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By using density functional theory calculations we determined the influence of anharmonic effects
on the infrared reflectance, transmittance and emittance of MgO. The goal is to determine the limit of
validity of a perturbative (multi-phonon) approach. MgO is chosen as a test material because of the
availability of different kinds of radiative properties measured experimentally. Non-analytic terms
of the three-phonon scattering coefficients are explicitly calculated and do not provide measurable
effects. The agreement is overall very good to such an extent that, already at room temperature, one
can clearly identify regions in which four-phonon scattering processes are dominant with respect to
the three-phonon ones. The influence of isotopic disorder at cryogenic temperatures is also settled.

I. INTRODUCTION

Density functional theory (DFT) is considered a
predictive approach to determine anharmonic phonon-
phonon interactions in crystals1. Such a computational
tool is a necessary ingredient, for example, of the first-
principles computational methods recently developed to
evaluate phonon thermal transport in real systems2–9.
In this context, finding measurable quantities that can
provide an independent benchmark for theoretical ap-
proaches is of paramount importance. Surprisingly, DFT
has been rarely used to interpret the anharmonic fea-
tures observable in infra-red (IR) reflectance, transmit-
tance and emittance spectra. These kind of spectra pro-
vide a relatively direct probe to anharmonic properties in
heteropolar materials and can be used to directly deter-
mine the anharmonic phonon self-energy of the optically
active modes10,11.

Besides, the ability to simulate anharmomic proper-
ties of the dielectric constant is expected to have an im-
pact for radiative heat-transfer studies12. For homoge-
neous heteropolar compounds (single crystals, glass), the
key quantity for describing the ensemble of radiative ex-
changes is the spectral emittance for a range of wavenum-
bers from 200 to 1500 cm−1. This adimensional quantity
is defined as the ratio of the spectral emissive power of
a body to the spectral emissive power of the black-body
at the same temperature. Modeling an appropriate di-
electric response allows to determine microscopic mech-
anisms responsible for the macroscopic radiative behav-
ior. Improving our knowledge of radiative heat exchanges
could have practical aspects for the elaboration of new
materials working at high temperatures (refractory ma-
terials for solar-to-heat conversion, nuclear reactor cores,
thermal shields for space shuttles, infra-red emitters) or
for temperature measurements in extreme conditions via
contactless methods (pyrometry, IR thermography).

MgO is very well characterized experimentally and it
is also a system of choice for DFT calculations given the

excellent agreement with measured phonon dispersions13.
But, a close look at literature reveals that several ques-
tions are still open. Indeed, Ref. 14 shows that reflectance
and transmittance measured spectra can be used to de-
termine the phonon self-energy in a wide spectral range
(0< ω <2000 cm−1). However, in that work, the phonon
self-energy is determined after a fitting procedure limit-
ing the physical interpretation and not allowing predic-
tions for materials whose spectra are not known. Ref. 15
reports reflectivity measurements and shell-model calcu-
lations on Mg1−xFexO, showing that the relevant char-
acteristics of the spectra are well captured by three-
phonon anharmonic scattering. From the measurements
of Ref. 15 one can, however, extract relevant informations
only in a limited frequency range (i.e. for ω <800 cm−1,
within the reststrahlen band). Refs. 16,17 report first-
principles molecular-dynamics (MD) calculations which
can be used to interpret reflectivity in a wide temper-
ature of range. Unfortunately, the results that can be
obtained by MD are not as detailed as those that can be
obtained with a phonon-scattering perturbative approach
(as in Ref. 15). More recently, Ref. 18 reported DFT cal-
culations of the three-phonon relaxation of the IR-active
MgO optical phonon to study dielectric-loss measure-
ments in low frequency spectral range (<200 cm−1). The
results of Ref. 18 include only coalescence three-phonon
scattering processes and are not useful above 200 cm−1,
where decay scattering processes dominate.
Another question that needs to be adressed concerns

the role of the so-called non-analytic terms in the phonon-
phonon scattering. Although these terms are usually as-
sumed negligible, a few examples of this kind of study
are actually present in literature19. A direct evaluation
for MgO is then desirable.
In the present work, to clarify the situation we calcu-

late the influence of anharmonic effects, including both
three- and four-phonon scattering processes, on the in-
frared reflectance, transmittance and emittance spec-
tra of rocksalt MgO by using density functional theory
(DFT). The goal is to determine the limit of validity of
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a perturbative (multi-phonon) approach.

