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The basins of attraction of the global minimizers of the
non-convex sparse spike estimation problem
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2Univ. Bordeaux, Bordeaux INP, CNRS, IMB, UMR 5251,F-33400 Talence, France.

Abstract

The sparse spike estimation problem consists in estimating a number of off-the-
grid impulsive sources from under-determined linear measurements. Information
theoretic results ensure that the minimization of a non-convex functional is able
to recover the spikes for adequately chosen measurements (deterministic or ran-
dom). To solve this problem, methods inspired from the case of finite dimensional
sparse estimation where a convex program is used have been proposed. Also greedy
heuristics have shown nice practical results. However, little is known on the ideal
non-convex minimization to perform. In this article, we study the shape of the
global minimum of this non-convex functional: we give an explicit basin of attrac-
tion of the global minimum that shows that the non-convex problem becomes easier
as the number of measurements grows. This has important consequences for meth-
ods involving descent algorithms (such as the greedy heuristic) and it gives insights
for potential improvements of such descent methods.

1 Introduction

1.1 Context

Sums of sparse off-the-grid spikes can be used to model impulsive sources in signal
processing (e.g. in astronomy, microscopy,...). Estimating such signals from a finite
number of measurements is known as the super-resolution problem [8]. In the space
M of finite signed measure over R?, we aim at recovering zo = > ie1k @idg; from the
measurements 7

y = Axg + e, (1)

where d;, is the Dirac measure at position ¢;, the operator A is a linear observation
operator, y € C™ are the m noisy measurements and e is a finite energy observation
noise. Recent works have shown that it is possible to estimate spikes from a finite
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number of adequately chosen Fourier measurements as long as their locations are suffi-
ciently separated, using convex minimization based variational methods in the space of
measures [7, 1, 24, 11, 13]. Other general studies on inverse problems have shown that
an ideal non-convex method (unfortunately computationally inefficient) can be used
to recover these signals as long as the linear measurement operator has a restricted
isometry property (RIP) [4]. In the case of super-resolution, adequately chosen random
compressive measurements have been shown to meet the sufficient RIP conditions for
separated spikes, thus guaranteeing the success of the ideal non-convex decoder [18].
These RIP results are based on an adequate kernel metric on M. It must be noted
that, according to the work of [4], the success of the convex decoders as described in
[7] for regular Fourier sampling implies a (lower) restricted isometry property of A with
respect to such a kernel metric (and not with the natural total variation metric: in this
case no RIP is possible with finite regular Fourier measurements, see e.g. [5]). Greedy
heuristics have also been proposed to approach the non-convex minimization problem
and they have shown good practical utility [19, 20, 25].

While giving theoretical recovery guarantees, the convex-based method is non-
convex in the space of parameters (amplitudes and locations) due to a polynomial
root finding step. Also, it is difficult to implement in dimensions larger than one in
practice [12]. Greedy heuristics based on orthogonal matching pursuit are implemented
in higher dimension (they can practically be used up to d = 50), but they still miss
theoretical recovery guarantees [19]. It would be possible to overcome the limitations
of such methods if it were possible to perform the ideal non-convex minimization:

z* € argmin||Az — y||2 (2)
€Y

where Y is a low-dimensional set modeling the separation constraints on the k£ Diracs.
While simple in its formulation, properties of this minimization procedure have not yet
been thoroughly studied.

In this article, as a first important step towards the understanding of the non-
convex sparse spike estimation problem (2), we study its formulation in the parameter
space (the space of amplitudes and locations of the Diracs). We observe that a smooth
non-convex optimization can be performed. We place ourselves in a context where the
number of measurements, either deterministic or random, guarantees the success of the
ideal non-convex decoder with respect to a kernel metric || - ||, i.e. when we can ensure
that:

% = zolln < Cllell2, (3)

where C'is an absolute constant with respect to e and xg € ¥ ¢, the set Xy, . is the set
of sums of k spikes separated by € on a given bounded domain. Qualitatively, the kernel
metric can be viewed as a measure of the energy at a given resolution set by a kernel h
(see Section 2.3).

