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Using Unlabeled Data
to Discover Bivariate Causality

with Deep Restricted Boltzmann Machines
Nataliya Sokolovska, Olga Permiakova, Sofia K. Forslund, and Jean-Daniel Zucker

Abstract—An important question in microbiology is whether treatment causes changes in gut flora, and whether it also affects
metabolism. The reconstruction of causal relations purely from non-temporal observational data is challenging. We address the
problem of causal inference in a bivariate case, where the joint distribution of two variables is observed. We consider, in particular, data
on discrete domains. The state-of-the-art causal inference methods for continuous data suffer from high computational complexity.
Some modern approaches are not suitable for categorical data, and others need to estimate and fix multiple hyper-parameters.
In this contribution, we introduce a novel method of causal inference which is based on the widely used assumption that if X causes Y ,
then P (X) and P (Y |X) are independent. We propose to explore a semi-supervised approach where P (Y |X) and P (X) are
estimated from labeled and unlabeled data respectively, whereas the marginal probability is estimated potentially from much more
(cheap unlabeled) data than the conditional distribution.
We validate the proposed method on the standard cause-effect pairs. We illustrate by experiments on several benchmarks of biological
network reconstruction that the proposed approach is very competitive in terms of computational time and accuracy compared to the
state-of-the-art methods. Finally, we apply the proposed method to an original medical task where we study whether drugs confound
human metagenome.

Index Terms—Causal inference, semi-supervised learning, probabilistic models, metagenomic data.

F

1 INTRODUCTION

INFERRING causal directions between two variables from
observational biological data in absence of time series or

controlled perturbation is an important problem. In the past
decades, the attention to the problem of causal inference
has grown due to necessity to reveal causality in real life
applications. In particular, in the medical domain, revealing
causal relations from a data set can help to improve clinical
diagnostics, and to increase the quality of treatment and
medication.

Mechanism of action of many prescribed drugs remain
unclear. Metformin is the most prescribed treatment for the
type 2 diabetic patients, since it is relatively cheap, safe,
and its important beneficial effects on blood glucose and
cardiovascular parameters have been shown [1]. The main
hypothesis of metformin action is that the drug mediates
its antihyperglicemic effects by suppressing hepatic glucose
output via the activation of AMP-activated protein kinase
(AMPK) - dependent and AMPK - independent pathways in
the liver [2]. However, recently some studies [3] confirmed
hypotheses that metformin also acts through pathways in
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the gut.
In this paper, our goals are:

• to develop a robust causal inference method, since
biological data are always limited and noisy,

• suspecting microbial mediation of therapeutic effects
of metformin, test this hypothesis on a real data.

Instead of learning causal structure of an entire dataset,
some scientists focus on analysis of causal relations of two
variables only. Modern conditional independence-based
causal discovery methods (see, e.g., [4], [5] for general
overview) construct Markov equivalent graphs, and these
methods fail in the case of two variables, since X → Y and
Y → X are Markov equivalent.

In this contribution, we focus on a family of causal
inference methods which are based on a postulate telling
that if X → Y , then the marginal distribution P (X) and
the conditional distribution P (Y |X) are independent [6],
[7], [8]. These approaches provide causal directions based
on the estimated conditional and marginal distributions
from observed non-temporal data. The bivariate methods
are quite different from another state-of-art approach called
3off2 [9] where the algorithm needs three variables to infer
a direction, since it considers all possible triplets in data,
and looks for colliders in a graph. Therefore, the 3off2 is
not suitable for bivariate cases. One of the most important
problems in the causal inference in a bivariate case, is to
estimate the conditional and the marginal probabilities from
noisy limited observed data as accurate as possible.

Deep learning methods [10] are becoming the preferred
approach for various applications in artificial intelligence
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and machine learning, since they usually achieve the best
accuracy. We are interested in particular in stochastic neu-
ral networks, whose activation units have a probabilistic
element. Such a choice is motivated by the fact that con-
ditional and marginal probabilities P (Y |X) and P (X) can
be estimated by a deep model. Deep restricted Boltzmann
machines (DRBM) originally introduced by [11] is a deep
stochastic model with one layer of visible units and several
hidden units.

