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Abstract

A new notion of process failure explicitly related to contention has recently been introduced by
one of the authors (NETYS 2018). More precisely, given a predefined contention threshold λ, this
notion considers the executions in which process crashes are restricted to occur only when process
contention is smaller than or equal to λ. If crashes occur after contention bypassed λ, there are no
correctness guarantees (e.g., termination is not guaranteed). It was shown that, when λ = n − 1,
consensus can be solved in an n-process asynchronous read/write system despite the crash of one
process, thereby circumventing the well-known FLP impossibility result. Furthermore, it was shown
that when λ = n−k and k ≥ 2, k-set agreement can be solved despite the crash of 2k−2 processes.

This paper considers two types of process crash failures: “λ-constrained” crash failures (as pre-
viously defined), and classical crash failures (that we call “any time” failures). It presents two algo-
rithms suited to these types of failures. The first algorithm solves k-set agreement, where k = m+f ,
in the presence of t = 2m + f − 1 crash failures, 2m of them being (n − k)-constrained failures,
and (f − 1) being any time failures. The second algorithm solves (n+ f)-renaming in the presence
of t = m+ f crash failures, m of them being (n− t− 1)-constrained failures, and f being any time
failures. It follows that the differentiation between λ-constrained crash failures and any time crash
failures enlarges the space of executions in which the impossibility of k-set agreement and renaming
in the presence of asynchrony and process crashes can be circumvented. In addition to its behavioral
properties, both algorithms have a noteworthy first class property, namely, their simplicity.

Keywords: Agreement algorithm, Asynchronous system, Atomic register, Concurrency, Contention,
`-Mutual exclusion, Participating process, Process crash failure, Read/write register, Renaming, k-
Set agreement.

1 Definitions and Motivation

1.1 Processes, Failures, Communication

The system is composed of n asynchronous sequential processes, denoted p1, ..., pn, which communi-
cate by reading and writing atomic registers. The model parameter t denotes the maximal number of
processes that may crash during a run. A process crash is a premature definitive halting. A process that
crashes is called faulty, otherwise it is correct.

It is assumed that all correct processes participate, i.e., execute their local algorithm. (Let us notice
that this assumption is a classical –very often left implicit– assumption encountered in message-passing
distributed algorithms [17].)
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Let us call contention the current number of processes that started executing. The model parameter
λ denotes a predefined contention threshold. So, an execution can be divided into two parts: a prefix in
which the contention is≤ λ and a suffix in which contention is> λ. Hence, we consider a failure model
in which there are two types of crashes: the ones that can occur only when contention is ≤ λ that we
call “λ-constrained”, and the ones that can appear at “any time”; λ-constrained crashes were introduced
in [20] under the name “weak failures”.

1.2 Motivation for Considering λ-Constrained Failures

As discussed in [20], the new type of λ-constrained failures enables us to design algorithms that can
tolerate several traditional “any time” failures plus several additional λ-constrained failures (i.e., weak
failures). More precisely, assume that a problem can be solved in the presence of t traditional failures,
but cannot be solved in the presence of t + 1 such failures. Yet, the problem might be solvable in the
presence of t1 ≤ t “any time” failures plus t2 λ-constrained failures, where t1 + t2 > t.

Adding the ability to tolerate λ-constrained failures to algorithms that are already designed to cir-
cumvent various impossibility results, such as the Paxos algorithm [14] and indulgent algorithms in
general [11, 12], would make such algorithms even more robust against possible failures. An indul-
gent algorithm never violates its safety property, and eventually satisfies its liveness property when the
synchrony assumptions it relies on are satisfied. An indulgent algorithm which in addition (to being
indulgent) tolerates λ-constrained failures may, in many cases, satisfy its liveness property even before
the synchrony assumptions it relies on are satisfied.

When facing a failure related impossibility result, such as the impossibility of consensus in the
presence of a single faulty process [10], one is often tempted to use a solution which guarantees no
resiliency at all. We point out that there is a middle ground: tolerating λ-constrained (weak) failures
enables to tolerate failures some of the time. Also, traditional t-resilient algorithms tolerate failures only
some of the time (i.e., as long as the number of failures is at most t). After all, something is better than
nothing.

