNames = Names \ ConstNames, the set of writable variable names. A
name x is in V arNames as soon as there exists a process p such that p.x ∈ V arp and p.x is written
by an action of its local algorithm A(p). For every c ∈ ConstNames and every process p ∈ V , p.c is
never written by any action and it has a pre-defined constant value (which may differ from one process
to another, e.g., Γ, the name of the neighborhood).

We assume that A is well-formed, i.e., V arNames is partitioned into k sets V ar1, ..., V ark such
that ∀p ∈ V , A(p) consists of exactly k actions A1(p), ..., Ak(p) where Write(Ai(p)) = {p.v : v ∈
V ari}, for all i ∈ {1, ..., k}. Let Ai = {Ai(p) : p ∈ V }, for all i ∈ {1, ..., k}. Every Ai is called
a family (of actions). By definition, A1, ..., Ak is a partition over all actions of A, henceforth called a
families’ partition.

Remark 1. Since A is assumed to be well-formed, there is exactly one action of A(p) where p.v is
written, for every process p and every writable variable p.v (of p).

Spanning Forest. We assume that every process is endowed with constants that define a spanning forest
over the graph G: we assume the constant names par and chldrn such that for every process p ∈ V ,
p.par and p.chldrn are preset as follows.

- p.par ∈ p.Γ ∪ {⊥}: p.par is either a neighbor of p (its parent in the forest), or ⊥. In this latter
case, p is called a (tree) root. Hence, the graph made of vertices V and edges {(p, p.par) : p ∈
V ∧ p.par 6= ⊥} is assumed to be a spanning forest of G.

- p.chldrn ⊆ p.Γ: p.chldrn contains the neighbors of p which are the children of p in the forest,
i.e., for every p, q ∈ V , p.par = q ⇐⇒ p ∈ q.chldrn. If p.chldrn = ∅, p is called a leaf.

Notice that p.Γ\({p.par}∪p.chldrn) may not be empty. The set of p’s ancestors,Anc(p), is recursively
defined as follows: Anc(p) = {p} if p is a root, Anc(p) = {p} ∪ Anc(p.par) otherwise. Similarly, the
set of p’s descendants, Desc(p), can be recursively defined as follows: Desc(p) = {p} if p is a leaf,
Desc(p) = {p} ∪

⋃
q∈p.chldrnDesc(q) otherwise.

Acyclic Strategy. Let A1, ..., Ak be the families’ partition of A. Ai, with i ∈ {1, ..., k}, is said to be
correct-alone if for every process p and every step γ 7→ γ′ such that Ai(p) is executed in γ 7→ γ′, if no
variable in G-Read(Ai(p)) \Write(Ai(p)) is modified in γ 7→ γ′, then Ai(p) is disabled in γ′. Notice

4

that if a variable in Write(Ai(p)) is modified in γ 7→ γ′, then it is necessarily modified by Ai(p), by
Remark 1.

Let≺A be a binary relation over the families of actions ofA such that for i, j ∈ {1, ..., k},Aj ≺A Ai

if and only if i 6= j and there exist two processes p and q such that q ∈ p.Γ ∪ {p} and Write(Aj(p)) ∩
G-Read(Ai(q)) 6= ∅. We conveniently represent the relation ≺A by a directed graph GC called Graph
of actions’ Causality and defined as follows: GC = ({A1, ..., Ak}, {(Aj , Ai), Aj ≺A Ai}).

Intuitively, a family of actions Ai is top-down if activations of its corresponding actions are only
propagated down in the forest, i.e., when some process q executes action Ai(q), Ai(q) can only activate
Ai at some of its children p, if any. In this case, Ai(q) writes to some variables G-read by Ai(p), these
latter are usually G-read to be compared to variables written by Ai(p) itself. In other words, a variable
G-read by Ai(p) can be written by Ai(q) only if q = p or q = p.par. Formally, a family of actions Ai

is top-down if for every process p and every q.v ∈ G-Read(Ai(p)), we have q.v ∈ Write(Ai(q))⇒ q ∈
{p, p.par}. Bottom-up families are defined similarly: a family Ai is bottom-up if for every process p
and every q.v ∈ G-Read(Ai(p)), we have q.v ∈ Write(Ai(q))⇒ q ∈ p.chldrn ∪ {p}.

A distributed algorithm A follows an acyclic strategy if it is well-formed, its graph of actions’
causality GC is (directed) acyclic, and for every Ai in its families’ partition, Ai is correct-alone and
either bottom-up or top-down.
Toy Example. We now propose a simple example of an algorithm, called T E , that follows an acyclic
strategy. T E assumes a constant integer input p.in ∈ N at each process. T E computes the sum of all
inputs and then spreads this result everywhere in the network. T E assumes that the network T = (V,E)
is a tree with a sense of direction (given by par and chldrn) which orientates T as an in-tree rooted at
process r. Apart from those constant variables, every process p has two variables: p.sub ∈ N (which
is used to compute the sum of input values in the subtree of p) and p.res ∈ N (which stabilizes to the
result of the computation). T E consists of two families of actions S and R. S computes variables sub
and is defined as follows. For every process p,

S(p) :: p.sub 6= (
∑

q∈p.chldrn
q.sub) + p.in→ p.sub← (

∑
q∈p.chldrn

q.sub) + p.in

R computes variables res and is defined as follows.