Our contribution is multifold:

• We introduce a novel semi-supervised method of
inferring causal directions that allows to discover the
associations between different pairs of factors.

• We propose to estimate the conditional and marginal
probabilities which are the key elements to infer
directions, using the deep RBM.

• We illustrate by our experiments on benchmark data
that the proposed method is computationally effi-
cient and its performance is highly competitive com-
pared to the state-of-the-art methods. It outperforms
the existing methods in terms of accuracy.

• We consider a real biomedical problem of revealing
causality in rich original metagenomic data. The
interest to infer causality in metagenomic data is to
verify hypotheses that drugs effects on metabolism
are microbially mediated. We show that the proposed
approach is efficient on the real complex data, and
discuss the obtained results.

The paper is organized as follows. Related work dis-
cusses the state-of-art methods of the bivariate causal infer-
ence. We consider continuous and discrete supervised and
unsupervised methods for causal inference, and then we
introduce a semi-superivsed pairwise probabilistic method.
The deep restricted Boltzmann machines and the ways
to compute the marginal and conditional probabilities are
described before the numerical results. We discuss the
results of our experiments on some standard challenges,
benchmark networks, and on an original medical problem.
Concluding remarks and perspectives close the paper.

2 RELATED WORK

There are two families of causal inference methods: Additive
Noise Models (ANM) and Information Geometric Causal
Inference (IGCI) [12].

Additive noise models (ANM) introduced by [13] and
[14] is an attempt to determine causality between two vari-
ables. The ANM assume that if there is a function f and
some noise E such that Y = f(X) + E, where E and X
are independent, then the direction is inferred to X → Y . A
generalisation of the ANM, called post-nonlinear models,
was introduced by [15]. However, the known drawback
of the ANM is that the model is not always suitable for
inference on categorical data [16].

Another research avenue exploiting the asymmetry be-
tween cause and effect are the linear trace (LTr) method [17]
and information-geometric causal inference (IGCI) [7]. They
rely on an assumption that if X → Y , and generating P (X)
is independent from P (Y |X), then the trace condition if
fulfilled in the causal direction and violated in the opposite

one. The IGCI method exploits the fact that the density of
the cause and the log slope of the function-transforming
cause to effect are uncorrelated. At the same time, the
density of the effect and the log slope of the inverse of the
function are positively correlated.

Origo [18] is a causal discovery method based on the
Kolmogorov complexity. The Minimum Description Length
(MDL) principle can be used to approximate the Kol-
mogorov complexity for real applications. Namely, from
algorithmic information viewpoint, if X → Y , then the
shortest program that computes Y from X will be more
simple than the shortest program computing X from Y.
However, the performance of Origo does not seem to be
competitive compared to the ANM.

A number of recent, reported to be efficient causal
discovery methods (see, e.g., [6], [7], [8]) are based on a
postulate of independence of input and output, telling that
a causal direction can be inferred from estimated marginal
and conditional probabilities of random variables from a
data set. In the following, we investigate this research direc-
tion.

3 PAIRWISE SEMI-SUPERVISED CAUSAL INFER-
ENCE

In this section, we consider methods which rely on the
following postulate [6], [7], [8] and assumptions.
Postulate 1. If X → Y , then the marginal distribution of the

cause P (X) and the conditional distribution of the effect
given the cause P (Y |X) are ”independent” in the sense
that P (Y |X) contains no information about P (X) and
vice versa.

Assumption 1. We assume that the training procedure
has access to N pairs {Xi, Yi}Ni=1 of observations, and
N ′ points of unlabeled data {Xi}N

′

i=1. Let us denote
X = (X1, . . . , XN ) as a one-dimensional vector, and
Y = (Y1, . . . , YN ) is also a vector of length N .

Assumption 2. Only X and Y are observed. We assume that
no confounders are present, no selection bias, and no
feedback.

