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Fusion of evidential occupancy grids for
cooperative perception

Federico Camarda, Franck Davoine, Véronique Cherfaoui

Abstract—In the field of autonomous navigation, perception of
the driving scene is one of the essential elements. Existing solu-
tions combine on-board exteroceptive sensors, and are capable of
understanding some of the near vehicle’s dynamic surrounding
environment. Furthermore, the perception capability of each
vehicle can be enhanced by wireless information sharing if
vehicles in the neighborhood transmit pertinent information.
The primary benefit of such approach is to enable and improve
the performance–safety of cooperative autonomous driving. The
introduction of such a vehicle-to-vehicle communication leads to
think of the global architecture as a system of systems. In this
work, we address the task of evidential occupancy grid fusion so
that a given vehicle can refine and complete its occupancy grid
with the help of grids received from other near vehicles. The
communication channel is supposed to be ideal, noiseless with
infinite capacity. We focus on the fusion framework itself, using
the theory of belief functions for reasoning with uncertainties on
the relative poses of the vehicles and on the exchanged sensor
measurement data. We evaluate the fusion system with real data
acquired on public roads, with two connected vehicles.

Index Terms—autonomous driving, cooperative perception,
belief functions, lidar, fusion of evidential occupancy grids.

I. INTRODUCTION

Nowadays, driver assistance systems have entered the mar-
ket with successes like adaptive cruise control and lane keep-
ing assistance. Despite this, much research and development
efforts are still necessary to go toward fully autonomous
driving with complex tasks to perform, safely (e.g. overtaking
and lane changing on motorways, or crossing intersections in
urban areas). The development of these systems relies on func-
tions like multi-sensory perception, communication or adaptive
learning. Vehicles so-called smart or intelligent have variable
capabilities in terms of self-localization, perception of the
driving environment or even prediction of trajectories of other
traffic participants. They can take advantage of perceptual or
intentional information exchanged with other road users (e.g.
vehicles, pedestrians or bicycles) to augment their field of
view and situational awareness of the dynamic traffic scene
[1][2]. Furthermore, vehicles can exploit information provided
by roadside units, by the infrastructure, or high-level context
given by digital maps. These different sources when com-
bined can provide sufficient details to build a representation
of the driving environment which can be so-called object-
based [3][4] or grid-based. In this way, vehicle-to-vehicle
and vehicle-to-infrastructure based collaborative perception
interacting with various other components for multi-vehicle
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localisation and decision making, defines a complex system
of systems [5].

The purpose of this work is to improve the perception
capabilities of the vehicle, making the best of information
received from other vehicles present in the driving scene
via wireless communications. It is shown how occupancy
grids built on Lidar sensor measurements can be exchanged
and fused ultimately achieving a better representation of the
urban scene. The feasibility of this work is validated by
our implementation and experimental results involving two
connected vehicles driving in different driving scenarios.

A. Occupancy grids

This paradigm of occupancy grids, introduced in [6], is
significantly different from other object-based representations.
The environment is defined as a two dimensional grid, where
the vehicle can be located. The grid is divided in cells. Each
cell represents a part of the space and contains occupancy
related information that has been deducted by raw data coming
from a sensor. A sensor model has to be defined to properly
interpret the raw data and synthesize it in a grid with coherency
[7].

In the simplest example of binary occupancy grids, in
accordance with an agreed standard, each cell can contain
value 0 if the space that represents is free and value 1
if it is occupied. More complex models referring to the
same meaning can contain the probability for each cell to
be free or occupied according to a certain sensor; these are
probabilistic occupancy grids. Other grids for other uses can
contain different information, such as elevation of the ground.

With occupancy grid, the level of understanding of the
scene will be in general lower and further elaborations will
be necessary to deduct other characteristics such as object
detection and labeling, estimation of speeds and trajectories.
On the other hand, the navigable space is directly represented
and for the realization of a meaningful grid it is possible to
use multi-grid approaches.