II. GENERAL CONSIDERATIONS

Given an electromagnetic wave incident on the flat sur-
face of a material, reflectance (R) and transmittance (T )
are the fraction of the reflected and transmitted power.
At the local thermal equilibrium and by considering the
Kirchoff’s law of thermal radiation, the emittance can
then be defined as E = 1-R-T . For a slab of finite thick-
ness, R and T can be obtained once the complex dielec-
tric function ǫ̃(ω) of the material is known. Here, ω is
the frequency of the light and, for simplicity, we consider
an isotropic crystal (ǫ̃ is then a scalar). R and T include
the effects of multiple reflections between the two faces
of the slab. Let us call r the reflectivity (which is the
reflectance of a semi-infinite slab) and τ the power-loss
factor. In the case of normal incidence, by solving the
Maxwell equations14,20:
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; τ = exp
[

−4πdIm(
√
ǫ̃)/λ

]

T =
τ(1 − r)2

1− r2τ2
; R = r(1 + τT ); E = 1− R− T . (1)

Here, the quantities ǫ̃, r, τ , R, and T are functions of
ω. d is the thickness of the slab, Im(z) is the imaginary
part of the complex number z, and 1/λ = ω/(2πc) is the
wavenumber.
Let us consider a heteropolar crystal with only one

optical phonon mode (the generalization is straightfor-
ward). According to the Lorentz model,

ǫ̃(ω) = ǫ∞ +
Sω2

0

ω2
0 − ω2 − iωγ

, (2)

where ǫ∞ is the electronic dielectric constant, ω0, S and
γ are the frequency, oscillator strength, and damping
(FWHM) of the TO phonon mode. Using the notation of
Ref. 1, S = 4πZ2/(vµω2

0), where Z is the Born effective
charge, µ is the reduced mass of the oscillator and v is the
unit-cell volume of the crystal. A classical result of solid-
state physics is that Eq. 2 explains the presence of the
so called “reststrahlen” band in the infra-red reflectivity
of heteropolar crystals. Eq. 2 does not, however, explain
the additional features observed within the reststrahlen
band (see e.g. Fig.6.32 of Ref. 21) in simple crystals.
A more general form for ǫ̃(ω) can be obtained within

perturbation theory10,11,

ǫ̃(ω) = ǫ∞ +
Sω2

0

ω2
0 − ω2 + 2ω0Π(ω)

, (3)

where Π(ω) is the frequency-dependent self-energy of the
TO phonon, accounting for anharmonic phonon-phonon
interactions. Π(ω) is a complex quantity which can be
decomposed as Π(ω) = ∆(ω) − iΓ(ω) (with ∆ and Γ

real). While ∆(ω0) is the anharmonic shift of the TO
phonon frequency, Γ(ω0) is its anharmonic broadening
(HWHM), see e.g. 22,23. The most important difference
between Eqs. 2 and 3 is that, while in Eq. 2 the damp-
ing is a constant, in Eq. 3 it depends on ω (by compar-
ing Eqs. 2,3 the frequency-dependent damping is actually
γ(ω) = 2ω0Γ(ω)/ω, see Ref. 24). This can have observ-
able consequences when Γ(ω) displays sudden variations.
The physical meaning of the frequency-dependent

broadening is not obscure. Eqs. 2, 3 represent the re-
sponse to an electromagnetic field oscillating with fre-
quency ω and, thus, the polar atoms are forced to oscil-
late at ω. Moreover, the anharmonic broadening is given
by a sum on scattering processes in which the energy is
conserved10,22,23, but the energy of the initial vibration is
ω and not ω0 (the frequency of the decoupled TO mode).
Γ(ω) is actually expected to undergo sudden variations14

since the possibility to decay in certain phonon branches
becomes available only below certain energy thresholds
(because of the energy conservation). This is especially
true for simple crystals (few atoms per unit cell) where
Van Hove singularities in the phonon density of state are,
generally, more pronounced.

