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Commissariat à l´ Energie Atomique, INAC, 17 rue des Martyrs, 38054 Grenoble, France

cInstitute for Materials Research, Tohoku University, Ibaraki 311-1313, Japan
dDQMP, University of Geneva, 1211 Geneva 4, Switzerland

eService de Modélisation et dExploration des Matériaux, Université Grenoble Alpes et
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Abstract

A review of recent state-of-the-art pulsed field experiments performed on URu2Si2

under a magnetic field applied along its easy magnetic axis c is given. Resis-

tivity, magnetization, magnetic susceptibility, Shubnikov-de Haas, and neutron

diffraction experiments are presented, permitting to emphasize the relationship

between Fermi surface reconstructions, the destruction of the hidden-order and

the appearance of a spin-density wave state in a high magnetic field.

Keywords: URu2Si2, heavy fermions, hidden order, high magnetic field,

spin-density wave, Fermi surface

Over the last four decades, the physics of URu2Si2 has revealed a unique

richness in the family of strongly-correlated electrons systems [1]. In spite of a

huge experimental and theoretical effort, none has been able to propose a con-

sensual description of its low temperature ground state, which develops below

the transition temperature T0 = 17.5 K, and whose order parameter remains

unknown. In this hidden-order phase, strong intersite magnetic fluctuations
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have been observed by inelastic neutron scattering at two particular wavevec-

tors k0 = (0 0 1), which is equivalent to (1 0 0), and k1 = (0.6 0 0) [2, 3]. A

change of the carrier mobility was found to coincide with the establishment of

the hidden order [4, 5, 6, 7], being a first indication of the interplay between the

Fermi surface, the hidden-order and, thus, the magnetic properties of this itiner-

ant magnet. Under hydrostatic pressure, signatures of a phase transition at the

critical pressure pc ' 0.5 GPa have been observed by thermal expansion and

neutron diffraction, revealing the pressure-induced stabilization of long-range

antiferromagnetic ordering of moments of amplitude 0.3 − 0.4 µb/U, with the

wavevector k0 [8, 9, 10]. Shubnikov-de Haas quantum oscillations of the magne-

toresistivity indicated almost similar Fermi surfaces in the low-pressure hidden-

order and high-pressure antiferromagnetic phases, leading to the proposition

that the hidden order, although of unknown nature, has the same periodicity

with wavevector k0 than the high-pressure antiferromagnetic order [11]. We

note that the low-pressure and low-field hidden-order phase has initially been

labeled as an antiferromagnetic phase [12], following the observation of a small

magnetic moment of amplitude ' 0.02− 0.03 µb/U ordering with the wavevec-

tor k0 at temperatures below T0. However, this small moment cannot explain

the large entropy associated with the transition and has been later assigned

as non-intrinsic and due to sample inhomogeneity [13]. When a magnetic field

H is applied along the easy magnetic axis c of this Ising system, a cascade of

three first-order transitions in a narrow magnetic field window was reported in

early high-field experiments [14, 15], indicating the destruction of the hidden-

order phase in fields higher than 35 T, the stabilization of field-induced phases

in magnetic fields between 35 and 39 T, and the setting-up of a paramagnetic

polarized regime in fields higher than 39 T.

In this paper, we present a review of recent high-field experiments performed

on high-quality URu2Si2 single crystals using state-of-the-art pulsed magnetic

field experiments at the LNCMI-Toulouse high-field facility [16, 17] and at the

ILL-Grenoble neutron source [18]. Magnetization has been measured by com-

pensated coils and resistivity by the four-point technique using 60-T pulsed
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magnets at the Toulouse site. Neutron scattering has been carried out using a

transportable 40-T pulsed magnet on the triple axis spectrometer IN22 (CRG-

CEA) at the ILL. For all magnetization and resistivity measurements presented

here, the magnetic field has been applied along the easy magnetic axis c of

URu2Si2. For the neutron scattering experiment, a field slightly tilted by 4.2 ◦

from the c-axis was applied, with no incidence on the magnetic properties ex-

pected for H ‖ c [19].