The type of λ-constrained failures which are assumed to occur only before a specific predefined
threshold on the level of contention is reached, is in particular useful in systems in which contention is
usually low. Another possible type of weak failures, also defined in [20], in which failures are assumed
to occur only after a specific predefined threshold on the level of contention is reached, may correspond
to a situation where, when there is high contention, processes are slowed down and as a result give up
and abort.

Finally, the new failure model establishes a link between contention and failures, which enables us
to better understand various known impossibility results, like the impossibility result for consensus [10]
and its generalizations [6, 13, 18].

1.3 High Level Objects

To make the presentation of the proposed algorithms easier, the basic read/write system is enriched with
two types of objects, namely `-mutual exclusion and snapshot. Both can be built on top of a crash-prone
asynchronous read/write system.

Deadlock-free `-mutual exclusion. Such an object, which provides the processes with the operations
acquire() and release(), allows up to ` of them to simultaneously execute their critical section. It is
defined by the following properties.

• Mutual exclusion. No more than ` processes can simultaneously be in their critical section.

• Deadlock-freedom. If less than ` processes crash, and processes are invoking the operation
acquire(), at least one of them will terminate its invocation.
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It is shown in [2, 9, 19] that `-mutual exclusion can be built on top of an asynchronous crash-prone
read/write system. In the one-shot version, a process invokes acquire() and release() at most once.

Snapshot. A snapshot object provides two operations denoted write() and snapshot() [1, 3]. Such an
object can be seen as an array of single-writer multi-reader atomic register SN [1..n] such that:

(a). when pi invokes write(v), it writes v into SN [i]; and
(b). when pi invokes snapshot(), it obtains the value of the array SN [1..n] as if it read simultaneously

and instantaneously all its entries.
Said another way, the operations write() and snapshot() are atomic. Snapshot objects can be imple-
mented on top of asynchronous crash-prone read/write systems [1, 3, 16].

2 k-Set Agreement and M -Renaming

2.1 k-Set Agreement

A k-set agreement (k-SA) object is a one-shot object introduced by S. Chaudhuri [8] to study the relation
linking the number of failures and the agreement degree attainable in a set of crash-prone asynchronous
processes. Such an object provides a single operation denoted propose(), which allows the invoking
process to propose a value and obtain a result (called decided value). Assuming each correct process
proposes a value, each process must decide on a value such that the following properties are satisfied.

• Validity. A decided value is a proposed value.

• Agreement. At most k different values are decided.

• Termination. Every correct process decides a value.

When k = 1, k-set agreement boils down to consensus, whose impossibility in the presence of asyn-
chrony and a single process crashed was proved in [10] for message-passing systems, and in [15]
for read/write systems. It was later shown in [6, 13, 18] that it is impossible to solve k-set agree-
ment in crash-prone asynchronous read/write systems where t ≥ k. Hence, as the k-set agreement
read/write-based algorithm presented in [20] works despite up to t = 2k − 2 λ-constrained failures
(where λ = n − k), the introduction of contention-related failures in [20], is a noteworthy advance in
fault-tolerance, which enlarges the space of executions in which k-set agreement can be solved.

2.2 M-Renaming

The renaming object was introduced in the context of message-passing system [4]. An introductory
survey to renaming in crash-prone asynchronous read/write systems is presented in [7].

An M -renaming object allows n processes with initially distinct names from a large name space to
acquire distinct new names from a smaller name space {1, ...,M}, whereM is a predefined value known
by the processes. A one-shot renaming object allows each process to acquire a distinct new name just
once. A long-lived renaming object allows processes to repeatedly acquire distinct names and release
them. In this paper, we consider only one-shot renaming objects.

A process pi accesses an M -renaming object R using the operation R.rename(idi), where idi is its
original name, which returns a new name. A process pi knows neither its index i, nor the original names
of the other processes. The properties defining such an object are the following.

• Validity. A new name belongs to the set {1, ...,M}.

• Agreement. No two processes obtain the same new name.
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• Termination. If a process invokes R.rename(id) and does not crash, it returns from its invocation.