III. COMPUTATIONAL APPROACH

In the present work, we consider the phonon self-energy
Π as the sum of the following contributions:

Π(ω) = Π(3ph)(ω) + Π(4ph)(ω) + Π(isot)(ω) (4)

Π(3ph)(ω) = Π(B)(ω) + Π(L) +∆ωa. (5)

Π(3ph) and Π(4ph) are the contributions whose imaginary
part is due to three- and four-phonon anharmonic scat-
tering, respectively. Π(isot) is the self-energy component
due to isotopic-disorder scattering.
Π(B)(ω) and Π(L) are defined in Ref. 23 (see

also 22). ∆ωa corresponds to the optical-mode harmonic-
frequency shift associated to the lattice thermal expan-
sion. Π(L) and ∆ωa are not properly due to three-phonon
scattering but they are real and do not depend on ω.
Π(B)(ω) is due to three-phonon scattering, has an imag-
inary component and depends on ω. Π(B)(ω), Π(L) and
∆ωa are gathered together into Π(3ph) because they are
the lowest-order terms in the perturbative expansion,
Π = Π(3ph) + O(~2) 22,23 and, thus, they are expected
to provide a shift of the same order of magnitude. We
remark, however, that the important characteristics of
the spectra presently shown are determined by the imag-
inary part of Π(ω). The real part provides contributions
negligible on the scale of the figures. The only notable
exception concerns the position of the rise of the rest-
strahlen band near ω0, which is sensitive to this frequency
shift.
Π(4ph)(ω) is the four-phonon scattering contribution

corresponding to Eq. 2.15b of Ref. 25. It is imaginary
and frequency-dependent. The corresponding real part
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(Eq.2.14c of 25) is included but does not provide relevant
changes to the figures. Finally, the isotopic-disorder con-
tribution Π(isot)(ω) is calculated using Eq. 11 of Ref. 26,
noting that 1/τ in Ref. 26 is the FWHM, while with the
present definitions Γ corresponds to HWHM. The needed
mass variances are determined from Ref. 27’s data.

All the described quantities can be calculated entirely
from first-principles with the method of Ref. 1. DFT
calculations were done with the quantum-espresso pack-
age28 within pseudopotential29 and the local density ap-
proximation30 (100 Ry plane-waves cut-off and 3×3×3
shifted electronic integration grid). These approxima-
tions (DFT+LDA) are chosen since they are known to
reproduce extremely well MgO phonon dispersion13,18.
Reflectance and transmittance spectra are tremendously
sensitive to LO and TO phonon mode dispersion, so
that this extremely good agreement is a conditio sine