The bound (3) is guaranteed by a restricted isometry property of A defined using
such kernel metric [18]. This RIP setting is verified in the deterministic (see Section 2.3)
and random Fourier measurement contexts [18].We link this RIP of measurement op-
erators with the conditioning of the Hessian of the global minimum, and we give an



explicit basin of attraction of the global minimum. This study has direct consequences
for the theoretical study of greedy approaches. Indeed a basin of attraction permits
to give recovery guarantees for descent methods (the initialization must fall within the
basin), since the gradient descent is a step in the iterations of the greedy approach.

1.2 Parametrization of the model set X
Let ¥ C M a model set (union of subspaces) and xg € X. Let f(z) = ||Az — y||2.

Definition 1.1 (Local minimum in X). The point x is a local minimum of f in 3 if
there is € > 0 such that for any &’ € X such that ||z — 2’| <€, we have f(x) < f(z').

Definition 1.2 (Parametrization of X). A parametrization of ¥ is a function such that

¥ C ¢(RY) = {¢(0) : 0 € R},

We consider the problem
6" € arg min g(6) = argmin || A¢(6) — yll2. (4)

where F = RF@HD or £ =0 := ¢~1(X) and g(0) = f(4(9)).
In the following, we consider the model of separated Diracs:

D =Ype={6(0) = > asby, :0=(aty,. t;) € R¥" g c RF ¢, e RY,
r=1,k (5)
Vr 75 [, ”tr — tl”g > €,t, € BQ(R)},

where

Ba(R) = {t € R : |t]2 < R}. (6)

Note that, in this paper, the Dirac distribution could be supported on any compact
set. We use By(R) for the sake of simplicity. For ¢, € R?, we write t, = (trj)i=1,d-
We consider the following Parametrization of Xj ¢ > . . aidy, = ¢(0) with 6 =
(a1, ..,ak,t1,..,tr). We define 7
@k,s = ¢_1(Ek,s)- (7)

Note that when E = Oy, performing minimization (4) allows to recover the minima
of the ideal minimization (2), yielding stable recovery guarantees. Hence we are par-
ticularly interested in this case. When F = R*(@+1)  we speak about unconstrained
minimization for minimization (4).

The objective of this paper is to study the shape of the basin of attraction of the
global minimum of (4) when E = Oy.



1.3 Basin of attraction and descent algorithms

In this work, we are interested in minimizing g defined in (4). Since g is a smooth
function, a classical method to minimize g is to consider a fixed step gradient descent.
The algorithm is the following. Consider an initial point 6y € R? and a step size 7 > 0.
We define by recursion the sequence 6,, by

en-‘rl = 971 - TVQ(Qn) (8)
We now give the definition of basin of attraction that we will use in this paper.

Definition 1.3 (Basin of attraction). We say that a set A C R? is a basin of attraction
of g if there exists 0* € A and T > 0, such that if 8y € A then the sequence 0, defined
by (8) converges to 6*.

This definition of basin of attraction is related to the following classical optimization
result (see e.g. [10]):

Proposition 1.1. Assume g to be a smooth coercive convex function, whose gradient
is L Lipschitz. Let 6y € R Then, if T < %, there exists 6* € R% such that the sequence
0., defined by (8) converges to 6*.

An immediate consequence of the previous proposition is the following corollary.

Corollary 1.1. Assume g to be a smooth function. Assume that g has a minimizer
0* € RY. Assume that there exists an open set A C R? such that 0* € A , g is convex
on A with L Lipschitz gradient. Then, if g € A and T < %, the sequence 6, defined by
(8) converges to 6*.

Remark 1.1. Assume that g is C?. Let Amax(t) the largest eigenvalue of the Hessian
matriz of g(t). Let © C R an open set. If there exists L > 0 such that for all t in ©,
Amax(t) < L, then g has a L Lipschitz gradient in ©.

1.4 Related work

While original for the sparse spike estimation problem, it must be noted that the study
of non-convex optimization schemes for linear inverse problems has gained attraction
recently for different kinds of low-dimensional models. For low-rank matrix estimation,
a smooth Parametrization of the problem is possible and it has been shown that a
RIP guarantees the absence of spurious minima [27, 2]. In [26], a model for phase
recovery with alternated projections and smart initialization is considered. Conditions
on the number of measurements guarantee the success of the technique. In the area of
blind deconvolution and bi-convex programming, recent works have exploited similar
ideas [21, 6].