R(r) :: r.res 6= r.sub→ r.res← r.sub

For every process p 6= r,

R(p) :: p.res 6= max(p.par.res, p.sub)→ p.res← max(p.par.res, p.sub)

S is bottom-up and correct-alone, while R is top-down and correct-alone. Moreover, the graph of
actions’ causality is simply S −→ R. So, T E follows an acyclic strategy.

4 Move Complexity of Algorithms with Acyclic Strategy
We now exhibit a polynomial upper bound on the move complexity of any algorithm that follows an
acyclic strategy. To that goal, we consider a distributed algorithm A which follows an acyclic strategy
and runs on the network G = (V,E). We use the same notation as in Section 3, e.g., we let A1, ..., Ak

be the families’ partition of A.
For a process p and a family of actions Ai, i ∈ {1, ..., k}, we define the impacting zone of p and Ai,

denoted Z(p,Ai), as follows: Z(p,Ai) is the set of p’s ancestors if Ai is top-down, Z(p,Ai) is the set
of p’s descendants otherwise (i.e., Ai is bottom-up). Roughly speaking, a process q belongs to Z(p,Ai)
if the execution of Ai(q) may cause an execution of Ai(p) in the future.

Remark 2. By definition, we have 1 ≤ |Z(p,Ai)| ≤ n. Moreover, if Ai is top-down, then we have
1 ≤ |Z(p,Ai)| ≤ H + 1 ≤ n, where H is the height of G, i.e., the maximum among the heights trees of
the forest.

5

We also define the quantity M(Ai, p) as the level1 of p in G if Ai is top-down, the height of p in G
otherwise (i.e., Ai is bottom-up).

Remark 3. By definition, we have 0 ≤M(Ai, p) ≤ H , where H is the height of G.

We define Others(Ai, p) = {q ∈ p.Γ : ∃Aj , i 6= j ∧Write(Aj(q)) ∩ G-Read(Ai(p)) 6= ∅} to be
the set of neighbors q of p that have actions other than Ai(q) which write variables that are G-read by
Ai(p). Let

maxO(Ai) = max({|Others(Ai, p)| : p ∈ V } ∪ {maxO(Aj) : Aj ≺A Ai)})

Remark 4. By definition, we havemaxO(Ai) ≤ ∆. Moreover, if ∀p ∈ V , ∀i ∈ {1, ..., k},Others(Ai, p)
is empty, then ∀j ∈ {1, ..., k}, maxO(Aj) = 0.

Lemma 1. Let Ai be a family of actions and p be a process. For every execution e of the algorithm A

on G, #m(e,Ai, p) ≤
(
n ·
(
1 + d ·

(
1 +maxO(Ai)

)))H(Ai)

· |Z(p,Ai)|, where #m(e,Ai, p) is the

number of times p executes Ai(p) in e, d is the in-degree of GC, and H(Ai) is the height of Ai in GC.2

Proof. Let e = γ0...γx... be any execution of A on G. Let K(Ai, p) = M(Ai, p) + (H + 1) · H(Ai).
We proceed by induction on K(Ai, p).
Base Case: Assume K(Ai, p) = 0 for some family Ai and some process p. By definition, H ≥ 0,
H(Ai) ≥ 0 and M(Ai, p) ≥ 0. Hence, K(Ai, p) = 0 implies that H(Ai) = 0 and M(Ai, p) = 0. Since
M(Ai, p) = 0, Z(p,Ai) = {p}. Ai is top-down or bottom-up so, for every q.v ∈ G-Read(Ai(p)),
q.v ∈ Write(Ai(q))⇒ q = p. Moreover, since H(Ai) = 0, ∀j 6= i, Aj 6≺A Ai. So, for every j 6= i and
every q ∈ p.Γ∪ {p}, Write(Aj(p))∩G-Read(Ai(q)) = ∅. Hence, no action except Ai(p) can modify a
variable in G-Read(Ai(p)). Thus, #m(e,Ai, p) ≤ 1 since Ai is correct-alone.
Induction Hypothesis: Let K ≥ 0. Assume that for every family Aj and every process q such that
K(Aj , q) ≤ K, we have

#m(e,Aj , q) ≤
(
n ·
(
1 + d ·

(
1 +maxO(Aj)

)))H(Aj)