qua non to well describe all the features of these spec-
tra. The calculation of certain terms of Π is not trivial
since one needs to determine the anharmonic phonon-
scattering coefficients (APSC) among all the possibly in-
volved phonons. Π(B) depends on three-phonon scat-
tering and the APSC among three phonons with dis-
tinct wavevectors can be calculated with the approach
of 31,32. To calculate Π(L) and Π(4ph) one needs to de-
termine scattering among four distinct phonon modes.
However, since one of the phonons is the optical mode at
zero wavevector, q=0, the needed APSC can be deter-
mined by finite-differences differentiation (displacing the
atoms along the q=0 optical mode) of a three-phonon
APSC calculated as in 32. All the scattering were first
calculated on a 4×4×4 phonon wavevectors grid and then
Fourier interpolated on a 100×100×100 grid (the proce-
dure is described in detail in Ref. 32). Tests were done
using up to 8×8×8 grids. The equilibrium lattice spacing
of MgO is a0 = 4.198 Å corresponding to ω0=411.8 cm−1.
To determine ∆ωa we need to determine the dependence
of the lattice spacing on the temperature, a(T ). a(T ) can
be calculated using the quasi-harmonic approximation13,
which however, for MgO, overestimates the thermal ex-
pansion above T=295K13. We then used quasi-harmonic
calculations to determine the T=0 lattice spacing, a(0),
which turns out to be 0.43% higher than a0 [a(0) 6= a0 be-
cause of zero-point motion], compatible with Ref. 13 cal-
culations. For a given temperature, we then considered
the measured relative lattice thermal expansion, taken
from Ref. 33, to determine a(T ). By calculating the har-
monic frequency of the TO mode at the lattice spacings
thus obtained, we have ∆ωa=-12.3, -16.6, -41 cm−1 for
T=0, 295, 950 K, respectively. At the same temperatures
the shift associated to Π(L) is +9.5, +12.7, +32 cm−1,
and that from Π(B)(ω0) is -6.1, - 8.7, -22 cm−1. The to-
tal anharmonic shift of ω0 is then -8.9, -12.6, -31 cm−1

at T=0, 295, 950 K, respectively. Determining the shift
in this way for higher temperatures would be misleading
since higher-order terms should be relevant.

Finally, from the present DFT calculations ǫ∞ = 3.10
(to be used in Eq. 3). This value slightly overestimates

the experimental value ǫ∞ = 2.94 because of a well-
known error of DFT34. Unless otherwise stated, in the
following we will use ǫ∞ = 2.94. This is the only fit-
ted parameter of the simulations and allows a better de-
scription of the high-energy Reflectance and of the LO
frequency drop of the reststrahlen band.

IV. NON-ANALYTIC TERMS CONTRIBUTION

In insulating heteropolar materials the dynamical ma-
trix can be decomposed in two components having, or
not, an analytic dependence on the wavevector q, Ref. 1.
The non-analytic component is determined by the Born
effective charges and is associated the LO/TO splitting
phenomenon. A similar analytic/non-analytic decompo-
sition can be done for the anharmonic phonon-phonon
scattering coefficients necessary to compute the phonon
self-energy (see e.g. Ref. 19). Within a different point
of view, following Cowley’s work10, there are six contri-
butions to the susceptibility, associated to the six dia-
grams from Fig.10 of Ref. 10. These contributions are
of the same order in ~ but, while the first one (the most
commonly used and described in literature) depends only
on the first derivative of the polarization w.r.t. atomic
displacements, the others depend on higher order deriva-
tives. The calculations described in the previous sections
include only analytic contributions, or, in other words,
only the first of Cowley’s diagram.

The contributions from other diagrams depend on the
second derivative of the polarization and have been cal-
culated by using finite differences of the Born effective
charges calculated in a super-cell (see Appendix A). It is
interesting to notice that, by using an approach different
from that described in Ref. 10, the inclusions of these
diagrams can be done through an appropriate “dress-
ing” of the phonon self-energy (see Appendix A), with-
out modifying the usual expression for the dielectric con-
stant (Eq. 3). This approach has the advantage of mak-
ing transparent the link between Ref. 19, which provide
two distinct expressions for the broadening of the TO
and of the LO optical phonon, and Ref. 10, where the
broadening of the LO phonon is not explicitily deduced.
However, the correction of the self-energy associated to
these diagrams is very small (see Appendix A) and, for
the present purpose, can be neglected.

Cowley’s describes also diagrams depending on the
third derivative of the polarization (w.r.t. atomic posi-
tions) but, according to direct calculations (see Appendix
B), their contribution is also negligible: ∼0.05% variation
of Z at room temperature.