In the case of super-resolution, the idea of gradient descent has been studied in an
asymptotic regime (k — oo) in [9] with theoretical conditions based on Wasserstein
gradient flow for the initialization. In our case, we study the particular super-resolution



problem with a fixed number of impulsions and we place ourselves in conditions when
stable recovery is guaranteed, leading to explicit conditions on the initialization.

The objective of this article is to investigate to what extent these ideas can be
applied to the theoretical study of the case of spike super-resolution estimation.

The question of projected gradient descent raised in the last Section has been ex-
plored for general low-dimensional models [3]. It has been shown that the RIP guaran-
tees the convergence of such algorithms with an ideal (often non practical) projection.
Approached projected gradient descents have also been studied and shown to be suc-
cessful for some particular applications [16]. The spikes super-resolution problem adds
the Parametrization step to these problems.

1.5 Contributions and organization of the paper

After a precise description of the setting, the definition of the kernel metric of interest
and the associated restricted isometry for the spike estimation problem at the beginning
of Section 2, this article gives the following original results:

1. A bound on the conditioning of the Hessian at a global minimum of the mini-
mization in the parameter space is given in Section 2. This bound shows that the
better RIP constants are (RIP constants improve with respect to the number of
measurements), the better the non-convex minimization problem behaves. It also
shows that there is a basin of attraction of the global optimum where no separa-
tion constraints are needed (for descent algorithms with an initialization close to
the minimum, separation constraints can be discarded)

2. An explicit shape of the basin of attraction of global minima is given in Section 3.
The size of the basin of attraction increases when the RIP constant gets better.

To conclude, we discuss the role of the separation constraint in descent algorithms in
Section 4, and we explain why enforcing a separation might improve them.

2 Conditioning of the Hessian

This section is devoted to the study of the Hessian matrix of g. In particular, we provide
a bound on the conditioning of the Hessian at a global minimum of the minimization
in the parameter space.

2.1 Notations

The operator A is a linear operator modeling m measurements in C”™ ( ImA C C™ ) on
the space of measures on R? defined by: for I =1, m,

() = [ oty autt o)

where (a7); is a collection of functions in C2(B2(R)) (twice continuously differentiable
functions on By(R) defined in (6)).



Notice that the integral used in (9) is in fact a duality product between a function
in C%(Bz(R)) and a finite signed measure over R%. As the a; are in C2(B2(R)), we can
similarly apply A to distributions of order 1 and 2.

While a lot of results for spike super-resolution are expressed on the Torus T, we
prefer the setting of Diracs with bounded support on R% which is often closer to the
physics of the considered phenomenom. However, our work is directly extended to the
Torus setting by replacing R? by T and B%(R) by T.

In C™, we consider the Hermitian product (u,v) = > u;v;. An example of such
measurement operator is the Fourier sampling: (Au); = \/—1% Jpae™ {wit) qu(t) for some

chosen w; € R%.
Let z = Zi:Lk a;0,. By linearity of A, we have

(Az), = Z Aby,) = Z aioq(t (10)
=1

With g(0) = f(6(0)) = [|Ap(6) — yll3, we get:

m k
=D 1D aiult) —w

=1 li=1

2

(11)

In the following, the notion of directional derivative will be important.

Definition 2.1 (Directional derivatives). Let f be a C* function, and v € R? such that
|lv]le = 1. Then we can define the directional derivative of f in direction v by:

70) = (0,9 40)) = i P20

h—>07L h
Let f be a C? function, and (vi,v2) € R?? such that ||v1l2 = ||v2]l2 = 1. Then we can
define the second order directional derivative of f in directions vi and ve by:

(12)

1/)/1,1}2 (t) = <’U17 V2f(t)v2> (13)
Notice that of course f,) ., (t) = fi, ,,(t). If vi = v, we write f} (t) := f) ., (t)

In particular, they permit to introduce derivatives of Dirac measures supported on
R%,
Definition 2.2 (Directional derivatives of Dirac). Let v € RY such that |Jv]lz = 1
The distribution 0y, ,, is defined by [, f(t)dd;, ,(t) = —fl(to). It is the limit of v, =

W form — 0T in the distributional sense : for all h € C*(R?), [ h(t) dvy(t) =0+

fR d(stov )

Similarly, The distribution oy, ,, is defined by fR t)dof () = fll(to) for f € C*H(R?)
and the distribution 07, , . is defined by [ f(£)do] . . (6) = [l ,,(to) for f € C2(R?)
where f" s the derivative of f in direction v chained with the derivative of f in

V1,02
direction vy.