The Assumption 2 is strong, and it is often violated in
real applications. If a confounder can be measured, the stan-
dard solution is to adjust the model on this variable. A more
challenging situation is one where confounders are unob-
served. Variational autoencoders (VAE) are able to estimate
latent-variable models, and it was recently demonstrated
that the VAE can efficiently approximate the probability
distributions in the presence of latent confounders [19].
Usually the nature of a latent variable is not known, and
another challenging research direction is to characterize
the unobserved confounders [20], e.g., represent them as a
mixture model and to estimate the number of components.
However, latent variables detection and modeling are out of
scope of this contribution.
Assumption 3. We formulate the task as a problem of causal

inference between two discrete variables, denoted Y ∈
Y and X ∈ X . Without loss of generality, we assume
that the causality between them exists, and the main task
remains to define what is the cause and what is the effect,
i.e. to make a choice between X → Y and Y → X .
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3.1 Supervised Causal Inference with Regression
A supervised method of causal inference for two continu-
ous univariate random variables which involves estimation
of the conditional probability was proposed by [8]. The
theoretical foundation of the CURE (Causal inference with
Unsupervised inverse REgression) method relies on the Pos-
tulate 1. The asymmetry allows to reduce the problem of the
causality inference to the estimation of the conditional prob-
ability. More precisely, the CURE method returns X → Y
when the estimation of the conditional probability of cause
given effect P (X|Y ) based on samples from the marginal
probabilities P (Y ) is more accurate than the estimation of
the conditional probability P (Y |X) based on the samples
from the marginal probability P (X). If that is not the case,
Y → X is inferred.

A way to quantify the accuracy of estimation of P (X|Y )
and of P (Y |X), is to analyse the difference between the
negative unsupervised log-likelihood and the supervised
log-likelihood:

DX|Y = Lunsup
X|Y − L

sup
X|Y = (1)

− 1

N

N∑
i=1

log p(Xi|Yi,y) +
1

N

N∑
i=1

log p(Xi|Yi,x,y), (2)

and

DY |X = Lunsup
Y |X − L

sup
Y |X = (3)

− 1

N

N∑
i=1

log p(Yi|Xi,x) +
1

N

N∑
i=1

log p(Yi|Xi,x,y). (4)

The decision on the edge orientation in the CURE is
taken as follows: if DX|Y < DY |X , then the inferred causal
direction is X → Y , otherwise Y → X . The obvious weak-
ness of the approach is the high computational complexity,
since it relies on the MCMC method for the approximation
of the posterior distribution, what is computationally con-
suming in case where the number of samples is large.

3.2 Supervised Causal Discovery with Distance Corre-
lation
Recently, [21] proposed a causal inference method for dis-
crete data. The method is also based on the Postulate 1. Let
us assume thatX and Y are discrete. The probabilities P (X)
and P (Y |X) are realizations of a variable pair. Since both
X and Y are categorical, one can present the probability
distributions as tables. As stated by [21], a dependence
coefficient between P (X) and P (Y |X) can be used to infer
a causal direction between variables X and Y , and it was
proposed to apply the distance correlation. The dependence
measures are defined as follows:

DY |X = D(P (X), P (Y |X)) (5)
DX|Y = D(P (Y ), P (X|Y )), (6)

where D(a, b) is the distance correlation [22].
Given a data set, the distance measures can be com-

puted directly. However, it is not so straightforward to infer
causal directions. In was shown by experiments [21] that the
correlation distance indeed can be used to characterize the
dependence between P (X) and P (Y |X). However, in case
where DY |X is close to DX|Y , the causal direction can not
be decided.

3.3 Semi-Supervised Causal Direction Inference
In this section, we introduce our method to discover causal
directions. Let Q(X) be a marginal distribution of observa-
tions computed from an alternative unlabeled, potentially
infinite data set. Here we consider two semi-supervised
settings:

1) The distance correlation (eq. 5 and eq. 6 ) can in-
corporate unlabeled data naturally in P (X), and,
therefore, hopefully, estimate the marginal probabil-
ity more accurately;

2) The difference between a supervised and a semi-
supervised log-likelihoods can be a measure that
helps to infer causality. In particular, we guess that
the parametric functions allow to integrate knowl-
edge about data structure into the criterion, what
can be of a big interest in a number of applications.