The calculations described in the present section and
in the Appendices are corrections to the Π(3ph) term
in Eq. 4. Given their negligible impact one can safely
assume that analogous corrections for the Π(4ph) term
should not be relevant.
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FIG. 1: a,b) MgO infra-red room-temperature reflectance and
transmittance for a d=0.3 mm thick plate. Measurements
(exp.) are from Ref. 14. All the other lines are calculations
done at the different level of approximation described in the
text. Π(ω) represents our best result. The vertical arrow
indicates the harmonic TO phonon frequency. c-d) Γ(ω) =
−Im[Π(ω)], where Π is the calculated self-energy of the TO
mode, Eq. 4. Data taken from Ref. 14 (exp.) vs. present
calculation (tot.) decomposed in three-phonon (3ph), four-
phonon (4ph) and isotopic-disorder (isot.) contributions. c)
and d) report the same data on different scales.

V. RESULTS AND DISCUSSION

Fig. 1a,b compare different kind of calculations with
the room-temperature reflectance and transmittance
measurements from Ref. 14. Calculations labeled L’ and
L are done by considering a frequency-independent self-

energy, Π(ω) = Π(ω0), and, thus, correspond to the
Lorentz model, Eq. 2. As expected14, this kind of ap-
proach reproduces measurements only at a qualitative
level. All the parameters used for the L’ model are
from DFT calculations, in particular L’ is done by us-
ing ǫ∞ = 3.10. The only difference between the L’ and L
model is that, in the last case, for ǫ∞ in Eq. 3 we have
used the experimental value ǫ∞ = 2.9434. The compari-
son between L’ and L calculations from Fig. 1a illustrates
the influence of this parameter. In particular, by using
the ǫ∞ experimental value (L model), one obtains a bet-
ter calculation/measurement agreement for ω0 (related
to the reflectance drop position of the reststrahlen band)
and for the high frequency (ω >1000 cm−1) behavior of
the reflectance.

In Fig. 1a,b, calculations labeled as Π(3ph) in-
clude only the lowest order terms of the self-energy
[Π(4ph)=Π(isot)=0 in Eq. 4], while Π labels our best cal-
culations including all the terms in Eq. 4. From Fig. 1a,
the inclusion of the lowest-order terms in the self energy,
Π(3ph), reproduces very well the reflectance in the low
frequency region, ω <150 cm−1, and the position of the
shoulder observed at ∼650 cm−1 within the reststrahlen
band. The inclusion of four-phonon and isotopic scatter-
ing provides only a small but observable improvement in
the 400/500 cm−1 region.

From Fig. 1b, the measured transmittance is also very
well reproduced. Here, however, the lowest order pro-
cesses, Π(3ph)(ω), are not able to reproduce data above
1100 cm−1. Indeed, above ∼1100 cm−1 three-phonon de-
cay processes go to zero because of the unavailability of
scattering channels and only the inclusion of four-phonon
processes [included in Π(ω)] can provide a reasonable
agreement with measurements.

Figs. 1c-d show the imaginary part of the self-energy,
Γ(ω), and compare it with that taken from Ref. 14
(see Fig.3 of Ref. 15 for an analogous comparison with
shell-model calculation). We remind that the Γ(ω) from
Ref. 14 is an arbitrary-shape function inserted into the di-
electric function expression in order to fit the experimen-
tal spectra. Having this in mind, and considering that the
authors of Ref. 14 did not have access to an independent
determination of Γ(ω), the agreement with the present
calculation is remarkable: the presence of four major
peaks at ∼105, 650, 860, and 990 cm−1 and their shape
is indeed consistently described by the two approaches.
Note that the three-phonon contribution to Γ has a min-
imum near 400 cm−1. This energy separates remark-
ably well a low frequency region where three-phonon co-
alescence processes are dominant (at room temperature)
w.r.t decay ones, from a high frequency region where de-
cay processes are dominant.