When v = e; is a vector of the canonical basis of R? | we write 5t0 ;= 520 e; and
b
5// 5//
to,i — “to,€i,€”



Finally, we note rintBy(R) the relative interior of By(R).
We now have the necessary tools to start the study of the Hessian of g.
2.2 Gradient and Hessian of the objective function ¢

We calculate the gradient and Hessian of g in the two following propositions. We start
with the gradient of g.

Proposition 2.1. For any 6 € R* | we have:

dg(0)

aar = 2R6<A5tr ) AQS(H) - y>7 (14)
0
851( ) = —2arRe<A5£hj, Ao(0) — y). (15)
7.
Proof. See Appendix A.1. O

The next proposition gives the values of the Hessian matrix of g which has a simple
expression with the use of derivatives of Diracs.

Proposition 2.2. For any 6 € RF(@+1)

9*9(9)
Hivo = 299 _opeias, , 46,.). 16
17 k] 80@8&3 Re( 5t'r 5ts> ( )
. 829(9) . / /
H2,T,]1737J2 - 8tr,j1 ats,jz - 2a7asR€<A5tr,j1’A5ts,j2> (17)

+1(r = 8)2a,Re(Ad) 5 o Ad(6) —y).
89()

Higps5 = m = —2a5Re(A5tT,A5£S7j> —1(r = s)2Re(A5£0’j,A¢(9) —y). (18)

Hence the Hessian can be decomposed as the sum of two matrices H = G + F with

Gl,r,s = 2R€<A5tr7A5ts>7
G2,7‘,j173,j2 = 2(17-(ISRG<A5£TJ’1,A5£S,j2>7 (19)
G5, = —2asRe<A5twA5£s,j>'

and
Fi,s=0,
Forjisjo=1(r= 8)2(17726(145{:7]-1’]-2,14@5(0) — 1), (20)
Fiagsj = —1(r = 5)2Re(Ady, ;, Ap(0) — y).
Proof. See Appendix A.1. O



2.3 Kernel, dipoles and the RIP

In order to be able to build an operator A with a RIP, we define a reproducible kernel
Hilbert space (RKHS) structure on the space of measures as in [18], see also [23]. The
natural metric on the space of finite signed measures, the total variation of measures,
is not well suited for a RIP analysis of the spikes super-resolution problems, as it does
not measure the spacing between Diracs. When using the RIP, fundamental objects
appear in the calculations: dipoles of Diracs. In this section we show that the typical
RIP implies a RIP on dipoles and their generalization.

Definition 2.3 (Kernel, scalar product and norm). For finite signed measures over RY,
the Hilbert structure induced by a kernel h (a smooth function from R x R* — R) is
defined by the following scalar product between 2 measures w1, Ty

<7T1,7T2>h:/ h(tl,tg) dﬂ'l(tl)dﬂ'Q(tg). (21)
Rd JRd
We can consequently define
w1l = (1, ). (22)
We have the relation
Iy + 2l = Imlli + 20w, m2)n + [Ima;- (23)
Measuring distances with the help of || - ||, can be viewed as measuring distances at

a given resolution set by h. Typically we use Gaussian kernels where the sharper the
kernel is, the more accurate it is.
The next definition is taken from [18].

Definition 2.4 ((e-)Dipole, separation). An e-dipole (noted dipole for simplicity) is a
measure ™ = a1y, — a0, where |[t; — tall2 < €. Two dipoles m = aidy, — axdy, and
To = a3, — a4y, are e-separated if their support are strictly e-separated (with respect
to the £2-norm on RY), i.e. if ||ty — t3]l2 > €, |[ta — t3]l2 > € and |[t; — t4|l2 > € and
Htg — t4”2 > €.