In our experiments, we consider both settings. In this
section, we focus on the second setting only, since the case
with the distance correlation is straightforward to imple-
ment.
Assumption 4. We assume that data are discrete or dis-

cretized, and the probability distributions can be stocked
as two-dimensional and one-dimensional tables.

This assumption was also used by [21]. Without loss of
generality, the matrices containing the distributions can be
computed as follows:

p(y|x) =

∑N
i=1 1{Xi=x,Yi=y}∑N

i=1 1{Xi=x}
, and q(x) =

N ′∑
i=1

1{X′
i=x′}.

(7)

The marginal probability q(x) can be computed from an
unlabeled data, whose size can potentially be very big.

The semi-supervised criterion where the conditional
probability is estimated from labeled data, and the marginal
probability can be estimated from numerous unlabeled data
takes the following form:

p(y|x)q(x) =

∑N
i=1 1{Xi=x,Yi=y}∑N

i=1 1{Xi=x}

N ′∑
i=1

1{X′
i=x′}. (8)

Note that it was shown that the weighted semi-supervised
criterion is asymptotically optimal [23], and it reaches the
minimal asymptotic variance.

A way to quantify the accuracy of estimation of P (X|Y )
and of P (Y |X), is to compute the difference between the
negative semi-supervised log-likelihood and the supervised
functions:

DX|Y = Lsemi-sup
X|Y − Lsup

X|Y = (9)

− 1

N

N∑
i=1

log p(Xi|Yi)q(Yi) +
1

N

N∑
i=1

log p(Xi|Yi), (10)

and

DY |X = Lsemi-sup
Y |X − Lsup

Y |X = (11)

− 1

N

N∑
i=1

log p(Yi|Xi)q(Xi) +
1

N

N∑
i=1

log p(Yi|Xi). (12)
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The decision on the edge directions is similar to the
CURE method: if DX|Y < DY |X , then the direction is fixed
to X → Y , otherwise Y → X . Here, we do not introduce
any threshold to be fixed. Indeed, in some cases, where
we would like to control the confidence of our decisions,
we could introduce a minimal acceptable value which is
the difference between Lsemi-sup and Lsup. The pairwise
semi-supervised causal inference algorithm is drafted as
Algorithm 1.

It is interesting that [24] reported that semi-supervised
learning scenario is pointless if P (X) contains no informa-
tion about P (Y |X), i.e. if X → Y , since a more accurate es-
timation of P (X) does not influence an estimate of P (Y |X).
However, we claim that a more accurate estimation of P (X)
would help to infer causal directions more accurately.

Algorithm 1 Semi-Supervised Causal Inference

Input: Observations {Xi, Yi}Ni=1, and
unlabeled data {Xi}N

′

i=1.

Output: Causal directions between X and Y

STEP 1: Compute Q(X) and P (Y |X) from data,
Estimate DY |X = Lsemi-sup

Y |X − Lsup
Y |X , eq. 10

(or DY |X = D(P (X), P (Y |X)), eq. 5)

STEP 2: Compute Q(Y ) and P (X|Y ) from data,
Estimate DX|Y = Lsemi-sup

X|Y − Lsup
X|Y , eq. 12

(or DX|Y = D(P (Y ), P (X|Y )), eq. 6)

STEP 3: Decide the edge direction:
if DX|Y < DY |X then

Infer X → Y
else

Infer Y → X
end if

We focus on probabilistic classifiers, i.e. methods which
involve estimation of the conditional and marginal proba-
bilities. The logistic regression, which can be competitive
compared to the models modeling the conditional probabil-
ities, we face the problem to model P (X). The integration
of unlabeled data and modeling P (X) is straightforward
in a generative framework. Although the Naive Bayes can
be applied, it supposes that the features are conditionally
independent, what is an important drawback in our case.