· |Z(q, Aj)|

Induction Step: Assume that for some familyAi and some process p,K(Ai, p) = K+1. If #m(e,Ai, p)
equals 0 or 1, then the result trivially holds. Assume now that #m(e,Ai, p) > 1 and consider two
consecutive executions of Ai(p) in e, i.e., there exist x, y such that 0 ≤ x < y, Ai(p) is executed in
both γx 7→ γx+1 and γy 7→ γy+1, but not in steps γz 7→ γz+1 with z ∈ {x + 1, ..., y − 1}. Then, since
Ai is correct-alone, at least one variable in G-Read(Ai(p)) has to be modified by an action other than
Ai(p) in a step γz 7→ γz+1 with z ∈ {x, ..., y − 1} so that Ai(p) becomes enabled again. Namely, there
are j ∈ {1, ..., k} and q ∈ V such that (a) j 6= i or q 6= p, Aj(q) is executed in a step γz 7→ γz+1,
and Write(Aj(q)) ∩ G-Read(Ai(p)) 6= ∅. Note also that, by definition, (b) q ∈ p.Γ ∪ {p}. Finally, by
definitions of top-down and bottom-up, (a), and (b), Aj(q) satisfies: (1) j 6= i ∧ q = p, (2) j = i ∧ q ∈
p.Γ ∩ Z(p,Ai), or (3) j 6= i ∧ q ∈ p.Γ. In other words, at least one of the three following cases occurs:

(1) p executes Aj(p) in step γz 7→ γz+1 with j 6= i and Write(Aj(p)) ∩ G-Read(Ai(p)) 6= ∅.
Consequently,Aj ≺A Ai and, so, H(Aj) < H(Ai). Moreover,M(Aj , p)−M(Ai, p)≤H and H(Aj) <
H(Ai) imply K(Aj , p) < K(Ai, p) = K + 1. Hence, by induction hypothesis, we have

#m(e,Aj , p) ≤
(
n ·
(
1 + d ·

(
1 +maxO(Aj)

)))H(Aj)

· |Z(p,Aj)|.

(2) There is q ∈ p.Γ ∩ Z(p,Ai) such that q executes Ai(q) in step γz 7→ γz+1 and Write(Ai(q)) ∩
G-Read(Ai(p)) 6= ∅. Then, M(Ai, q) < M(Ai, p). Since M(Ai, q) < M(Ai, p), K(Ai, q) <

1The level of p in G is the distance from p to the root of its tree in G (0 if p is the root itself).
2The height of Ai in GC is 0 if the in-degree of Ai in GC is 0. Otherwise, it is equal to one plus the maximum of the

heights of the Ai’s predecessors w.r.t. ≺A.

6

K(Ai, p) = K + 1 and, by induction hypothesis, we have

#m(e,Ai, q) ≤
(
n ·
(
1 + d ·

(
1 +maxO(Ai)

)))H(Ai)

· |Z(q, Ai)|.

(3) A neighbor q of p executes an action Aj(q) in step γz 7→ γz+1, with j 6= i and Write(Aj(q)) ∩
G-Read(Ai(p)) 6= ∅. Consequently, Aj ≺A Ai and, so, H(Aj) < H(Ai). Moreover, M(Aj , q) −
M(Ai, p) ≤ H and H(Aj) < H(Ai) imply K(Aj , q) < K(Ai, p) = K + 1. Hence, by induction
hypothesis, we have

#m(e,Aj , q) ≤
(
n ·
(
1 + d ·

(
1 +maxO(Aj)

)))H(Aj)

· |Z(q, Aj)|.

(Notice that Cases 1 and 3 can only occur when H(Ai) > 0.) We now bound the number of times
each of the three above cases occur in the execution e.

Case 1: By definition, there exist at most d predecessorsAj ofAi in GC (i.e., such thatAj ≺A Ai).
For each of them, we have H(Aj) < H(Ai), |Z(p,Aj)| ≤ n (Remark 2) andmaxO(Aj) ≤ maxO(Ai).
Hence, overall, Case 1 appears at most m1 =

∑
{Aj : Aj≺AAi}#m(e,Aj , p) times and

m1 ≤
∑

{Aj : Aj≺AAi}

(
n ·
(
1 + d ·

(
1 +maxO(Aj)

)))H(Aj)

· |Z(p,Aj)|

≤ d · nH(Ai) ·
(
1 + d ·

(
1 +maxO(Ai)

))H(Ai)−1

Case 2: By definition, Z(p,Ai) = {p}]
⊎

q∈p.Γ∩Z(p,Ai)
Z(q,Ai) Hence, overall, this case appears

at most m2 =
∑

q∈p.Γ∩Z(p,Ai)
#m(e,Ai, q) times and

m2 ≤
∑

q∈p.Γ∩Z(p,Ai)

(
n ·
(
1 + d ·

(
1 +maxO(Ai)

)))H(Ai)

· |Z(q, Ai)|

≤ nH(Ai) ·
(
1 + d ·

(
1 +maxO(Ai)

))H(Ai) ·
(
|Z(p,Ai)| − 1

)
Case 3: q ∈ Others(Ai, p) since i 6= j and q ∈ p.Γ. Then, for every Aj ≺A Ai, we have