Compared to [18], we need to introduce a new definition.

Definition 2.5 (Generalized dipole). A generalized dipole v is either a dipole or a
distribution of order 1 of the form ai6: + ag(%m. Two generalized dipoles are e-separated
if their support are strictly e-separated (with respect to the £2-norm on R?).

In this article we use regular, symmetrical, translation invariant kernels. Most recent
developments to non translation invariant kernels [22] could be considered to generalize
this work, but they are out of the scope of this article for the sake of simplicity.

Assumption 2.1. A kernel h follows this assumption if

e h € C?(RY).



e h is symmetrical with respect to 0, translation invariant, i.e. we can write h(ty,ts) =
pl[t1 — tall2) where p € C*(R).

e there is a constant pp such that, for all two e-separated dipoles, (v1,v9)n <
wrllvalnllvelln (mutual coherence).

e h(0) =1 = max,cpa h(t), b, (0) = p'(0) =0, and h})(0) = p”(0) <O0.

Note that the assumption that h € C? guarantees the existence of integrals with
respect to finite signed measures and distribution of order 1 with bounded supports.

Example The now almost canonical well behaved kernel is the Gaussian kernel. From
[18], for € = 1, using ho(t) = e/(27%) with of = m, we have that hg follows

Assumption 2.1 with pp, = 4(,@?’_1).

We have the following properties.

Lemma 2.1. Let h be a kernel meeting Assumption 2.1. We have the following prop-
erties for any t € R:

I8¢l = p(0) =1 (24)

(¢, 01000 = —p'(0) =0 (25)

167,017 = 10"(0)] (26)

Proof. See Appendix A.2. O

From [18, Lemma 6.5], we have the following Lemma:

Lemma 2.2. Suppose for all two e-separated dipoles, (w1, m2)n < wllmi||nllm2lln (mutual
coherence). Then for k, e-separated dipoles w1, ...my such that max; ||m;|| > 0, we have

1S o il
S lmg St e @)

We can generalize the previous result to generalized dipoles.

1—(k—=1)u

Lemma 2.3. Let two e-separated generalized dipoles vy,1v5. Suppose for all two e-
separated dipoles 71,7, (w1, m2)n < p|lm1||nl|72||n (Mmutual coherence). Then we have:

(vi,v2)n < pllvaflnllvalln (28)
Proof. See Appendix A.2. O
A consequence of the previous result is the following Lemma:

Lemma 2.4. Suppose for all two e-separated generalized dipoles, (v1,v2)n < wllvi||nllvelln
(mutual coherence). Then for k e-separated generalized dipoles vy, ...vy such that max; ||v;|| >
0, we have

1S il
S Sl St e (29)

9

1—(k—1)u



Proof. See Appendix A.2. O

We are now able to define the Restricted Isometry Property (RIP). The secant set
of the model set ¥ is ¥ — X :={x —y:2x € X,y € X}

Definition 2.6 (RIP). A has the RIP on ¥ — X with respect to || - || with constant v if
forallz e ¥ — X%
(1= lzl* < Az] < (1 +7)] Az|*. (30)

In the following we will suppose that A has RIP v on ¥ . — X . with respect to
[ - [l e for 3° 4 pard, — 3,1 1 brds, € Xge — X e, We have

2 2
(I=7) Z (ard, — byds, ) < A Z (ardt, — brds, ) (31)
r=1,k h r=1,k 9
2
< (IT+9) Z ardt, — brds,
r=1,k h

From [18], with a Gaussian kernel h it is possible to build a random A with RIP
constant . With this choice of A, the ideal minimization (2) yields a stable and robust
estimation of xy with respect to the || - ||5.

In [7], stable recovery for e-separated Diracs on is guaranteed on the Torus with the
metric | Kp; * -||p1 where Kp;* is the convolution with a Fejér kernel. From [4, IV.A],
this guarantees a lower RIP with respect to this metric. Thanks to the inclusion of
LP-spaces on the Torus (LP C L9if 1 < g < p < 00), there exists a kernel metric || - ||,
(apply Lemma A.1 from the Annex on the Fejér kernel) that lower bounds || Kp; * -|| 11
for sums of Diracs. This guarantees the existence of a lower RIP with respect to a kernel
metric for the conventional deterministic spike super-resolution setting.