4 DEEP RESTRICTED BOLTZMANN MACHINES

In our experiments, we apply deep restricted Boltzmann
machines (DRBM) to estimate the conditional and marginal
distributions. A DRBM introduced by [11] contains a set
of visible units v ∈ {0, 1}D and a set of hidden units
h ∈ {0, 1}P . Energy-based probabilistic models, and the
deep RBM, define a probability distribution through an
energy function. In the restricted Boltzmann machines, the
energy of the state (v,h) with model parameter w is defined

as

E(v,h, w) = −vTwh, (13)

p(v, w) =
1

Z(w)

∑
h

exp(−E[v,h, w]), (14)

Z(w) =
∑
v

∑
h

exp(−E[v,h, w]). (15)

The conditional distributions over visible and hidden
units are given as follows:

p(hj = 1|v,h−j) = σ(
D∑
i=1

wijvi), (16)

p(vi = 1|h,v−i) = σ(
P∑

j=1

wijhj), (17)

σ(a) =
1

1 + exp(−a)
, (18)

and the above defined σ is the logistic function. The gradient
to run an optimization procedure can be written as

∆w = α(EPdata[vhT ]− EPmodel[vh
T ]), (19)

where α is the learning rate, the first term is the expectation
with respect to the completed data distribution, and the sec-
ond term is the expectation with respect to the distribution
defined by the model.

If we consider a two-layer deep restricted Boltzmann
machine, the energy of state is given by

E[v,h1,h2, w] = −vTw1h1 − h1w2h2, (20)

where w = {w1, w2} are the parameters of the model, and

p(v, w) =
1

Z(w)

∑
h1,h2

exp(−E[v,h1,h2, w]). (21)

The conditional distributions over the hidden and visible
layers are given as follows:

p(h1
j = 1|v,h2) = σ(

∑
i

w1
ijvi +

∑
m

w2
jmh

2
j ), (22)

p(h2
m = 1|h1) = σ(

∑
i

w2
imh

1
i ), (23)

p(vi = 1|h1) = σ(
∑
j

w1
ijh

2
j ). (24)

Pre-training. To initialize the weights w of the model, we
perform the greedy layerwise pre-training [25]. The greedy
layerwise pre-training learns a stack of restricted Boltzmann
machines in an unsupervised layer-by-layer greedy proce-
dure. It was shown by [25] and [11] that such a pre-training
initializes the weights to reasonable values and therefore
accelerates the approximate inference to estimate the model.
To perform the initialization, we compute:

p(h1
j = 1|v) = σ(

∑
i

w1
ijvi +

∑
i

w1
ijvi), (25)

p(vi = 1|h1) = σ(
∑
j

w1
ijhj), (26)

p(h1
j = 1|h2) = σ(

∑
m

w2
jmh

2
m +

∑
m

w2
jmh

2
m), (27)

p(h2
m = 1|h1) = σ(

∑
j

w2
jmh

1
j ), (28)
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where the input is doubled to eliminate the double-counting
problem while top-down and bottom-up inferences are com-
bined. When the equations (25) – (28) are combined, we get

p(h1
j = 1|v,h2) = σ(

∑
i

w1
ijvi +

∑
m

w2
jmh

2
m). (29)

Training. Let

F (v) = − log
∑
h1,h2

exp(−E[v,h1,h2]), (30)

and

−∂ log p(v, w)

∂w
=
∂F (v)

∂w
−

∑
ṽ

p(ṽ)
∂F (ṽ)

∂w
, (31)

where the first term increases the probability of training
data and is often referred to as the positive phase, and the
second term decreases the probability of samples generated
by the model and is associated with the negative phase. As
we have already mentioned earlier, the second term of the
derivative is an expectation over all possible configurations
of input, and its computation is usually intractable. How-
ever, it can be computed using sampling

Ep

[∂F (v)

∂w

]
=

1

|V|
∑
v̄∈V

∂F (v̄)

∂w
, (32)

where v̄ ∈ V are samples produced, e.g, by a MCMC
method. Annealed Importance Sampling (AIS) with vari-
ational inference can be used to make the computations
tractable (see [11] and [26] for details).