H(Aj) < H(Ai), maxO(Aj) ≤ maxO(Ai), and Z(q, Aj) ≤ n (Remark 2). By definition, there are at
most d families Aj such that Aj ≺A Ai. Finally, |Others(Ai, p)| ≤ maxO(Ai), by definition. Hence,
overall, this case appears at most m3 =

∑
{Aj : Aj≺AAi}

∑
{q∈Others(Ai,p)}#m(e,Aj , q) times and

m3 ≤
∑

{Aj : Aj≺AAi}

∑
{q∈Others(Ai,p)}

(
n ·
(
1 + d ·

(
1 +maxO(Aj)

)))H(Aj)

· |Z(q, Aj)|

≤ d ·maxO(Ai) · nH(Ai) ·
(
1 + d ·

(
1 +maxO(Ai)

))H(Ai)−1

Hence, overall, we have

#m(e,Ai, p) ≤ 1 +m1 +m2 +m3

≤ nH(Ai) ·
(
1 + d ·

(
1 +maxO(Ai)

))H(Ai) · |Z(p,Ai)|

�

Since maxO(Ai) ≤ ∆ (Remark 4) and |Z(p,Ai)| ≤ n (Remark 2), we can deduce the following
theorem from Lemma 1 and the definition of silent self-stabilization.

Theorem 1. IfA follows an acyclic strategy and every terminal configuration ofA satisfies SP , then (1)
A is silent and self-stabilizing for SP in G under the distributed unfair daemon, and (2) its stabilization
time is at most

(
1 + d · (1 + ∆)

)H · k · nH+2 moves, where k is the number of families of A, d is the
in-degree of GC, and H the height of GC.

7

5 Analysis of T E

We now analyze T E using our results. The aim is to show that: (1) correctness and move complexity of
T E can be easily deduced from our general results, (2) our upper bound on stabilization time in moves is
tight for this example, and (3) our definition of acyclic strategy does not preclude the design of solutions
(like T E) that are inefficient in terms of rounds. We will see how to circumvent this latter negative result
in Section 6.

First, we already saw that T E follows an acyclic strategy and that the graph of actions’ causality
is simply S −→ R. Then, by induction on the tree T , we can show that every terminal configuration
of T E is legitimate. Hence, by Theorem 1, we can conclude that T E is silent and self-stabilizing for
computing the sum of the inputs assuming a distributed unfair daemon. Moreover, its stabilization time
is at most 2 · (2 + ∆) · n3 moves. Now, using Lemma 1, the move complexity of T E can be further
refined. Let e be any execution and H be the height of T . First, note that maxO(S) = maxO(R) = 0
by Remark 4. Since S is bottom-up, |Z(p, S)| ≤ n, for every process p. Moreover, the height of S is 0
in the graph of actions’ causality. Hence, by Lemma 1, we have #m(e, S, p) ≤ n, for all processes p.
Thus, e contains at most n2 moves of S. Similarly, since R is top-down, |Z(p,R)| ≤ H + 1, for every
process p. Moreover, the height of R is 1 in the graph of actions’ causality. Hence, by Lemma 1, we
have #m(e,R, p) ≤ 2 ·n · (H + 1), for all processes p. Thus, e contains at most 2 ·n2 · (H + 1) moves
of R. Overall, the stabilization time of T E is actually at most n2(3 + 2H) moves.
Lower Bound in Moves. We now show that the stabilization time of T E is Ω(H · n2) moves, meaning
that the previous upper bound (obtained by Lemma 1) is asymptotically reachable. To that goal, we
consider a directed line of n processes, with n ≥ 4, noted p1, ..., pn: p1 is the root and for every
i ∈ {2, ..., n}, there is a link between pi−1 and pi, moreover, pi.par = pi−1 (note that H = n). We
build a possible execution of T E running on this line that contains Ω(H · n2) moves. We assume a
central unfair daemon: at each step exactly one process executes an action. In this execution, we fix
that pi.in = 1, for every i ∈ {1, ..., n}. We consider two classes of configurations: Configurations
X2i+1(with 3 ≤ 2i + 1 ≤ n) and Configurations Y2i+2 (with 4 ≤ 2i + 2 ≤ n), see Figure 1. The
initial configuration of the execution is X3. Then, we proceed as follows: the system converges from
configuration X2i+1 to configuration Y2i+2 in Ω(i2) moves using Schedule 1 and then from Y2i+2 to
X2i+3 in Ω(i) moves using Schedule 2, back and forth, until reaching a terminal configuration (Xn if n
is odd, Yn otherwise).

Configuration X2i+1, 3 ≤ 2i+ 1 ≤ n:

p1 . . . p2i−2 p2i−1 p2i p2i+1 p2i+2 p2i+3 p2i+4 p2i+5 . . .
in 1 . . . 1 1 1 1 1 1 1 1 . . .
sub 2i . . . 3 2 1 0 2i 0 2i + 2 0 . . .
res 2i . . . 2i 2i 2i 0 0 0 0 0 . . .