The RIP on X . — ¥ . implies a RIP on e-separated generalized dipoles.

Lemma 2.5 (RIP on generalized dipoles). Suppose A has the RIP on ¥y  — X,  with
constant . Let (Vy)r=14, k €-separated dipoles supported in rintBa(R) , we have

2 2 2

A=Y w|| <A w)| <A+0| D w (32)

r=1,k h r=1,k 9 r=1,k h
Proof. See Appendix A.2. O

Finally, we will need a last estimate. To state it, we need first to introduce the
following definition:

Definition 2.7. Let A such that the oy are in C*(B2(R)). We define

DA,R = sup |a2:v7w (t)|2 (33)
1<I<m,veBa(1),weB2(1),t€B2(R)

The constant D4 g is finite, and it is thus a bound of the directional second derivatives
of the aq over Ba(R).

10



Lemma 2.6. Let A such that the oy are in C?(By(R)). Then, for any t € Ba(R), with
directions vy, vs, we have

At 0y woll2 < VMmDag. (34)
where D4 g is defined in Equation (33).

Proof. See Appendix A.2. O

2.4 Control of the conditioning of the Hessian with the restricted
isometry property

We can now give a lower (resp. upper) bound for the highest (resp. lowest) eigenvalues
of the Hessian matrix H of g (computed in Proposition 2.2).

Theorem 2.1 (Control of the Hessian). Let 6 = (a1,..,ax,t1,..ty) € O with t €
rintBa(R) and 6* € O a minimizer of (4). Suppose h follows Assumption 2.1. Let H
the Hessian of g at 8. Suppose A has RIP vy on X — X . We have

sp T Hu < 20151+ (k= D) max(L (@ O s £ (9
Jnt T Hu 2 2(1=9)(1 = (k= Dp)min(L, @0 O ) ~ € (36)

where § = 2(d+1) max(max, |a,|vmDa,r, vT+ 710" (0)) (| Ad(0) — Ap(07) |2+ [le]]2),

the constant D g is defined in (33) and e is the finite energy measurement noise.

Proof. See Appendix A.3. O

Remark 2.1. Notice that, in the noiseless case, (36) ensures in particular that g has a
positive Hessian matriz in 0*. Moreover, if min, |a,| > 0, there exists a neighbourhood
of 6%, in which g remains convex. We will give an explicit size for this neighbourhood in
the next section. Notice also that (35) gives an upper bound on the Lipschitz constant of
the gradient of g. This implies the existence of a basin of attraction (see Definition 1.3)
with a uniform bound for the step size.

Remark 2.2. With the method to choose A from [18, Lemma 6.5], for any v and
m 2> k2dpolylog(k,d)/+?, we can find A that has RIP with high probability with kernel
ho having the right properties.

We can control the conditioning of the Hessian matrix x(H) at a global minimum as
the term [|A@(0) — Ap(0*)||2 vanishes in the control from Theorem 2.1. Particularly, in
the noiseless case we have the following Corollary. The lower bound is useful to confirm
the dependency on the ratio of amplitudes when it converges to +oo. For this next
result, we make the additional assumption that min, |a,| > 0. In practice, this amounts
to assuming that when estimating the Diracs, we do not over-estimate their number
(which will often be the case, in particular in the presence of noise). When the number
of Diracs is overestimated, the minimizers of (4) are points that are not isolated, the
notion of basin of attraction would have to be generalized to a basin of attraction of a
set of minimizers (when a, = 0, g(#) does not depend on ¢,), which is out of the scope
of this article for clarity purpose.

11



Corollary 2.1. Let g = Er:l,k ardy, € e = ¢(6p) and e = 0. Suppose h follows
Assumption 2.1. Let H the Hessian of g at 0. Suppose A has RIP vy on Xj . — S,
and that min, |a,| > 0. We have

(1 =) max(1, (a]p" (0)])r=1,)
(1 +~) min(1, (a2|p"(0)])r=1,1)

Proof. See Appendix A.3. O

It is easy to see that for a noise e with small enough energy (i.e. such that £ is
strictly lower than 2(1 —«)(1 — (k — 1)p) min(1, (a2|p”(0)|)=1,), if min, |a,| > 0, then
the Hessian at a global minimum is strictly positive. Of course, this may require a very
small noise since the ratio of amplitudes at the global minimum can be large.