B. Case of study

The main goal of this work is the study and the development
of cooperative perception techniques conceived for the urban
scene understanding. The idea is to exploit wireless informa-
tion exchange among intelligent vehicles to expand everyone’s
field of view and detect obstacles that would be otherwise
hidden to some. More specifically, the objective is to make
the vehicle able to:
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1) Create a representation of its near environment using
evidential occupancy grids.

2) Maintain and update this representation continuously.
3) Enrich this representation with the point of view of other

vehicles executing the same application.
On the hypothesis of a given precise ego-position estimation,
occupancy grids built on information coming from a Lidar sen-
sor and wireless communication will be used as representation
of the vehicle surrounding environment. Moreover, in order to
facilitate information fusion and discounting, the specificity of
the belief functions theory has been exploited.

An architecture based on cooperative perception has been
proposed, implemented, and studied and it is presented in the
next sections.

II. BELIEF FUNCTIONS

Hereafter is presented the framework of belief functions
theory [8][9][10][11], and how we plan to use it to generate
evidential occupancy grids.

A. Uncertain information representation

Let Ω be the set of all the possible states of the system under
analysis. It can be referred as universe or frame of discernment.
The power set 2Ω is the set of all subsets of Ω (including the
empty set) and it contains all and only the states in which a
given proposition linked to the system can be true. To represent
this uncertain information, mass functions are used assigning
a belief mass to each element of the power set.

Formally, mass function, also called basic belief assignment
(BBA) or basic probability assignment, over a frame of
discernment Ω is a function m: 2Ω → [0, 1] verifying:

m(∅) = 0,
∑

A⊆Ω,A 6=∅

m(A) = 1 (1)

As example, in the specific case of occupancy grid, the
universe of the all possible states simply splits in two hypoth-
esis: the considered segment of space can be either free F or
occupied O, therefore the frame of discernment is defined as
Ω = {F,O}. We can give an illustrative belief distribution
represented by:

m =

[
∅ O F Ω

m(∅) m(O) m(F ) m(Ω)

]
(2)

Each mass quantity under each hypothesis shows the belief
committed to that hypothesis.

A mass function m for which m(∅) = 0 is called normal or
regular. Otherwise, the mass function is said to be unnormal-
ized. Then, the quantity m(∅) can be interpreted as the degree
of support of the hypothesis that the true class ω is actually
outside of our frame Ω.

The information encoded by a mass function can be repre-
sented in other ways. The notions of belief, plausibility and
pignistic probability are other major constructs of the belief
functions theory and they play important roles in many aspects
of evidential reasoning.

B. Discounting

In the theory of belief functions, knowledge about the
reliability of a source of information can be handled by a
discounting factor. A discounting factor is used to weaken a
mass function by transferring some masses to the ignorance
state m(Ω).

For a factor α ∈ [0, 1], the discounted mass function αm is
defined as:

αm(A) = (1− α)m(A), ∀A ( Ω (3)

αm(Ω) = (1− α)m(Ω) + α (4)

If α = 0, the information is considered reliable and is kept
as it is. On the other hand, if α = 1, the information is totally
unreliable and leads to the vacuous mass function, m(Ω) = 1.
Smets [10] showed that this discounting can be derived by
interpreting 1−α as the degree of belief that the information
is reliable.

C. Combination rules

The combination rules enables to fuse information from
different sources. The sources of information should be defined
in the same frame of discernment to use the following rules.

1) Conjunctive rule: Given two mass functions m1 and
m2 induced by two independent sources of information and
defined on the same frame of discernment Ω, it is possible to
combine them using conjunctive rule defined as:

∀A ∈ 2Ω , (m1 ∩©m2)(A) =
∑

B∩C=A|B,C⊆Ω

m1(B)m2(C)

(5)
2) Dempster’s rule: The Dempster’s rule normalizes the

mass function distributing the conflict mass into other propo-
sitions. The Dempster’s rule of combination, or orthogonal
sum, computes a new mass function m1 ⊕m2 defined as:

(m1 ⊕m2)(∅) = 0 (6)

(m1⊕m2)(A) =
1

1−K
∑

B∩C=A

m1(B)m2(C), A 6= ∅ (7)

where:

K =
∑

B∩C=∅

m1(B)m2(C) (8)

This value measures the conflict between the two mass
functions. The combination rule is valid if and only if K < 1,
otherwise, m1 and m2 are incompatible and cannot be com-
bined. Dempster’s rule is commutative, associative and has the
vacuous mass function as unique neutral element.
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D. Evidential occupancy grids

The framework of belief functions natively presents tools of
information fusion, ignorance representation, and information
weakening. We have to present the complete perception model
yet but it is already evident that these capabilities are perfectly
suitable for our purpose: we want to fuse grids of others with
ours, to represent ignorance when an area still has not been
observed and to reduce the value given to an evidence when
it becomes obsolete.

For these reason our grids will be evidential occupancy
grids, that is to say that each cell will contain our belief of it to
be Free, Occupied or a measurement of our lack of knowledge.

Each cell (i, k) will not contain a single probability like in
probabilistic occupancy grids but a mass function mi,k defined
over Ω = {F,O}:

mi,k =

[
∅ O F Ω

mi,k(∅) mi,k(O) mi,k(F ) mi,k(Ω)

]
For example, here is a cell certainly occupied:

mi,k =

[
∅ O F Ω
0 1 0 0

]
A cell certainly free:

mi,k =

[
∅ O F Ω
0 0 1 0

]
A cell we have no information of:

mi,k =

[
∅ O F Ω
0 0 0 1

]
A cell of which a certain sensor told us that it is Free with

a partial belief:

mi,k =

[
∅ O F Ω
0 0 0.7 0.3

]
III. GENERATION AND FUSION OF EVIDENTIAL

OCCUPANCY GRIDS

This section presents the perception framework and de-
scribes the role played by the different occupancy grids in
the global perception system. As we can see in figure 1,
at each time t a new sensor acquisition is activated on
the EgoVehicle to create a new Scangrid which updates the
cumulative Mapgrid and is shared with others to the network.
In addition, the EgoVehicle’s Mapgrid can be enhanced with
the help of Sockgrids transmitted by near OtherVehicles, if
any.

In the schematic representation, and in this work in general,
all the terms with the prefix Ego are used to refer to the “first
person” vehicle whose Mapgrid results centered on. Equiva-
lently, the prefix Other refers to one (or more) other vehicle
in the same urban scene which is sharing its perception data.
EgoPose and OtherPoses therefore describe each vehicle’s
position and orientation, they are defined as [x, y, θ] where
θ is the heading angle of the vehicle.

Sensor Model

LaserScan(t)

Scangrid(t)

EgoPose(t-1)

EgoPose(t)

OtherPose(t-1)

Mapgrid(t-1)

Mapgrid(t) Sockgrid(t-1)

Decay

FusionRotation / Shifting

Decay

Rotation / ShiftingFusion

EgoPose(t)

To Network

From Network

Fig. 1: Illustration of the occupancy grid fusion framework.

A. Scangrid

The sensor used in this work is a multi-layer, multi-echo
laser scanner SICK LD-MRS400001S01 that is geared towards
rough outdoor environments. It provides a point cloud (collec-
tion of measurements performed by the Lidar and presented
as points in space) with a scanning frequency of 12.5 Hz. We
describe hereafter the procedure to properly interpret Lidar
scans into a well constructed occupancy grid named Scangrid.
Its construction is composed of two steps.

1) From point cloud to polar grid: The intrinsic angular
nature of the device brings us to make use of a polar repre-
sentation of the measured information. We aim first to build
an ego-centered polar evidential occupancy grid. Its abscissa
θ goes from the minimum to the maximum angle covering the
whole aperture. Its ordinate d goes from 0 to the maximum
range of the maximum possible measurable distance of the
device. These two dimensions are clearly discretized both
according to the Lidar precision, respectively to the angular
resolution and the precision on the distance.

Let’s now analyze how the device presents its scans and
how can we take advantage of it. At a data level, each cloud
is a set of point and each point p is characterized by:

• (x, y, z) or equivalently a measured distance d from the
sensor to the obstacle.