Configuration Y2i+2, 4 ≤ 2i+ 2 ≤ n:

p1 . . . p2i−2 p2i−1 p2i p2i+1 p2i+2 p2i+3 p2i+4 p2i+5 . . .
in 1 . . . 1 1 1 1 1 1 1 1 . . .
sub 4i + 1 . . . 2i + 4 2i + 3 2i + 2 2i + 1 2i 0 2i + 2 0 . . .
res 4i + 1 . . . 4i + 1 4i + 1 4i + 1 4i + 1 0 0 0 0 . . .

Figure 1: Configurations X2i+1 and Y2i+2

Hence, following this scheduling of actions, the execution that starts in configuration X3 converges
to Xn (resp. Yn) if n is odd (resp. even) and contains Ω(n3) moves, precisely, Ω(H · n2) since the
network is a line (H = n− 1).

Remark that in this execution, for every process p, when R(p) is activated, S(p) is disabled: this
means that if the algorithm is modified so that S(p) has local priority over R(p) for every process p (like

8

in the method proposed in Section 6), the proposed execution is still possible keeping a move complexity
in Ω(H · n2) even for such a prioritized algorithm.
Schedule 1 from X2i+1 to Y2i+2

1: for j = 2i + 1 down to 1 do
2: pj executes S(pj)
3: for k = j to 2i + 1 do
4: pk executes R(pk)

Schedule 2 from Y2i+2 to X2i+3

1: for j = 2i + 2 down to 1 do
2: pj executes S(pj)
3: for j = 1 to 2i + 1 do
4: pj executes R(pj)

Lower Bound in Rounds. We now show that T E has a stabilization time in Ω(n) rounds in any tree
of height H = 1, i.e., a star network. This negative result is due to the fact that families R and S
are not locally mutually exclusive. In the next section, we will propose a transformation to obtain a
stabilization time in O(H) rounds, so O(1) rounds in the case of a star network, without affecting the
move complexity.

We now construct a possible execution that terminates in n+2 rounds in a star network of n processes
(n ≥ 2): p1 is the root of the tree and p2, ..., pn are the leaves (namely links are {{p1, pi}, i = 2, ..., n}).
We note Ci, i ∈ {1, ..., n}, the configuration satisfying the following three conditions:
(1) ∀i ∈ {1, ..., n}, pi.in = 1;
(2) p1.sub = i, ∀j ∈ {2, ..., i}, pj .sub = 1, and ∀j ∈ {i + 1, ..., n}, pj .sub = 0; (3) ∀i ∈ {1, ..., n},
pi.res = i. Schedule 3 from Ci to Ci+1

1: pi+1 executes S(pi+1)
2: p1 executes S(p1)
3: p1 executes R(p1)
4: for j = 2 to n do
5: pj executes R(pj)

In every configuration Ci, processes p1, ..., pi are disabled
and processes pi+1, ..., pn are enabled for S. We now build a
possible execution that starts from C1 and successively converges
to configurations C2, ..., Cn (Cn is a terminal configuration). To
converge from Ci to Ci+1, i ∈ {1, ..., n− 1}, the daemon applies
Schedule 3. The convergence from C1 to Cn−1 last n − 2 rounds since for i ∈ {1, ..., n − 2}, the
convergence from Ci to Ci+1 lasts exactly one round. Indeed, each process executes at least one action
between Ci and Ci+1 and process pn is enabled in configuration Ci and remains continuously enabled
until being activated as the last process to execute in the round. The convergence from Cn−1 to Cn lasts
4 rounds: in Cn−1, only pn is enabled to execute S(pn) hence the round terminates in one step where
only S(pn) is executed. Similarly, p1 then sequentially executes S(p1) andR(p1) in two rounds. Finally,
p2, ..., pn execute R in one round and then the system is in the terminal configuration Cn. Hence the
execution lasts n+ 2 rounds.

6 Round Complexity of Algorithms with Acyclic Strategy

We now propose an extra condition that is sufficient for any algorithm following an acyclic strategy to
stabilize in O(H) rounds. We then propose a simple method to add this property to any algorithm that
follows an acyclic strategy, without affecting the move complexity. Throughout this section, we consider
a distributed well-formed algorithm A designed for a network G endowed with a spanning forest. Let
A1, ..., Ak be the families’ partition of A.
A Condition for a Stabilization Time in O(H) rounds. We say that families Ai and Aj are locally
mutually exclusive if for every process p, there is no configuration γ where both Ai(p) and Aj(p) are
enabled. By extension, we say A is locally mutually exclusive if ∀i, j ∈ {1, ..., k}, i 6= j implies that
Ai and Aj are locally mutually exclusive. Below, note that H < k and, in usual cases, the number of
families k is a constant.

Theorem 2. If A follows an acyclic strategy and is locally mutually exclusive, then every execution of
A reaches a terminal configuration within at most (H + 1) · (H + 1) rounds, where H is the height of
the graph of actions’ causality of A and H is the height of the spanning forest.