Computation of the Marginal Probability in the
DRBM. Although the conditional distribution of a class
given an observation can be directly computed from an
estimated deep RBM model, it is not straightforward to
compute the marginal probability. To estimate P (X), we use
the AIS (Annealed Importance Sampling) algorithm [27] to
accurately evaluate the log of the marginal probabilities.

5 EXPERIMENTS

In this section, we illustrate the performance of the proposed
approach on standard cause-effect pairs, and on network
reconstruction benchmarks. Our implementation is done
in Matlab, and it incorporates the publicly available code
provided on a web page of Ruslan Salakhutdinov for learn-
ing deep Boltzmann machines1, and for AIS sampling in
DRBM2.

We use the DRBM with 3 layers, each containing 5
hidden units. Such a configuration was fixed using 10-fold
cross validation.

5.1 Cause-Effect Pairs

We have tested our method on the standard collection of the
cause-effect pairs, obtained from http://webdav.tuebingen.
mpg.de/cause-effect, version 1.0. The data set contains 100
pairs from different domains, and the ground truth is pro-
vided. The goal is to infer which variable is the cause and
which is the effect.

1. http://www.cs.toronto.edu/ rsalakhu/DBM.html
2. https://www.cs.toronto.edu/ rsalakhu/rbm ais.html
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Fig. 1. Experiments on the cause-effect pairs. The accuracy of the semi-
supervised criterion based on the log-likelihoods with 50% of training
data (on the left), and with 100% of training data (on the right).

The pairs 52 – 55, 70 – 71, and 81 – 83 are excluded from
the analysis, since they are multivariate problems. Note
that each pair is weighted, and the accuracy is a weighted
average.

It was reported that Origo [18] achieves 58% accuracy,
and the Additive Noise models (ANM) [14] reach 72 ± 6%.
We tested the ANM with the Gaussian Process regression
which is the state-of-the-art method. The code is publicly
available at http://www.math.ku.dk/∼peters/code.html.
The goodness of fit is evaluated by the HSIC independence
test of the residuals and the input, and the causal inference
is based on the obtained p-values for both directions. The
estimated p-values for both directions can be quite similar,
and it was, for instance, the case in our experiments. In this
situation, although the algorithm infers a causal direction, a
natural question arises whether the algorithm has to abstain
from taking decisions if the confidence level is low.

To compare to the state-of-the-art, we estimate the func-
tional relationships between the cause-effect pairs by the
proposed semi-supervised methods. Both settings are devel-
oped for discrete data, and we discretize the continuous data
using the equal frequency method, the equal width method,
and the global equal width method (we use the “infotheo”
R package). We also try to find an optimal number of
categories for each variable by cross validation; and we test
the different number of bins = 3, 5, 7, 10, 15,20, 25, and 30.
We decide to fix the number of bins equal to 5.

Figure 1 illustrates the accuracy of the semi-supervised
method based on the log-likelihoods, where we applied
eq. 10 and eq. 12, as a function of the size of labeled
and unlabeled data. We observe that the proposed method
achieves the state-of-the-art performance. On the left, we
see that increasing the size of unlabeled data, we slightly
increase the accuracy and also decrease the variance of the
error rate. On the right we observe, that some attention
is needed while introducing unlabeled data, since in case
where we use 100% of labeled and 100% of unlabeled data,
it seems that we overfit.

5.2 Network Reconstruction
We run experiments on two benchmark networks, both
downloadable from the Bayesian Network Repository3:

1) Asia data set [28], also known as the lung cancer
benchmark data. The number of nodes is 8, the
number of true arcs is 8.