Figure 1(a) presents the magnetizationM of URu2Si2 measured at T = 1.5 K

in magnetic fields H ‖ c. The three first-order phase transitions are associated

with step-like variations of the magnetization at the critical fields µ0H1 = 35 T,

µ0H2 = 36/37 T (rising/falling fields), and µ0H3 = 39 T. In fields smaller

than H1, an almost linear increase of M(H) is associated with a large magnetic

susceptibility (χ ' 5 · 10−3 emu/mol.Oe, see Figure 2(a)) typical of a heavy-

fermion behavior. The hidden-order is destroyed at H1 and is replaced by field-

induced phases for H1 < H < H3, where a magnetization plateau corresponds

to approximately half of the total variation of M between H1 and H3 (the step

in the magnetization at H2 is much smaller than those at H1 and H3). For

H > H3, the magnetization reaches a large value > 1.3 µB/U characteristic of

a polarized paramagnetic regime, and continues to slowly increase with field,

probably because of remaining unquenched magnetic fluctuations.

As shown in Figure 1(b), a neutron diffraction elastic Bragg peak at the

wavevector k1 develops for H1 < H < H3 (measurement at the neutron mo-

mentum transfer Q = (0.6 0 0), which corresponds to the wavevector k1 via

the relation Q = τ + k1, where τ = (0 0 0) is a structural Bragg posi-

tion). As detailed in Ref. [18], this Bragg peak is the signature of a spin-

density wave, i.e., a sine-modulation of magnetic moments, with an amplitude

2M(k1) ' 0.5± 0.05 µB/U at µ0H = 36 T. This amplitude is related with the

variation ∆M ' 0.4 − 0.5 µB/U in the magnetization between 36 T and just

above H3 = 39 T, which is driven by the field-induced alignment (parallel to the

field) of the moments ordered with wavevector k1 for H < H3. A small decrease

of the neutron intensity at µ0H2 = 36/37 T, with a Hysteresis similar than in
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the magnetization measurement (see Fig. 1(a)), indicates a subtle change at H2

in the magnetic structure. Further high-resolution neutron diffraction experi-

ments are needed to determine the field-variation of the magnetic structure in

the spin-density wave state.

The magnetoresistivity ρx,x versus magnetic field of three different samples

is presented in Fig. 1(c) (from Refs. [16, 20]). The three transitions at H1, H2,

and H3 are associated with sharp step-like variations delimiting two plateaus in

the magnetoresistivity, where the value of ρx,x is smaller for H1 < H < H2 than

for H2 < H < H3. While ρx,x is almost sample-independent for H > H1, its

value is strongly sample-dependent for H < H1, i.e., in the hidden-order phase.

As discussed in Refs. [16, 17], the larger the residual resistivity ratio, the larger

the field-induced variation of ρx,x is, indicating that the magnetoresistivity is

mainly controlled by an orbital effect, the field-induced cyclotron motion of

the carriers, in the hidden order phase. This strong field-variation of ρx,x is a

consequence of the large carrier mobility in the hidden-order state. A maximum

in ρx,x at the crossover field HLT
ρ,max ' 30 T (LT is used for ”low temperature”)

indicates a progressive reduction of the carrier mobility in the proximity of the

transition field H1 where the hidden order collapses. This reduction of carrier

mobility is related with a Fermi surface reconstruction, as discussed below.