Proof Outline. Let Ai be a family of actions of A and p be a process. We note R(Ai, p) = H(Ai) ·

9

(H + 1) + M(Ai, p) + 1. We first show, by induction, that for every family Ai and every process p,
after R(Ai, p) rounds, Ai(p) is disabled forever. Then, since for every family Ai and every process p,
H(Ai) ≤ H and M(Ai, p) ≤ H , we have R(Ai, p) ≤ (H + 1) · (H + 1), and the theorem holds. �

A Transformer. We know that there exist algorithms that follow an acyclic strategy, are not locally
mutually exclusive, and stabilize in Ω(n) rounds (see Section 5). We now formalize a method, based on
priorities over actions, to transform such algorithms into locally mutually exclusive ones. This ensures
a complexity in O(H) rounds, without degrading the move complexity.

In the following, for every process p and every family Ai, we identify the guard and the statement
of Action Ai(p) by Gi(p) and Si(p), respectively. Let /A be any strict total order on families of A
compatible with ≺A, i.e., /A is a binary relation on families of A that satisfies:
Strict Order: /A is irreflexive and transitive;
Total: for every two families Ai, Aj , we have either Ai /A Aj , Aj /A Ai, or i = j; and
Compatibility: for every two families Ai, Aj , if Ai ≺A Aj , then Ai /A Aj .
Let T(A) be the following algorithm:
(1) T(A) and A have the same set of variables.
(2) Every process p ∈ V holds k actions (recall that k is the number of families of A): for every
i ∈ {1, ..., k}, AT

i (p) :: GT
i (p) → ST

i (p)
where GT

i (p) =
(∧

Aj/AAi
¬Gj(p)

)
∧Gi(p) and ST

i (p) = Si(p).
Gi(p) (resp. the set {Gj(p) : Aj /A Ai}) is called the positive part (resp. negative part) of GT

i (p).
By definition, ≺A is irreflexive and the graph of actions’ causality induced by ≺A is acyclic. So, there
always exists a strict total order compatible with ≺A, i.e., the above transformation is always possible
for any algorithm A which follows an acyclic strategy. Moreover, by construction, we have the two
following remarks:

Remark 5. (1) T(A) is well-formed, (2) AT
1, ..., A

T
k is the families’ partition of T(A), where AT

i =
{AT

i (p) : p ∈ V }, for every i ∈ {1, ..., k}, and (3) T(A) is locally mutually exclusive.

Remark 6. For every i, j ∈ {1, ..., k} such that i 6= j, and every process p, the positive part of GT
j (p)

belongs to the negative part in GT
i (p) if and only if Aj /A Ai.

Lemma 2. For every i, j ∈ {1, ..., k}, if AT
j ≺T(A) A

T
i , then Aj /A Ai.

Proof. LetAT
i andAT

j be two families such thatAT
j ≺T(A) A

T
i . Then, i 6= j and there exist two processes

p and q such that q ∈ p.Γ ∪ {p} and Write(AT
j (p)) ∩ G-Read(AT

i (q)) 6= ∅. Then, Write(AT
j (p)) =

Write(Aj(p)), and either Write(Aj(p)) ∩G-Read(Ai(q)) 6= ∅, or Write(Aj(p)) ∩G-Read(A`(q)) 6= ∅
where G`(q) belongs to the negative part of GT

i (q). In the former case, we have Aj ≺A Ai, which
implies that Aj /A Ai (/A is compatible with ≺A). In the latter case, Aj ≺A A` (by definition) and
A` /AAi (by Remark 6). Since, Aj ≺A A` impliesAj /AA` (/A is compatible with≺A), by transitivity
we have Aj /A Ai. Hence, for every i, j ∈ {1, ..., k}, AT

j ≺T(A) A
T
i implies Aj /A Ai, and we are done.

�

Lemma 3. T(A) follows an acyclic strategy.

Proof. Let AT
i be a family of T(A). The lemma is proven by the following three claims.

(1) AT
i is correct-alone. Indeed, as Ai is correct-alone and for every process p, ST

i (p) = Si(p) and
¬Gi(p)⇒ ¬GT

i (p), we have that AT
i is also correct-alone.

(2) AT
i is either bottom-up or top-down. Since A follows an acyclic strategy, Ai is either bottom-

up or top-down. Assume Ai is bottom-up. By construction, for every process q, ST
i (q) = Si(q) so

Write(AT
i (q)) = Write(Ai(q)). Let q.v ∈ G-Read(AT

i (p)).
- Assume q.v ∈ G-Read(Ai(p)). Then q.v ∈ Write(Ai(q)) ⇒ q ∈ p.chldrn ∪ {p} (since Ai is

bottom-up), i.e., q.v ∈ Write(AT
i (q))⇒ q ∈ p.chldrn ∪ {p}.