In the classical n-process model (i.e., a model where only any time crash failures are considered),
it is known that with t any time failures, there is a tight (n + t) bound on the size of new name space
for renaming for infinitely many values of n. We will show how this result can be circumvented. The
interested reader will find renaming algorithms in textbooks such as [5, 16, 19].

3 The Results of the Paper at a Glance

As announced in the abstract, this paper is on k-set agreement and M -renaming in an asynchronous
read/write model in which there are two kinds of process crashes:

• the “usual” ones, which are allowed to occur at any time, called “any time” failures in the follow-
ing;

• the ones (introduced in [20]) that are restricted to occur only while the contention has not bypassed
a predefined threshold λ, called “λ-constrained” failures in the following.

As announced in the Introduction, let us recall that all the algorithms presented in the paper assume that
all correct processes participate.

3.1 Results Concerning k-Set Agreement

The paper presents a general k-set agreement algorithm that, in addition to the model and problem
parameters n, t, k, and λ = n− k, considers two more integers m ≥ 0 and f ≥ 1, such that m+ f = k
and t = 2m+ f − 1 (or, equivalently, t = 2k − f − 1). The fault-tolerance properties of this algorithm
are summarized in Table 1.

The k-set agreement algorithm: Fault-tolerance properties

total # of failures tolerated t = 2m+ f − 1

“λ-constrained” crash failures 2m

“any time” crash failures f − 1

Table 1: k-Set agreement: tolerates crash failures with λ = n− k and k = m+ f

More generally, the parameters m and f , where k = m + f , can be seen as parameters allowing the
user to tune the type of crash failures that are dominant in the considered application context. At one
extreme, the pair of values 〈m, f〉 = 〈0, k〉 maximizes the number of any time failures, and allows up to
any time k− 1 crash failures. At the other extreme, the pair 〈m, f〉 = 〈k− 1, 1〉 maximizes the number
of λ-constrained failures: it allows up to 2k − 2 λ-constrained failures and no any time failure.

Since t = 2m + f − 1 we can say that, intuitively, one any time failure “equals” two (n − k)-
constrained failures. That is, it is possible to trade one strong (any time) failure for two weak (λ-
constrained) failures and vice versa, as demonstrated in Table 2.
Interestingly, the particular instantiation 〈m, f〉 = 〈k − 1, 1〉 boils down to a specific case of the algo-
rithm described in [20]1.

Additionally, as it will become clear in its description, Algorithm 1 presented in Section 4 sheds new
light on a relation linking k-set agreement and `-mutual exclusion

1It is proved in [20] that for every two positive integers ` and k, there is a k-set agreement algorithm for n processes, using
registers, that can tolerate `+ k − 2 λ-constrained crash failures, where λ = n− `. So, for the special case where ` = k, the
algorithm can be tolerated 2k − 2 (n− k)–constrained failures.
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The k-set agreement algorithm: tradeoffs

total # of failures m = 0 m = bk/2c m = k − 1

t = 2m+ f − 1 f = k f = bk/2c f = 1

2m “λ-constrained” crash failures 0 k 2k − 2

f − 1 “any time” crash failures k − 1 bk/2c − 1 0

Table 2: k-Set agreement: tradeoffs “λ-constrained/any time” crash failures, with λ = n− k

3.2 Results Concerning M -Renaming

Considering a new name space of size M = n+ f , the paper presents a general M -renaming algorithm
that, in addition to the model and problem parameters n, t, and λ = n− t− 1, as previously, considers
two integers m ≥ 0 and f ≥ 0, such that t = m + f . The fault-tolerance properties of this algorithm
are summarized in Table 3.

The (n+ f)-renaming algorithm: Fault-tolerance properties

total # of failures tolerated t = m+ f

“λ-constrained” crash failures m

“any time” crash failures f

Table 3: M -Renaming: tolerated crash failures, with λ = n− t− 1

Similarly to the case of k-set agreement, the parameters m and f , where t = m+ f , allows the user to
tune the type of crash failures and (here) the size of the name space that are dominant in the considered
application context. At one extreme, the pair of values 〈m, f〉 = 〈0, t〉 maximizes the number of any
time failures (which is good) but also maximizes the size of the name space (which is bad). At the other
extreme, the pair 〈m, f〉 = 〈t, 0〉 maximizes the number of λ-constrained failures and minimizes the
size of the name space (which is good). This is demonstrated in Table 4.