3. http://bnlearn.com/bnrepository/

http://webdav.tuebingen.mpg.de/cause-effect
http://webdav.tuebingen.mpg.de/cause-effect
http://www.math.ku.dk/~peters/code.html
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Method Asia Sachs
25 100 1000 25 100 1000

Semi-Sup 0.1560 0.1755 0.3005 0.3510 0.7360 1.1350
DC 0.1595 0.1830 0.3160 0.3645 0.7545 1.1480

RESIT 0.1345 0.3345 28.2935 0.5820 57.1550 163.3755
PC 0.0080 0.0100 0.0130 0.0165 0.0530 0.0645

CPC 0.0100 0.0120 0.0215 0.0260 0.1860 0.2455
LiNGAM 1.7600 1.7020 1.7235 0.0875 0.2245 0.3590

GDS 6.0085 590.9255 590.9255 200.7760 8515.4505 8515.4505
TABLE 1

Runtimes for the tested algorithms: RESIT, LiNGAM, CPC, PC, GDS, DC, and the Semi-Supervised approach on Asia and Sachs with 25, 100,
and 1000 generated observations.
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Fig. 2. F-score for the Asia and Sachs data. The number of samples
tested is 25, 100, and 1000.

2) Sachs [29] is a causal protein-signalling network
with 11 nodes and 17 arcs.

The data sets are network reconstruction challenges with
discrete entries. In our experiments, we are interested to
discover causality, not the graph structure. We suppose that
the skeleton of networks is known, and we compare the
causal inference algorithms only.

Aracne (Algorithm for the Reconstruction of Accurate

Cellular Networks) introduced by [30] is a state-of-the-art
network information-theoretic reconstruction method. The
approach defines an edge in a graph as an irreducible sta-
tistical dependency. It is reported that the Aracne achieves
very low error rates, however, the reconstructed graph is
undirected, therefore the Aracne is unable to infer edge
directions. The Aracne, however, can be used to build the
graph structure in real applications.

We test RESIT (regression with subsequent indepen-
dence test) which is a state-of-the-art ANM method [14]. The
RESIT is based on independence tests and simple algorithms
that use the independence scores. The algorithm is an itera-
tive procedure where at each iteration, a sink node is iden-
tified and disregarded. We also test Linear non-Gaussian
Acyclic Model (LiNGAM) approach [31], the PC algorithm
named after its inventors Peter Spirtes and Clark Glymour
[5], its conservative version CPC [32], and the Greedy DAG
search algorithm GDS [33]. The implementation of the state-
of-the-art methods mentioned above is publicly available
from the web page of Jonas Peters 4.

Figure 2 illustrates the performance in terms of F-score
on the Asia (above) and Sachs (below) benchmarks. We
tested the described above RESIT, LiNGAM, CPC, PC, GDS,
Distance Correlation, and the proposed methods. For each
benchmark (Asia and Sachs), and for each causal inference
method, we tested three scenarios with different number of
observations. So, each boxplot shows the results for three
settings with various number of data points sampled from
the networks (25, 100, and 1000 respectively), and for all
causal inference approaches. We run 10 simulations for
each setting. The estimated orientations are evaluated for
different number of samples. The results are discussed in
terms of true positive (TP), false positive (FP) and false
negative (FN) edges (i.e. correct, spurious or missing edges
respectively). In particular, evaluations are based on Preci-
sion = TP/(FP+TP), Recall = TP/(TP+FN), and F-score =
2*Precision*Recall/(Precision+Recall). We observe that the
RESIT and the proposed semi-supervised method based
on the log-likelihoods achieve the best performance. The
Distance Correlation (DC) is less efficient.