10

- Assume that q.v /∈ G-Read(Ai(p)). Then q.v ∈ G-Read(Aj(p)) such that Gj(p) belongs to
the negative part of GT

i (p), i.e., Aj /A Ai (Remark 6). Assume, by the contradiction, that q.v ∈
Write(AT

i (q)). Then q.v ∈ Write(Ai(q)), and since p ∈ q.Γ∪{q} (indeed, q.v ∈ G-Read(Aj(p))),
we have Ai ≺A Aj . Now, as /A is compatible with ≺A, we have Ai /AAj . Hence, Aj /AAi and
Ai /A Aj , a contradiction. Thus, q.v /∈ Write(AT

i (q)) which implies that q.v ∈ Write(AT
i (q)) ⇒

q ∈ p.chldrn ∪ {p} holds in this case.
Hence, AT

i is bottom-up. By a similar reasoning, if Ai is top-down, AT
i is top-down too.

(3) The graph of actions’ causality of T(A) is acyclic. Indeed, by Lemma 2, for every i, j ∈ {1, ..., k},
AT

j ≺T(A) A
T
i ⇒ Aj /A Ai. Now, /A is a strict total order. So, the graph of actions’ causality of T(A) is

acyclic. �

Lemma 4. Every execution of T(A) is an execution of A.

Proof. A and T(A) have the same set of configurations; every step of T(A) is a step of A; and a
configuration γ is terminal w.r.t. T(A) iff γ is terminal w.r.t. A. �

Theorem 3. If A follows an acyclic strategy, and is silent and self-stabilizing for SP in G under the
distributed unfair daemon, then

(1) T(A) is silent and self-stabilizing for SP in G under the distributed unfair daemon,
(2) its stabilization time is at most (H + 1) · (H + 1) rounds, and
(3) its stabilization time in moves is less than or equal to the one of A.

where H is the height of the graph of actions’ causality of A and H is the height of the spanning forest.

Proof. By Remark 5, Lemmas 3 and 4, and Theorems 1 and 2. �

Using the above theorem, we can apply the transformer on our toy example: T(T E) stabilizes in at
most 2(H + 1) rounds and Θ(H · n2) moves in the worst case.

7 Related Work and Applications

There are many works [26, 8, 9, 6, 7, 22, 14] where we can apply our generic results. These works
propose silent self-stabilizing algorithms for directed trees or network where a directed spanning tree
is available. These algorithms are, or can be easily translated into, well-formed algorithms that follow
an acyclic strategy. Hence, their correctness and time complexities (in moves and rounds) are directly
deduced from our results. Below, we only present a few of them.

Turau and Köhler [26] proposes three algorithms for directed trees. Each algorithm is given with
its proof of correctness and round complexity, however move complexity is not considered. These
three algorithms can be trivially translated in our model, and our results allow to obtain the same round
complexities, and additionally provide move complexities. Among those three algorithms, the third
one is the most interesting since it uses 5 families of actions, while the two first use 1 and 2 families
respectively. So, we only detail this latter. The algorithm computes a minimum connected distance-k
dominating set using the five families below:

A1(p) :: p.L 6= L(p) → p.L← L(p)
A2(p) :: p.level 6= level(p) → p.level← level(p)
A3(p) :: p.cds 6= cds′(p) → p.cds← cds′(p)
A4(p) :: p.cds ∧ p.distl 6= distl(p) → p.distl ← distl(p)
A5(p) :: p.minc 6= minc(p) → p.minc← minc(p)

We do not explain here the role of the variables nor their computation using macros, please refer
to the original paper [26]. But from their definition in [26], we can observe that: (1) L(p) depends on
q.L for q ∈ p.chldrn; (2) level(p) depends on p.par.level; (3) cds′(p) that depend on p.L and q.cds

11

for q ∈ p.chldrn; (4) distl(p) depends on q.L and q.cds for q ∈ p.chldrn, and p.par.distl; finally
(5) minc(p) depends on p.level, q.cds and q.minc for q ∈ p.chldrn. So, A1, A3, A5 are bottom-up
and correct-alone and A2, A4 are top-down and correct-alone. The graph of actions’ causality is acyclic
since A1 ≺ A3, A1 ≺ A4, A2 ≺ A5, A3 ≺ A4, and A3 ≺ A5; and its height is H = 2. Thus, as in [26],
we have a round complexity in O(H). Moreover, by Theorem 1, the move complexity is in O(∆2.n4),
where ∆ is the degree of the tree.

The silent algorithm given in [22] finds articulation points in a network endowed with a breadth-first
spanning tree, assuming a central unfair daemon. The algorithm computes for each node p the variable
p.e which contains every non-tree edges incident on p and some non-tree edges incident on descendants
of p once a terminal configuration is reached. Precisely, a non-tree edge {p, q} is propagated up in the
tree starting from p and q until the first common ancestor of p and q. Based on p.e, the node p can decide
whether or not it is an articulation point. The algorithm can be translated as a single family of actions
which is correct-alone and bottom-up. So, it follows that this algorithm is silent and self-stabilizing
even assuming a distributed unfair daemon. Moreover, its stabilization time is in O(n2) moves and
O(H) rounds.