• Angle θ of the mirror at the moment of the measurement.
The abscissa of the polar grid.

• Layer l ∈ {0, 1, 2, 3}.
• Echo e ∈ {0, 1, 2}.
• Flags. There can be different but we are only interested

in discriminating points belonging to the ground or not.
Therefore, f ∈

{
ground, ground

}
, where ground refers

to each point of impact that did not occur on the ground
(ground ≡Not-Ground).
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Distance d

AngleΘ

AngleΘ

Distance d

Measured point

Fig. 2: From points to polar grid. Cells containing at least one
point are labeled as Occupied ( = red). The space between the
observer and an Occupied cell is labeled as Free ( = green).
Remaining cells are unexplored, therefore Unknown ( = black).

If for a given pair (θ, l) no corresponding point exist in the
point cloud then nothing has been detected at that location, at
that range.

With 4-layer scans we may have a 3D representation but
as we want to lean on 2D grids we perform a projection of
the measurements and we suppose that obstacles are vertical
and completely in contact with the ground. According to all
of this, we can observe for each angle θ that:

• Ground points tell us up to where the space is free.
• “No points” tell us that the space is free up to the

maximum range.
• A single Not-Ground point tells us that the space is free

up to the measured distance and immediately afterwards
there is an obstacle occupying the space.

• More than one Not-Ground point tells us that the space
is free up to the minimum of the measured distances and
immediately afterwards there is an obstacle occupying the
space. Also for each point of this kind we can confirm the
detection of an obstacle but we are not able to conclude
on the navigability of the space in between them.

The building procedure of the evidential polar grid from a
laser scan is based on these observations and on the algorithm
proposed by [12].

2) From polar grid to Cartesian grid: With a polar model
as the one we just presented we will not be able to immediately
create and fuse evidential occupancy grids. For these reasons,
we need to compute a transformation from polar to Cartesian
coordinate system. In the Cartesian representation we will
assume that the position of the observer is at the bottom of the
grid. Several transformation methods exist; we have to choose
the one with the least loss. We chose the bi-linear interpolation
algorithm, as proposed in [12]. An example of transformation
is shown in figure 3.

Fig. 3: On the left, a polar grid. On the right, its equivalent
Cartesian grid.

B. Mapgrid

Whilst the Scangrid is defined as the base element of
the perception in this work, the Mapgrid is a cumulative
evidential occupancy grid centered on the ego-vehicle that
keeps information coming from subsequent laser scan. When
possible, information comes from other vehicles and it is
identified as Sockgrid, a Scangrid from a third party point
of view.

The name Sockgrid comes from the implementation where
that particular grid is produced over data coming, in fact, from
a socket - and indeed from the network. Therefore, fusion is
performed in two different occasions according to the origin
of the upcoming new information.

1) Fusion with Scangrid: This operation deals with the
maintenance of an updated representation of the environment.
In the case of a memoryless system, we would simply discard
the old Mapgrid and replace it with the last Scangrid. We want
instead a proper map - Mapgrid - that keeps memory of past
information while being constantly updated with new data,
along with the vehicle movement. We present hereinafter the
algorithm for the update of Mapgrid(t−1) with Scangrid(t),
resulting in Mapgrid(t):

1) We apply a discounting to Mapgrid(t − 1) according
to the elapsed time

2) We compute the transformation between EgoPose(t)
and EgoPose(t− 1)

3) We apply this transformation (rotation and translation)
to decayed Mapgrid(t− 1)

4) We compute the cell-by-cell fusion using the Dempster’s
rule

Figure 4 shows the evolution of a Mapgrid of a single vehicle
which is steady and is detecting an object in movement. The
movement is given by cell where m1 ∩©m2(∅) is high (in blue
in figure 4 ) . On the left, Mapgrid(t − 1) with the object
in its initial position. On the right, the result of the fusion of
Mapgrid(t− 1) and Scangrid(t) which is Mapgrid(t).