The most evident disagreement in Fig. 1c concerns the
intensity of the 650 cm−1 peak, which determines the
presence of the reflectance shoulder at that frequency.
DFT-LDA calculations overestimate the intensity of this
peak by ∼30% and this disagreement cannot be at-
tributed to the neglect of some terms in the calculations
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ments from Ref. 14 (same as in Fig. 1), while panel b) reports
measurements digitized from Ref. 36. “d” is the thickness of
the plate. Dotted lines are T=295 K calculations including
only three-phonon scattering (and not four-phonon ones).

(which would eventually further increase the peak). This
problem is observable already at cryogenic temperatures
and becomes more evident by increasing the tempera-
ture, as can be seen in the reflectivity spectra of Fig. 2.
Indeed, already at T=5K, the intensity of the calculated
reflectivity shoulder (at ∼650 cm−1) clearly underesti-
mates the measurements.

Let us go back to Fig. 1c-d. The four-phonon scatter-
ing contribution to Γ(ω) is visible in two regions: above
1100 cm−1, where it is the dominant contribution and
in the 300/500 cm−1 region. Here, the three-phonon
scattering is relatively small and becomes comparable
to both four-phonon and isotopic-disorder contributions.
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FIG. 4: Temperature evolution of the MgO transmittance
for a 0.5 mm thick plate. Dots are measurements digitalized
from 39. Dotted lines are calculations in which the isotopic-
disorder contribution is set to zero. Full lines are our best
calculations (which include isotopic-disorder).

The importance of the four-phonon contribution in the
high frequency domain, is evident in the Emittance spec-
tra of Fig. 3. Already at room temperature (T=295 K ∼
0.1 Tm, where Tm is the melting temperature) there is an
evident disagreement between measurements and calcu-
lations done including only three-phonon scattering. At
T=295 K, the inclusion of four-phonon processes is, how-
ever, enough to have a reasonable agreement in the whole
spectral range, Fig. 3a,b. This approach still provides a
qualitative agreement in a relatively wide spectral range
(up to 1500 cm−1) at high temperatures (T=1065 K ∼
0.3 Tm), Fig. 3b.
At room temperature, the broadening due to isotopic-

disorder is overall negligible. However this contribution
does not depend on temperature and is present in a re-
gion in which Γ is relatively small (Figs. 1c-d). Because
of this, it becomes very well visible at cryogenic tem-
peratures in the transmittance spectra. Indeed, Fig. 4
compares the present calculations with the transmittance
measurements from Ref. 39. The agreement for temper-
atures below 100 K is extremely good and clearly indi-
cates that the measured ”valley” at ∼ 300 cm−1 is due
to isotopic-disorder.
Finally, to compare with similar data available in lit-

erature14,35, Fig. 5 reports the Imaginary part of the di-
electric function and the extinction coefficient, calculated
at various temperatures. Calculations above T=295K,
cannot be considered as quantitatively correct, but are
given as a reference. On the other hand, Fig. 6 reports
emissivity spectra (defined as 1-τ) calculated for vari-
ous values of the thickness parameter d and compared
with those obtained in Ref. 37. Ref. 37 data were ob-
tained from classical dispersion analysis38, using param-
eters obtained after fitting of reflectivity measurement
(for 0.1≤ d ≤5 µm) or derived from the measured ab-
sorbance (for 10≤ d ≤100 µm). The procedure of Ref. 37
captures the overall behavior of the emissivity, which for
small dmimics absorption spectra with a prevalent strong
peak around 400 cm−1, while for larger d values becomes
pinned at unity in the absorbing region. However, the
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comparison of Figs. 6a-b confirms how fitting reflectance
measurements provides a limited amount of informations
in the low frequency region (ω <200 cm−1) and misses
important features above 700 cm−1 where anharmonic-
ity becomes relevant. In this region, data derived from
absorbance measurements (d ≥ 10 µm in Fig. 6b) pro-
vide a reasonable description of the emissivity, but were
not used to describe the low frequency behavior. Fig. 6a
calculations are done at room temperature to compare
with Ref.37. Higher temperatures would cause additional
broadening, whereas cryogenic features would be nar-
rower37.