The algorithm in [14] computes cut-nodes and bridges on connected graph endowed with a depth-
first spanning tree. It is silent and self-stabilizing under a distributed unfair distributed daemon and
converges within O(n2) moves and O(H) rounds. Indeed, the algorithm contains a single family of
actions which is correct-alone and bottom-up.

8 Conclusion

We have presented a general scheme to prove and analyze silent self-stabilizing algorithms executing on
networks endowed with a sense of direction describing a spanning forest. Our results allow to easily (i.e.
quasi-syntactically) deduce correctness and upper bounds on both move and round complexities of such
algorithms. We have identified a number of algorithms [26, 8, 9, 6, 7, 22, 14] where our method applies.
In several of those works, the assumption about the existence of a directed spanning tree has to be
considered as an intermediate assumption, since this structure has to be built by an underlying algorithm.
Now, several silent self-stabilizing spanning tree constructions are efficient in both rounds and moves,
e.g., [15]. Thus, both algorithms, i.e., the one that builds the tree and the one that computes on this tree,
have to be carefully composed to obtain a general composite algorithm where the stabilization time is
kept both asymptotically optimal in rounds and polynomial in moves.

References
[1] K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-stabilizing leader election in polynomial

steps. Inf. Comput., 254:330–366, 2017.

[2] A. Arora, M. Gouda, and T. Herman. Composite routing protocols. In SPDP’90, pages 70–78, 1990.

[3] L. Blin, P. Fraigniaud, and B. Patt-Shamir. On proof-labeling schemes versus silent self-stabilizing algo-
rithms. In SSS’14, pages 18–32, 2014.

[4] L. Blin, M. Potop-Butucaru, S. Rovedakis, and S. Tixeuil. Loop-free super-stabilizing spanning tree con-
struction. In SSS’10, pages 50–64, 2010.

[5] L. Blin and S. Tixeuil. Compact deterministic self-stabilizing leader election on a ring: the exponential
advantage of being talkative. Dist. Comp., 31(2):139–166, 2018.

[6] P. Chaudhuri. An O(n2) Self-Stabilizing Algorithm for Computing Bridge-Connected Components. Com-
puting, 62(1):55–67, 1999.

[7] P. Chaudhuri. A note on self-stabilizing articulation point detection. Journal of Systems Architecture,
45(14):1249–1252, 1999.

12

[8] P. Chaudhuri and H. Thompson. Self-stabilizing tree ranking. Int. J. Comput. Math., 82(5):529–539, 2005.

[9] P. Chaudhuri and H. Thompson. Improved self-stabilizing algorithms for l(2, 1)-labeling tree networks.
Mathematics in Computer Science, 5(1):27–39, 2011.

[10] A. Cournier, S. Devismes, and V. Villain. Light enabling snap-stabilization of fundamental protocols. TAAS,
4(1):6:1–6:27, 2009.

[11] A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre. Competitive self-stabilizing
k-clustering. TCS, 626:110–133, 2016.

[12] A. K. Datta, L. L. Larmore, and P. Vemula. An O(N)-time self-stabilizing leader election algorithm. JPDC,
71(11):1532–1544, 2011.

[13] S. Delaët, B. Ducourthial, and S. Tixeuil. Self-stabilization with r-operators revisited. JACIC, 3(10):498–
514, 2006.

[14] S. Devismes. A silent self-stabilizing algorithm for finding cut-nodes and bridges. Parallel Processing
Letters, 15(1-2):183–198, 2005.

[15] S. Devismes, D. Ilcinkas, and C. Johnen. Silent self-stabilizing scheme for spanning-tree-like constructions.
Technical report, HAL, Feb 2018.

[16] S. Devismes and C. Johnen. Silent self-stabilizing BFS tree algorithms revisited. JPDC, 97:11 – 23, 2016.

[17] S. Dolev, M. G. Gouda, and M. Schneider. Memory requirements for silent stabilization. Acta Inf.,
36(6):447–462, 1999.

[18] B. Ducourthial and S. Tixeuil. Self-stabilization with r-operators. Dist. Comp., 14(3):147–162, 2001.

[19] S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar graphs. Dist. Comp., 7(1):55–
59, 1993.

[20] C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. Disconnected components detection and rooted shortest-
path tree maintenance in networks. In SSS’14, pages 120–134, 2014.

[21] S.-T. Huang and N.-S. Chen. A self-stabilizing algorithm for constructing breadth-first trees. IPL, 41(2):109–
117, 1992.

[22] M. H. Karaata. A self-stabilizing algorithm for finding articulation points. Int. J. Found. Comput. Sci.,
10(1):33–46, 1999.

[23] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems. Dist. Comp., 7(1):17–26,
1993.

[24] A. Korman, S. Kutten, and D. Peleg. Proof labeling schemes. Dist. Comp., 22(4):215–233, 2010.

[25] G. Tel. Introduction to distributed algorithms. Cambridge University Press, Cambridge, UK, Second edition
2001.

[26] V. Turau and S. Köhler. A distributed algorithm for minimum distance-k domination in trees. J. Graph
Algorithms Appl., 19(1):223–242, 2015.

13