2) Fusion with Sockgrid: Handling a Sockgrid (Scangrid
from another vehicle) is similar but presents some differences.
Now the idea is not to transform our Mapgrid but to properly
prepare the Sockgrid to be fused. Hypothesizing that, with the
Sockgrid, it has been communicated the corresponding pose
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EgoVehicle EgoVehicle

Fig. 4: An example of Mapgrid progression with observation
of an object in movement from a stationary observer. Red
cells represent, in this example, another vehicle moving along
a wall and orthogonally to the EgoVehicle.

Fig. 5: Effective Mapgrid presenting objects in movement,
therefore conflict mass presented as blue cells.

and timestamp, the algorithm proposed to enrich the grid of
the ego-vehicle with that of another is the following:

1) We apply a discounting to Sockgrid(t − 1) according
to its timestamp and confidence given

2) We compute the transformation between EgoPose(t)
and OtherPose(t− 1)

3) We apply this transformation (rotation and translation)
to decayed Sockgrid(t− 1)

4) We compute the cell-by-cell fusion using the Dempster’s
rule

IV. EXPERIMENTS

The designed system has been implemented in C++ under
the framework ROS (Robot Operating System [13]). In order
to test its consistency without the actual effects of a wireless
communication between vehicles, real on-the-road data has
been acquired and used as an offline test bench. This was
possible because all the streams of data have been acquired
with synchronized clocks at the microsecond level taking
advantage of the GNSS receiver connected to each calculator.
The acquisitions involved two vehicles configured as follows:
• EgoVehicle (Renault Zoe Grey): back position, Lidar LD-

MRS on the front, dashcam, Novatel Span estimator,
RTK-GPS.

• OtherVehicle (Renault Zoe White): front position, Lidar
LD-MRS on the front, dashcam, Novatel Span estimator.

A third unequipped vehicle also took part to the acquisition in
order to have control and predictable movements of another

entity of the scene. This fleet has been driven through public
roads, to build a dataset complete of several scenarios and
urban situations.

A. Performance evaluation

Without an actual ground truth at disposal, it is difficult to
define a quantitative measure of the quality of the fusion. The
performance depends indeed directly on the estimation of the
relative pose between EgoPose and OtherPose. As these two
poses come from two different independent estimators, two
different uncertainties are involved. The EgoPose is measured
at a RTK-level of precision, its uncertainty magnitude can not
be compared to the uncertainty on OtherPose. Therefore, this
last indicator is used to measure the error coming with every
fusion and it is computed taking advantage of EgoVehicle’s
Lidar and position, as follows:
• Before sharing the Sockgrid, OtherVehicle adds to the grid

a mask representing itself with a shape of “red rectangle”.
This geometric form is not just a display of the vehi-
cle; those cells result red because in the OtherVehicle’s
Scangrid that space has been labeled as Occupied by
properly assigning mass. Similarly, it is reasonable to
suppose that the space around the car is free, therefore it
is labeled as Free. This area of the grid, where knowledge
has been added according to our observations and not
according to the sensor measurement, is identified as a set
of cells named OV (short for OtherV ehicle)(an example
is shown at the bottom right of figures 7 and 8);

• After reception, EgoVehicle performs the fusion between
its Mapgrid and Sockgrid. Given that during the dataset
acquisition EgoVehicle always kept its back position w.r.t.
the other car, it is likely that OtherVehicle is detected by
its Lidar and it already appears (totally or in part) in its
Mapgrid;

• Completing the fusion with Dempster’s Rule, the sum
of the amount of conflict reported in each cell belong-
ing to the set OV indicates the discrepancy between
OtherPose’s estimation and its actual measurement via
EgoVehicle′s laser scan. This ConflictError is therefore
an indicator of the incompatibility between the two
evidential occupancy grids fused and it is computed at
each time instant as:

ConflictError =
∑

celli,j∈OV

mi,j(∅)

The thus defined quantity varies accordingly to the amount
of conflict reported in the information fusion nearby the
OtherVehicle. It can not be considered a formal and properly
modeled measurement of the error, but it can discriminate
coherent fusion (low conflict) and poor fusion (high conflict).