The (n+ f)-renaming algorithm: Tradeoffs

total # of failures m = 0 m = bk/2c m = t

t = m+ f f = t f = bk/2c f = 0

m “λ-constrained” crash failures 0 bk/2c t

f “any time” crash failures t bk/2c 0

The size of name space n+ t n+ bk/2c n

Table 4: M -Renaming: tradeoffs “λ-constrained/any time” crash failures, with λ = n− t− 1

4 k-Set Agreement: Algorithm (k ≥ 2)

This section presents a k-set agreement algorithm that allows to circumvent the known impossibility
result for solving k-set agreement in crash-prone asynchronous read/write systems where t ≥ k [6, 13,
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18]. The algorithm considers the contention-related failure model, and assumes all correct processes
participate. It is characterized by the following theorem.

Theorem 1. For any n ≥ 1, n−1 ≥ t ≥ 0, m ≥ 0 and f ≥ 1 such that t = 2m+f−1 and k = m+f ,
it is possible to solve k-set agreement for n processes in the presence of at most t crash failures, 2m of
them being λ-constrained failures where λ = n− k, and f − 1 of them being any time failures.

In the algorithm described below, it is assumed that the identity of a process pi is its index i.

Shared objects. The processes cooperate through the following objects.

• PART [1..n]: snapshot object, initialized to [down, · · · , down], used to indicate participation.

• DEC : atomic register initialized to ⊥ (a value which cannot be proposed). It will contain values
(one at a time) that can be decided.

• MUTEX [1]: one-shot deadlock-free f -mutex object.

• MUTEX [2]: one-shot deadlock-free m-mutex object.

For the special case where m = 0 and f = k, in the proposed algorithm no process will ever try to
access the MUTEX [2] object. Thus, there is no need to define the notion of a 0-mutex object.

Local variables. Each process pi manages the following local variables: parti is used to locally store
a copy of the snapshot object PART ; counti is a local counter; and groupi a binary variable whose
value belongs to {1, 2}.

Behavior of a process pi. Algorithm 1 describes the behavior of a process pi. When it invokes
propose(ini) (where ini is the value it proposes), pi first indicates it is participating (line 1). Then
it invokes the snapshot object until at least n − t processes are participating (lines 2-4). When this oc-
curs, pi enters group 1 or group 2 according to the value of its counter counti (line 5), and launches in
parallel two threads T1 and T2 (line 6).

In the thread T1, pi loop forever until DEC contains a proposed value. When this happens pi decides
it (line 7). The execution of return() at line 7 or 12 terminates the invocation of propose().

The thread T2 is the core of the algorithm. Process pi tries to enter the critical section controlled
by either the f -mutex or the m-mutex object MUTEX [groupi] (line 9). If it succeeds and DEC has
still its initial default value, pi assigns it the value ini it proposed (line 10). Finally, pi releases the
critical section (line 11), and decides (line 12). Let us remind that, as far as MUTEX [1] (respectively,
MUTEX [2]) is concerned, up to f (respectively, m) processes can simultaneously execute line 10.

Remark. The reader can check that the line 8 (together with line 13) and line 11 can be suppressed
without compromising the correctness of the algorithm. This is a side-effect of task T1. For clarity, we
nevertheless keep these lines.