Remark 2.3. We remark that for a same maximal ratio of amplitudes in 0%, a better
conditioning bound is achieved when max,—1;a2|p”(0)| > 1 > min,—q,a%p"(0)]. We
attribute this to the fact that we estimate amplitudes and locations at the same time.
The amplitudes must be appropriately scaled to match the variations of g with respect to
locations. Intuitively, alternate descent with respect to amplitudes and locations might
be better than the classical gradient descent for easily setting the descent step.

Remark 2.4. As g is C2, ensuring the strict positivity of the Hessian at the global
minimum guarantees the existence of a basin of attraction as emphasized in Section 1.3.
In the next Section, we give an explicit formulation of a basin of attraction.

3 Explicit basin of attraction of the global minimum

Let §; € RY. Can we guarantee, for some notion of distance d, that d(f;,6y) < C and
01 # 6y, with C' an explicit constant, implies Vg(0;) # 0 ? The following theorems show
that it is in fact the case. With a strong RIP assumption, we can give an explicit basin of
attraction of the global minimum for minimization (4) without separation constraints.

3.1 Uniform control of the Hessian

In the noiseless case, a global minimum 6* of the constrained minimization of g over
O, is also a global minimum of the unconstrained minimization because g(6#*) = 0. In
the presence of noise, we can no longer guarantee that the minimizer of the constrained
problem 6* is a global minimum of the unconstrained problem. However, the shape of
the constraint guarantees that it is a local minimum (see next Lemma).

Lemma 3.1. Suppose 0* = (ay,..,ak,t1,..,tx) is a result of constrained minimiza-
tion (4) with t; € rintBs(R). Then 6* is a local minimum of g.

12



Proof. let 0* = (a1, ..,ak,t1,..,t;). As for all i # j, |t; — tj] > €, there exists n > 0 such
that for all @ = (b1, .., bk, s1, .., Sg) such that |s; —t;| < n, we have § € Oy .. Hence,
0" + B (1) C Ok, and 6 € argmingeg-1 . () 9(0)- O

Hence we can still calculate a basin of attraction of 8* (for the unconstrained mini-
mization). The expression of the basin in the next Section is a direct consequence of the
following Theorem that uniformly control the Hessian of ¢ in an explicit neighbourhood
of 6*.

Theorem 3.1. Suppose A has RIP v on Ek,% — Ek,% and that h follows Assumption 2.1
and has mutual coherence constant p on §-separated dipoles. Let 6* = (ay, .., ax, t1, .., tx) €
Ok, be a result of constrained minimization (4) such that t; € rintBa(R). Suppose
0 < |a1| < lagl... <lag|]. Let 0 < B <1 and

Ageg e ={0 = (b1, .., bg, 51, 5%) -

bi(ss- - 15 i 38
sign(t) = sign(an), 000l g oy < €y

If 6 € A9*7B’i, then H the Hessian of g at 0 has the following bounds :
sup w” Hu < 2(1+)(1 + (k — 1)) max(L, (Jax (1 + 5))?[p"(0)])) + &; (39)

flull2=1

||ui|Ef:1uTHu >2(1 =) = (k= Dp)min(L, (jar|(1 = B))*[p"(0))) =€ (40)

where € = 2(d+1) max(|ax|vmDar, vVI+7V10"(0)) (subgen, , . [[46(0)—Ad(6")]2+

llel|2), the constant D4 g is given in (33) and e is the finite energy measurement noise.
Proof. See Appendix A.4. O

Remark 3.1. We observe that we require a stronger RIP than the usual one on Xy, . —
Yk, to guarantee that unconstrained minimization converges in the basin of attraction
Ag* B €.

b 74

When the separation constraint is added for the basin of attraction (we look for
potential critical points in ¥y (), we can provide better bounds. We will discuss what
we could expect from constrained descent algorithms in Section 4.