VI. CONCLUSIONS

We studied anharmonic (multi-phonon) features of the
infra-red spectra of MgO using first-principles (DFT)
calculations. Non-analytic terms of the three-phonon
scattering coefficients are explicitely calculated and do
not provide measurable effects. Concerning reflectivity,
which probes a limited frequency range, the frequency of
the most relevant spectral features are well described by
DFT and only the intensity of the intense peak of the
phonon self energy at ∼640 cm−1 is overestimated. On
the other hand, by comparing calculations with trans-
mittance and emittance data (which probe a much wider
range), the agreement is overall very good to such an ex-
tent that, already at room temperature, one can clearly
identify regions in which four-phonon scattering is dom-
inant w.r.t. the three-phonon one. The influence of iso-
topic disorder (negligible at room temperature) is evident
at cryogenic temperatures.
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FIG. 6: Room-temperature emissivity (defined as 1-τ ) calcu-
lated for various thicknesses, d. a) Present calculations. b)
Data digitalized from Ref. 37 (see the text).
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Appendix A: LO self-energy “dressing”

According to Cowley’s work10, at the lowest order,
there are six contributions to the susceptibility, associ-
ated to the six diagrams (a-f) from Fig.10 of Ref. 10.
The first contribution (a) is the most commonly de-
scribed/used in literature and it is included in the ap-
proach described in Sec. III. Here we describe how the
contributions (b-d) have been calculated. Appendice B
will then report on the (e-f) diagrams calculation.

Let us consider a crystal and call uls the displacement
of one atom in the unit cell identified by the lattice vector
Rl. The index s defines the atom in the unit-cell and
the Cartesian coordinate. ωqj and zqjs are the angular
frequency and the eigenvector (orthonormal in the unit-
cell) of the phonon with wavevector q and branch index
j. The Born effective charges can be defined as Zα

s =
1
N

∑

l
∂Mα

∂uls

, where Mα is the total polarization of the
crystal along the Cartesian coordinate α and N is the
number of cells. The charge associated to a specific q=0
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mode can then be defined as:

Mα
0j =

∑

s

√

~

2msω0j

z0js Zα
s , (A1)

where ms is the mass of the atom associated with the s
index.
Zα
s and Mα

0j can be routinely calculated thanks to the
computational approach described in Ref. 1. We now
define

Mα
−qj,qj′ =

1

N

∑

l,l′,s,s′

√

~

2msωqj

√

~

2ms′ωqj′
z−qj
s zqj

′

s′

×eiq·(Rl′
−Rl)

∂2Mα

∂uls∂ul′s′
. (A2)

This quantity is a necessary ingredient to calculate Eqs.
6.9 and 6.10 of Ref. 10, corresponding to Cowley’s dia-
grams (b-d). In the present work, the second derivative
of the polarization w.r.t. atomic displacements has been
calculated on a 3×3×3 MgO super-cell by finite differen-
tiation of the Born effective charges with respect to finite
displacements of the atomic positions. Mα

−qj,qj′ can then
be determined at any q by standard Fourier interpolation
techniques. Analogous calculations have been reported,
for example, in Ref. 19 to determine the broadening of
the LO optical phonon and in Ref. 40,41 to determine
the two-phonon spectrum of Si and Ge.
To study the effects of this interaction, let us consider

the diectric tensor is ǫ̃α,β(ω) = ǫα,β
∞

+ 4πχα,β(ω), with

χα,β(ω) =
1

v~

∑

j

2ω0jM
α
0jM

β
0j

ω2
0j − ω2 − 2ω0jΠ0j(ω)

. (A3)

v is the unit-cell volume and the sum runs on the optical
modes with q=0. In the present case the optical modes
are three, are degenerate and can be considered as polar-
ized along the three Cartesian directions. The expression
can then be simplified with

χα,β(ω) =
1

v~

2ω0M
2
0

ω2
0 − ω2 + 2ω0Πα(ω)