5 k-Set Agreement: Proof

Lemma 1. At most n− k processes have a counter less or equal to n− k when leaving the repeat loop
(lines 2-4).
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operation propose(ini) is
(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|;
(4) until counti ≥ n− t end repeat;
(5) if counti ≤ n− k then groupi ← 2 else groupi ← 1 end if;
(6) launch in parallel the threads T1 and T2.
% Both threads and the operation terminate when pi invokes return() (line 7 or 12).

thread T1 is
(7) loop forever if DEC 6= ⊥ then return(DEC ) end if end loop.

thread T2 is
(8) if groupi = 1 ∨m > 0 then
(9) MUTEX [groupi].acquire();
(10) if DEC = ⊥ then DEC ← ini end if;
(11) MUTEX [groupi].release();
(12) return(DEC ).
(13) end if;

Algorithm 1: k-SA despite up to 2m “(n− k)-constrained” and f − 1 “any time” failures

Proof. Assume by contradiction that more than n − k processes have their counter less or equal to
n − k when leaving the repeat loop (2-4). P being this set of processes, we have |P | ≥ n − k + 1.
Moreover, let pi be the last process of P that invokes PART .snapshot() (line 1). It follows from the
atomicity of the write() and snapshot() operations on the object PART that counti ≥ |P | ≥ n−k+1,
a contradiction.

Lemma 2. In the presence of at most t = 2m + f − 1 crash failures, 2m of them being (n − k)-
constrained, if processes participate in MUTEX [1], at most f − 1 of them can fail.

Proof. If a process pi participates in MUTEX [1] it follows from line 5 that counti > n − k when it
exited the repeat loop (lines 2-4). Thus, the contention was at least n − k + 1 when pi exited the loop
and, due to the definition of “(n − k)-constrained crash failures”, there is no more such failures. As
t = 2m + f − 1, it follows that, if processes participate in MUTEX [1], at most f − 1 of them can
fail.

Theorem 2 (Termination). In the presence of at most t = 2m+ f − 1 crash failures, 2m of them being
(n− k)-constrained, every correct process eventually terminates.

Proof. Since there is at most t processes that may fail and participation is required, at least n − t
processes set their participating flag to up in the snapshot object PART (line 1). Thus, no correct
process remains stuck forever in the repeat loop (lines 2-4).

First, assume m = 0. By Lemma 1, at most n − k processes have a counter less or equal to n − k
when they exit the repeat loop (lines 2-4). Thus, at most n − k processes belong to group 2. If m = 0,
there is n − t = n − f + 1 correct processes and, since k = f , n − f + 1 > n − k. So, among the
processes participating in MUTEX [1], at least one of them is correct and at most f − 1 of them crash
before returning from MUTEX [1].release() (line 11). Due to the deadlock-freedom property of the
one-shot f -mutex object MUTEX [1], at least one correct process eventually enters its critical section
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and, if DEC has not already been written, writes its input into DEC . It then follows from task T1 that,
if it does not terminate at line 11, every other correct process will decide and terminate.

Now, assume m > 0. There are two cases.

• If at least y ≥ f processes participate in MUTEX [1], it follows from Lemma 2 that at most f − 1
of them crash before returning from MUTEX [1].release() (line 11), and consequently all other
processes participating in MUTEX [1] are correct. As y > f − 1 and f > 0, there is at least
one such correct process, say px. Due to the deadlock-freedom property of the one-shot f -mutex
object MUTEX [1], px eventually enters its critical section and, if DEC has not already been
written, writes its input into DEC .

• Otherwise, less than f processes participate in MUTEX [1]. There are two sub-cases.

– If a correct process pi participates in MUTEX [1], it follows from this sub-case assumption
and the deadlock-freedom property of the one-shot f -mutex object MUTEX [1], that pi
eventually enters its critical section and, if DEC = ⊥, writes its input inx into this atomic
register.

– Otherwise, no correct process participates in MUTEX [1]. By Lemma 1, at most n − k
processes have a counter less or equal to n− k when they exit the repeat loop (lines 2-4). So
at most n− k processes participate in MUTEX [2]. Since no correct process participates in
MUTEX [1], all correct processes (they are at least n− t) participate in MUTEX [2]. Thus,
at most (n−k)−(n−t) = t−k = 2m+f−1−(m+f) = m−1 processes that participate
in MUTEX [2] fail. Hence, due to the deadlock-freedom property of the one-shot m-mutex
object MUTEX [2], at least one correct process enters its critical section and, if DEC = ⊥,
writes its input into DEC .

In both cases, every other correct process will decide and terminate.

Theorem 3 (Agreement and validity). At most k different values are decided, and each of them is the
input of some process.