B. Results

Updated Mapgrid, Scangrid, and Sockgrid are shown on
figures 7 and 8. Each figure displays important results of the
study in a three columns format used during this work to
evaluate the outcome of the designed system. In these three
columns are presented, from the left:
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• EgoVehicle’s Mapgrid, resulting from subsequent fusions;
• EgoVehicle’s camera and Scangrid;
• OtherVehicle’s camera and Scangrid (or Sockgrid).

This representation matches with its ConflictError and easily
allows to identify instants of coherent fusion.

The resulting ConflictError evolution during a four-minute
data acquisition is displayed in figure 6. For a better as-
sessment, please follow the trend of the error along with its
corresponding updated grid, which is displayed in video format
and available on Youtube1.

Two remarkable instants of the execution are hereinafter
described.

In figure 7 (timestamp 210s), both vehicles are detecting,
from two different points of view, the same slope along the
street presented in the top left of each grid as an oblique red
line. Nevertheless, in the final grid (first column from the left,
so-called EgoVehicle’s Mapgrid), that unique slope appears in
the representation of the environment as two different red lines,
therefore as two different obstacles. Qualitatively, we deduct
with a graphical evaluation of the result that the two grids who
took part in the fusion were not properly aligned. This incom-
patibility is caused by a poor estimation of the relative pose,
which is crucial element of the algorithm described in section
III-B2. Quantitatively, we state the same outcome by reporting
an accordingly high value of the indicator ConflictError.

In figure 8 (timestamp 170s), instead, the estimated poses
are consistent with the performed Lidar measurements and
the reported ConflictError results comparatively smaller. The
edge of the road, the horizontal barrier in the top part of the
each grid, is in fact well aligned in the final grid, where the
fusion process did not lead to any double representation of
this obstacle.
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Fig. 6: ConflictError is not computed when the OtherVehicle is
out of EgoVehicle’s field of view (14s−16s). Its value results
high when the two fused grid are poorly aligned (60s− 80s)
and low when their combination is coherent (170s− 190s).

V. CONCLUSIONS AND FUTURE WORKS

The occupancy grid fusion framework we propose in this
paper has been successfully implemented in a prototype ver-
sion. There is still room for optimization in the algorithms

1https://youtu.be/dndqe1F-kfs

Fig. 7: Poor position estimation leads to fusion of unaligned
grids and to double detection of an obstacle (top left of the
grid, timestamp 210s).

Fig. 8: Consistent fusion in the presence of a barrier detected
by both vehicles (top of the grid, timestamp 170s).

implementation but the current application satisfies the three
requirements listed in section I. The results of its execution
on the dataset acquired with multiple vehicles are promising
and we make different observations.

The current implementation is computationally too heavy
to run online. In order to allow an adequate rate of Mapgrid
updating it is necessary to replay the acquired dataset at 0.5
times its original speed. With this performance, it is obviously
not possible to design on-road tests with live application
running on more than two vehicles.

We also conclude that the quality of the resulting grids
strongly depends on the position estimation accuracy. The
fusion of two grids is preceded by a transformation based
on the relative pose, therefore on two independent position
estimation, one per vehicle. If these two are poorly estimated
and there is a significant discrepancy from the truth, the fusion
results accordingly poorly aligned and conflictual.

However, at a sufficiently slow rate of execution and with
sufficiently precise positions, the results are consistent with
the surrounding environment. The indicator ConflictError has
proven to be effective in identifying instants of coherent fusion
when our application can factually enhance the overall system
of system understanding of the urban scene.

In the future, it will be interesting to:
• Take better advantage of the ConflictError value. A
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possible use is as a threshold in a go/no-go condition
on the feasibility of the fusion;

• Implement a method of grid alignment, such as the one
proposed in [14] and [15], to face the uncertainty on the
pose estimations;

• Enlarge the frame of discernment replacing the class {O}
with {S,D} to consider both static and dynamic cells,
and implement a solution able to detect moving cells such
as the one proposed in [16].
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