Fig. 1(d) summarizes a large set of Fermi surface studies [17, 21, 22, 23,

24, 25] performed using Shubnikov-de Haas quantum oscillations of the resistiv-

ity in URu2Si2 under high magnetic fields applied along c. In this graph, the

Shubnikov-de Haas frequencies extracted from Fourier transforms of the quan-

tum oscillations are plotted as a function of the magnetic field. In magnetic fields

up to ' 15 T, the frequencies Fη ' 90 T, Fγ ' 200 T, Fβ ' 400 T, Fα ' 1100 T

associated with the Fermi surface bands η, γ, β, and α, respectively, are almost

unchanged. Above 15 T, a cascade of field-induced changes in the Fermi surface

is observed. In the hidden-order phase, a progressive variation of the frequencies

is induced in a large crossover regime going from 15 to 30 T, and is followed by

a more sudden change of the frequencies at ' 30 T, which coincides with the

field HLT
ρ,max at the maximum of the orbital magnetoresistivity. Fermi surface
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reconstructions have also been observed in thermoelectric measurements [26].

A cascade of Fermi surface changes inside the hidden-order phase has been ev-

idenced by Shubnikov - de Haas oscillations by different groups. However, due

to the difficulty to perform Fourier transforms in limited field ranges, the dif-

ferent analyzes led to slightly different spectra [17, 21, 22, 23, 25]. From studies

performed in steady fields up to 45 T by Altarawneh et al. [24] and Harrison

et al. [25], Shubnikov-de Haas frequencies characteristic of the Fermi surface in

the spin-density wave state and in the polarized paramagnetic regime have also

been extracted, showing that the transitions at H1, H2, and H3 are accompa-

nied by Fermi surface reconstructions. As seen in Figure 1(d), the field-induced

cascade of Fermi surface crossovers and reconstructions is accompanied by a

general trend: an increase of the Shubnikov-de Haas frequencies and, thus, of

the associated Fermi surface volumes.

In Figure 2(a), the magnetic susceptibility χ = M/H is plotted as function

of temperature for different field values. The temperature Tmaxχ defined at the

maximum of χ(T ) for µ0H < 35 T delimits a low-field correlated paramag-

netic regime. The temperature TPPM defined at the inflexion point of χ(T ) for

µ0H > 35 T is the borderline of the high-field polarized paramagnetic regime.

In Figure 2(b), the resistivity ρx,x is plotted as a function of temperature for

two samples (samples ]1 and ]2) at the magnetic field values µ0H = 0, 30, and

50 T. The resistivity at zero field is mainly sample-independent (a small sam-

ple dependence is observed at low temperatures, reflecting the different residual

resistivity ratios, but cannot be seen in this graph). In agreement with the con-

clusions of the low-temperature ρx,x versus H plot (Figure 1(c)), the ρx,x versus

T plot in Figure 2(b) confirms that a sample-dependent magnetoresistivity is

observed only in the hidden-order phase, i.e., at temperatures below T0 ' 6 K

for µ0H = 30 T. In a magnetic field of 50 T, the electron-electron contribution to

the low-temperature electrical resistivity is strongly reduced in comparison with

that at zero-field. We estimate by ρx,x(50T, T ) the phononic contribution to the

zero-field resistivity ρx,x(0T, T ) of URu2Si2, and by ρx,x(0T, T )− ρx,x(50T, T )

the purely electronic contribution to the zero-field resistivity. As shown in Figure
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2(c), the T -dependences of ρx,x(0T)−ρx,x(50T) and the magnetic susceptibility

χ are very similar, showing broad maxima at ' 45 and 55 K, respectively. This

indicates that both quantities in this temperature range are controlled by the

progressive setting of the correlated paramagnetic regime.

Figure 1(e) presents the magnetic field - temperature phase diagram of

URu2Si2 in a field H ‖ c, constructed from magnetization and magnetoresis-

tivity data (from Refs. [16, 27]). Inside the hidden-order phase, the crossover

field HLT
ρ,max decreases with increasing temperature in a similar manner than

the hidden-order borderline, indicating that HLT
ρ,max is an intrinsic property

of the hidden-order phase. At temperatures higher than T0, a broad maxi-

mum at the temperature Tmaxχ in the magnetic susceptibility marks the onset

of a low-temperature heavy-Fermi-liquid plateau in the magnetic susceptibil-

ity, as in usual heavy-fermion paramagnets. Remarkably, in a large number of

heavy-fermion paramagnets (including URu2Si2) a scaling between Tmaxχ and

the field-induced pseudo-metamagnetic field Hm, indicates that a single en-

ergy scale controls the correlated paramagnetic regime [28]. The specificities of