Proof. If a process decides (line 7 or line 12), it decides on the current value of DEC , which –due to the
predicates of line 7 or line 10– has previously been set –at line 10– to the value proposed by a process.
Due to the predicate and the assignment of DEC at line 10, and the fact that MUTEX [1] is a f -mutex
object, it follows that at most f processes assign a value to DEC in the critical section controlled by
MUTEX [1]. Due to a similar argument, at most m processes assign a value to DEC in the critical
section controlled by MUTEX [2]. Thus, at most m+ f = k different values can be written into DEC ,
and each of them is a proposed value.

As its proof involves neither the timing nor the number of failures, Theorem 3 gives rise to the following
property (called indulgence [11, 12]).

Corollary 1. Whatever the time occurrence and the number of crash failures, the k-set agreement and
validity properties are never violated.

6 M -Renaming: Algorithm

This section presents a renaming algorithm that allows to circumvent the (n+ t) tight bound on the size
of name space for renaming for infinitely many values of n. This algorithm considers the contention-
related failure model, and assumes all correct processes participate. It is characterized by the following
theorem.

8



operation rename(idi) is
(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|
(4) until counti ≥ n− t end repeat;
(5) new_namei ← RENAMINGf .rename(idi);
(6) return(new_namei).

Algorithm 2: (n + f)-renaming despite up to m “(n − t − 1)-constrained” and f “any time” failures,
where t = m+ f

Theorem 4. For any n ≥ 1, n − 1 ≥ t ≥ 0, m ≥ 0 and f ≥ 0 such that t = m + f , it possible
to solve (n + f)-renaming for n processes in the presence of at most t crash failures, m of them being
λ-constrained failures where λ = n− t− 1, and f of them being any time failures.

Shared objects. The processes cooperate through the following objects.

• PART [1..n]: snapshot object, initialized to [down, · · · , down], used to indicate participation.

• RENAMINGf : (n + f)-renaming object which can tolerate up to f any time crash failures for
a model where participation is not required. The fact that participation is not required means that
a process that does not participate is not consider faulty. The object is not assumed to tolerate
any additional λ-constrained failures. An example of such an algorithm is described in [5] (pages
359-360).

Local variables. Each process pi manages the following local variables: parti is used to locally store
a copy of the snapshot object PART ; counti is a local counter; idi and new_namei are used to store
the original and new names, respectively.

Behavior of a process pi. Algorithm 2 describes the behavior of a process pi. Every process pi keeps
on taking snapshots until it notices that n − t processes (including itself) are participating. Then, the
process invokes a rename operation of a RENAMINGf object, stores the value of its new name in
new_namei, and returns this value.

7 M -Renaming: Proof

Lemma 3. In the presence of at most t = m+f crash failures,m of them being (n−t−1)-constrained,
if processes participate in RENAMINGf , at most f of them can fail.

Proof. If a process pi participates in RENAMINGf it follows from line 4 that the predicate counti ≥
n− t is satisfied when it exited the repeat loop (lines 2-4). Thus, the contention was at least n− t when
pi exited the loop and, due to the definition of “(n− t− 1)-constrained crash failures”, there is no more
such failures. As t = m + f , it follows that, if processes participate in RENAMINGf , at most f of
them can fail.

Theorem 5 (Termination). In the presence of at most t = m + f crash failures, m of them being
(n− t− 1)-constrained, every correct process eventually terminates.
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Proof. Since there is at most t processes that may fail and participation is required, at least n − t
processes set their participating flag to up in the snapshot object PART (line 1). Thus, no correct
process remains stuck forever in the repeat loop (lines 2-4).

By Lemma 3, if processes participate in RENAMINGf , at most f of them can fail. Since, by
definition, (1) RENAMINGf can tolerate f any time failures, and (2) in RENAMINGf participation
is not required, it follows that every operation invoked by a correct processes on RENAMINGf must
return a value. Thus, every correct process eventually terminates.

Theorem 6 (Agreement and validity). In the presence of at most t = m + f crash failures, m of them
being (n − t − 1)-constrained, (1) no two processes decide on the same new name, and (2) the new
names are in the range [1..n+ f ].