δα,β (A4)

where Mα
0β = δα,βM0 and ω0β = ω0. To further simplify

the discussion, we consider only the Π(B)(ω) contribution
from Eq. 5, having:

Πα(ω) =
−1

N~2

∑

q,j,j′

∣

∣

∣
V

(3)
0α,−qj,qj′

∣

∣

∣

2

F (ω, ωqj, ωqj′). (A5)

Here the three-phonon scattering coefficients V (3) are de-
fined as in Ref. 32, Πα does not depend on the α direction
because of symmetry, and

F (ω, ω1, ω2) =
(1 + n1 + n2)(ω1 + ω2)

(ω1 + ω2)2 − (ω + iη)2

+
(n2 − n1)(ω1 − ω2)

(ω1 − ω2)2 − (ω + iη)2
, (A6)
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FIG. 7: Self-energy of the q=0 optical-phonon of MgO at
room temperature: variation of the imaginary part after the
inclusion of the non-analytic corrections to the three-phonon
scattering. ∆Γ(ω) is defined in the text.

where n1 and n2 are the temperature-dependent Bose-
Einstein occupations related to ω1 and ω2.
After some algebra, one can see that the inclusion of

Cowley’s diagrams (b-d), which can be calculated with
Eqs. 6.8, 6.9 and 6.10 of Ref. 10, is equivalent (at the
same order in ~) to substitute V (3) in Eq. A5 with

Ṽ
(3)
0α,−qj,qj′ = V

(3)
0α,−qj,qj′ − ~

Mα
−qj,qj′

M0

ω2
0 − ω2

2ω0
. (A7)

In practice, the effects of the Cowley’s diagrams (b-d)
can be seen as a dressing of the three-phonon scatter-
ing. Note that Ref. 19 discusses only two special cases
of Eq. A7: ω = ωTO = ω0 and ω = ωLO. For ω = ω0

(i.e. when the vibration is decoupled from the electric
field oscillation) the dressing is zero. On the other hand,
by inserting ω = ωLO in Eq. A7, after some algebra,
one can obtain the expression for the broadening of the
LO phonon already derived in Ref. 19 (keep in mind
the comment on the damping given after Eq. 3 and that
ω2
LO − ω2

TO = 8πω0M
2
0 /(~vǫ∞)).

Fig. 7 shows the effects of Eq. A7 correction for
the MgO q=0 optical mode. In particular, it reports
∆Γ(ω) = Im[Π(ω)− Π̃(ω)], where Π(ω) is obtained from

Eq. A5 as it is written, and Π̃(ω) is obtained from Eq. A5

by substituting V (3) with Ṽ (3) from Eq. A7.

Appendix B: Z thermal average

By looking at Eq. 6.11 of Ref. 10, it is easy to see that
the inclusion of Cowley’s diagrams (e-f), is equivalent to
substituting Mα

0j in Eq. A3 with

M̃α
0j = Mα

0j +
1

N

∑

q,j′

Mα
0j,−qj′,qj′ × (2nqj′ + 1), (B1)

where Mα
0j,−qj′,qj′ can be defined generalizing Eq. A2

and nqj′ is the Bose-Einstein occupation associated to
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ωqj′ for a temperature T . This kind of integral can be
evaluated stochastically. Indeed, given a crystal and a
generic quantity F ({uls}):

〈F 〉 ≃ 1

N

∑

qj

F−qj,qj(2nq + 1), (B2)

where 〈F 〉 is the quantum statistical average of F at the
temperature T . 〈F 〉 can be evaluated stochastically using

the procedure described, e.g. in Ref. 42. In practice, we
considered a 3×3×3 MgO supercell. We generated dif-
ferent configurations by displacing randomly the atomic
positions as in Ref. 42 and averaged the resulting Born
effective charges.
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H.Y. Ko, A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Mar-
sili, N. Marzari, F. Mauri, N.L. Nguyen, H.V. Nguyen,
A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R.
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