URu2Si2 are the appearance of its hidden-order state below the temperature T0

and of a field-induced spin-density wave beyond the hidden-order phase. Under

a magnetic field, both T0 and Tmaxχ vanish in the critical field area [35-39T]

where the spin-density wave is stabilized and above which a polarized paramag-

netic regime is established. In the future, further efforts are needed to describe

the field-induced phases labelled II, III and V [27]. In particular, the question

whether phase II (which develops below 6 K in the field window 34-38 T) is a

real phase of a crossover regime has been recently raised [29].

The interplay between the magnetism and the Fermi surface is a key to un-

derstand the electronic properties of URu2Si2. The simultaneous field-induced

changes of the magnetic and Fermi surface properties reported here are a direct

illustration of this interplay. Further, the hidden-order state is characterized

by strong magnetic fluctuations at the wavevectors k0 and k1, which have been

identified as nesting (or quasi-nesting) vectors of the Fermi surface [30]. When

an external parameter is tuned, as pressure, uniaxial stress, Rh-doping, or mag-
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netic field, long-range magnetic order can be stabilized either with wavevector

k0 (via pressure [8, 9, 10], uniaxial stress [31, 32], Rh-doping [33, 34, 35]) or with

the wavevector k1 (via a magnetic field H ‖ c [18]). Within an itinerant picture

of magnetism, one can speculate that the application of these tuning parameters

leads to modifications of the Fermi surface nestings, inducing the stabilization

of long-range ordering with the wavevectors k0 or k1. However, the fact that

almost no Fermi surface change has been reported experimentally under pres-

sure, while a cascade of Fermi surface reconstructions were reported in a field

H ‖ c, illustrates how subtle the properties of URu2Si2 are. By revealing the

relationship between the Fermi surface and magnetism of URu2Si2 under pres-

sure and magnetic field, new generations of band structure calculations (see also

Refs. [36, 37, 38, 30, 39]) will surely help describing quantitatively its proper-

ties and perhaps solving the hidden-order problem. Another challenge would be

to understand why an ’up-up-down’ ferrimagnetic structure is stabilized in high

magnetic field in Rh-doped U(Ru0.96Rh0.04)2Si2 with the wavevector k2 =(2/3 0

0) [40], k2 being very close to the wavevector k1 of the field-induced spin-density

wave in pure URu2Si2.
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Figure 1: (a) Magnetization at T = 1.5 K (from Ref. [16]), (b) Neutron diffraction intensity

at Q = (0.600) and T = 2 K (from Ref. [18]), (c) Resistivity of samples of different RRRs

at T = 1.5 K (from Refs. [16, 20]), and (d) Shubnikov-de-Haas frequencies (from Refs.

[17, 21, 22, 23, 24, 25]), of URu2Si2 in a magnetic field H ‖ c. (e) Magnetic field - temperature

phase diagram obtained from resistivity and magnetization (from Refs. [16, 27]) measurements

on URu2Si2 in a magnetic field H ‖ c.
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Figure 2: (a) Magnetization divided by the magnetic field M/µ0H versus temperature at

various magnetic fields H ‖ c (of 5, 20, 28, 32, 34, 34.5, 35, 35.5, 36, 36.5, 37, 37.5, 38, 28.5,

39, 40, 45, and 50 T) (from Ref. [16]), (b) Resistivity ρx,x versus temperature at µ0H = 0, 30,

and 50 T, for samples ]1 and ]2 (from Ref. [16]), (c) Comparison of ρx,x(T, 0T)−ρx,x(T, 50T)

(from Ref. [16]) and the magnetic susceptibility χ(T ) (from Sugiyama et al. [15]) versus

temperature, of URu2Si2 in a magnetic field H ‖ c.
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