Proof. By Lemma 3, at most f processes can fail while executing RENAMINGf . Since, RENAMINGf

is an (n+ f)-renaming object which can tolerate up to f crash failures for a model where participation
is not required, any correct process that participates in RENAMINGf must acquire a unique new name
in the range [1..n+ f ].

8 From M-Renaming to One-shot Concurrent Objects

Let us consider any one-shot concurrent object OB , which provides a single operation op(), and tolerate
up to x any time crash failures in a model where participation is not required.

This section presents an algorithm that transforms OB in an object OB ′ where, assuming all pro-
cesses participate (i.e., invoke op()), allows to withstand additional λ-constrained crash failures. As in
the previous sections, the transformation considers the parameters n, t, λ = n − t − 1, m ≥ 0, and
0 ≤ f ≤ x − 1. The fault-tolerance properties of the resulting object OB ′ are summarized in Table 5
(where, let us remind, x is the number of any time crash failures tolerated by the underlying object OB ′).

total # of failures tolerated t = m+ f

“λ-constrained” crash failures m

“any time” crash failures f ≤ x− 1

Table 5: Crash failures tolerated by OB ′, where λ = n− t− 1

As before, the parameters m and f are parameters that allow the user to tune the type of crash failures
that are dominant in the considered application context. At one extreme, the pair of values 〈m, f〉 =
〈t − x + 1, x − 1〉 maximizes the number of any time failures, and allows up to x − 1 any time crash
failures. At the other extreme, the pair 〈m, f〉 = 〈t, 0〉 maximizes the number of λ-constrained failures:
it allows up to t λ-constrained failures and no any time failure. This is described in Table 6.

total # of failures t = m+ f

m “λ-constrained” crash failures t− x+ 1 t−
⌊
x
2

⌋
t

f “any time” crash failures x− 1
⌊
x
2

⌋
0

Table 6: Tradeoffs “λ-constrained/any time” crash failures (λ = n− t− 1)

Algorithm 3 transforms of OB into OB ′. It is the same as Algorithm 2, which implements an M -
renaming object coping with both λ-constrained failures and any time failures. The meaning of the
underlying shared objects and local variables are the same as in Algorithm 2. In addition, resi contains
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the result of the underlying invocation OB .op(in) (line 5), where in is the input parameter of op(). The
proof, which is the same as the one given in Section 7, is left to the reader.

operation op(in) is % applied to OB ′

(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|
(4) until counti ≥ n− t end repeat;
(5) resi ← OB .op(in);
(6) return(resi).

Algorithm 3: Transformation of the operation op of a one-shot object tolerating up to m “(n − t − 1)-
constrained” failures and f “any time” failures, where t = m+ f

9 Conclusion

This paper addressed a process crash failure model in which some number of processes may crash only
when process contention has not bypassed a predefined threshold λ, while another number of processes
may crash at any time. It has been shown that this failure model allows impossibility results to be
circumvented. To this end, the paper has presented algorithms building k-set agreement and renaming
objects in such a model. So, it extends the set of possible executions in which k-set agreement and
renaming can be solved despite asynchrony and process crashes. The proposed algorithms allow their
users to tune them to specific failure-prone environments. This can be done by appropriately defining
the pair of integers 〈m, f〉. As an example, considering k-set agreement, these parameters control the
number of crashes allowed to occur before the contention threshold λ = n − k is bypassed, namely
2m = 2(k − f), and the number of failures which can occur at any time, namely, f − 1. That is, it
is possible to trade one strong “any time” failure for two weak “(n− k)-constrained” failures, and vice
versa.

Finally, some issues remain challenging on the open problem side. More specifically, on the com-
plexity/computability side of k-set agreement, it would be interesting to find out whether the upper
bound we have proved on the number of failures t = 2m + f − 1 (where 2m failures are (n − k)-
constrained and f − 1 failures are any time failures) is tight for k ≥ 2. On the algorithm design side,
as there is an algorithm (and a tight bound) for 1-agreement (see [20]), it would be interesting to find a
more general algorithm, i.e., an algorithm which works for k ≥ 1 (and not only for k ≥ 2).
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