5.3 Runtime Results for Network Reconstruction

We have shown that the proposed algorithm achieves the
state-of-the-art performance, and sometimes outperforms
it in terms of empirical accuracy. Another question is its
computational efficiency. Table 1 shows the internal time at

4. http://www.math.ku.dk/ peters/code.html
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Fig. 3. Metformin and bacteria: test error of the semi-supervised (log-
likelihood) causal criterion as a function of the amount of unlabeled data.

execution in seconds for different number of tested samples
and for different causal methods. The PC and CPC seem
to be the fastest to learn but not very accurate. The RESIT
shows low error rates but its runtimes increase drasti-
cally with the number of observations. The semi-supervised
method based on the log-likelihoods and the original dis-
tance correlation approach need similar time to learn but
our method achieves a better F-score. Note that although
the proposed algorithm is already quite efficient, the current
implementation of our method is not optimized yet, and it is
possible to speed it up. One research avenue is to parallelize
the computations what today is actively being studied in the
context of deep learning [34], and another future direction is
to adopt a quantized deep learning approach that are known
to create compact models and to accelerate the runtime [35].

5.4 Effects of Metformin on Human Gut Composition

Recently, a number of associations between chronic human
diseases and alterations in gut microbiome composition
have been shown [36]. An important question is whether
treatment causes changes in human gut flora, and whether
it affects metabolism. [36] have reported that the human gut
microbiome of type 2 diabetes is confounded by metformin
treatment, and therefore, the drug metformin impacts the
composition and richness of the human gut microbiome.
Similar results were reported by [37].

The data set of [36] which we explore in our experi-
ments is a multi-country metagenomic dataset, containing
information about patients from three countries: Danemark,
China, and Sweden. The data contains information of 106
patients with type 2 diabetes who take the metformin, and
93 patients with the diabetes who does not take the drug.
The features are 785 gut metagenomes or gut bacteria.

We run the novel algorithm to test whether it confirms
the statements of [36] and [37] that the metformin alters,
in other words, impacts, that gut flora. In the numerical
experiments, we suppose that the metformin causes changes
in bacteria. If an algorithm predicts the inverse, we consider
that it makes an error. The observation matrix contains
abundance of bacteria. The abundance matrix is a sparse
matrix where 1 means that a metagenome is present in a
patient, and 0 means that it is absent.
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Fig. 4. Metformin and Akkermansia muciniphila: causality prediction
error rate as a function of labeled and unlabeled data. Above: the
criterion based on the log-likelihoods; below: the setting based on the
distance correlation.

Figure 3 shows that the semi-supervised causal method
in generally confirms that the microbiota is affected by
the metformin treatment. For the majority of the bacteria
considered in the experiments, this relation is obvious with
the error rate equal to 0. For a few bacteria the accuracy is
not so high. However, [36] and [37] focus on a very limited
number of bacteria species, and the statement that the
metformin impacts the metagenome is not necessarily true
for all bacteria of the human gut flora. Figure 4 illustrates the
error rate for one particular bacterium called Akkermansia
muciniphila which is associated with the metabolic health.
We clearly see that the hypothesis that the metformin alters
the abundance of Akkermansia muciniphila is verified by
both proposed semi-supervised settings.

6 CONCLUSIONS

We challenged the problem of causal relations discovery
from purely observational non-temporal data. In this con-
tribution, we introduced a novel causal inference approach
based on a semi-supervised probabilistic framework. The
advantage of our approach is its high efficiency, and high
computational speed. Note that its implementation is simple
and straightforward.

We have compared the proposed semi-supervised causal
inference algorithm to the state-of-the-art methods, and we
illustrate by the experiments on standard data sets and
benchmark networks (discrete or discretized data) that the
approach achieves the best performance in terms of F-score
and accuracy. We have shown that the proposed method is
efficient to detect whether a drug causes alterations in the
human gut.

It is quite challenging to claim that this or that bacterium
is influenced by metformin or another drug. Even if we
observe a strong causal relation, we need a validation from
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scientists doing pre-clinical research. However, it is among
our plans in the nearest future to consider more bacteria or
even a cumulative effect of a drug on several bacteria which
are in the same environmental niche.

From the results of our experiments, we can conclude
that measuring distance between a supervised and an un-
supervised models can indeed provide information on the
edge orientation.

Currently we are investigating another scheme of causal
inference which is based on generative hierarchical prob-
abilistic models. We are also interested to extend the pro-
posed method for confounding variables.
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