Theorem 3.2. Suppose A has RIP v on Xy . — X and that h follows Assumption 2.1
and has mutual coherence constant . on e-separated dipoles. Suppose 0 < |a1| < |ag|... <
]ak].

Let 6* = (a1, ...,ap,t1, ..ty) € O be a result of constrained minimization (4) such
that t; € rintBa(R). Let 0 < <1 and

A@*,B,oo = {9 = (bl, ..bk,sl, ..Sk) :

; - bids, — aily, (41)
sign(v) = sign(as), 122 =0l gy

13



Then for 6 € O N Ao+ g o, then H the Hessian of g at 0 has the following bounds:

| SﬁlliluTHu < 2(1+ 7)1+ (k — ) max(1, (|ag| (L + 8))*[p" (0)])) + &; (42)

||ui|ﬁf:1“THu >2(1=7)(1 — (k= Du)min(L, (jar|(1 = B))*[p"(0))) =€ (43)

where & = 2(d+1) max(|ax /M D,V TF 37O (Supgen,. , _ [146(0)— Ad(67)]l2-+

llel|2), the constant D4 g is given in (33) and e is the finite energy measurement noise.

Proof. See Appendix A.4. O

3.2 Explicit basin of attraction in the noiseless and noisy case

With the help of this uniform control of the Hessian we give an explicit (yet suboptimal)
basin of attraction.

Corollary 3.1 (of Theorem 3.1, noiseless case). Under the hypotheses of Theorem 3.1,
let 0 € Oy be a result of constrained minimization (4).

o (1-9)(1— (k= 1)) min(L.Jas 20" (0)|/4)
Take f < imaw where e = min (2’k<d+1>|ak|mmax<ak|fm T/ 177 (0) )

Then the set Ng- 5./4 is a basin of attraction of 6*.

Proof. See Appendix A.4. O

The parameter 8 controls the distance between a parameter and the optimal param-
eter as [|bds —ady[[j;, = (b—a)® +2ab(1— p(||s —t]|2)) = min((b—a)?, 2]ab(1 - p(||s —t]2))
when sign(a) = sign(b). When the RIP constant v decreases (and generally as the
number of measurement increases), the size of the basin of attraction increases. When
the mutual coherence constant i decreases, the basin of attraction also increases. Fi-
nally, we note that the smaller § is, the smaller is the upper bound on the operator
norm of the Hessian.

When the noise contaminating the measurements is small enough, we have similar
results with a smaller basin of attraction.

Corollary 3.2 (of Theorem 3.1, noisy case). Under the hypotheses of Theorem 3.1, let
0* € O be a result of constrained minimization (4). Suppose |e|| < klak|Bmazr where
8 — Loin (L (1= (A= (k=1)p) min(1,|as[*[p” (0)[/4)

a2 27 k(d+1)]ag| (14+/TF7) max(jax | VmDa, r, v/ TF74/ 107 (0)])
Take B < Bumax- Then the set Ao« g /4 is a basin of attraction of 6*.

Proof. See Appendix A.4. O
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4 Towards new descent algorithms for SR estimation?

We have shown that, given an appropriate measurement operator for separated Diracs,
a good initialization is sufficient to guarantee the success of a simple gradient descent.
Moreover the gradient descent can be used as a refinement step in the greedy heuristic
based on orthogonal matching pursuit [19]. If we could guarantee that greedily esti-
mating Diracs, we fall within the basin of attraction, we would have a full non-convex
optimization technique with guarantees of convergence to a global minimum.

In other works [14, 15], it has been shown that discretization (on grids) of convex
methods have a tendency to produce spurious spikes at Dirac locations. Our results
seem to indicate that merging spikes that are close to each other when performing a
gradient descent might break the barrier between continuous and discrete methods.

Theorem 3.2 brings another question as the Hessian of g is more easily controlled
in O . More generally, can we build a simple descent algorithm that stays in ©j . to
get larger basins of attraction? Consider the problem for d = 1 in the noiseless case for
the sake of clarity. We want to use the following descent algorithm:

Oiv1 = Po, (0: — 7V g(0;)) (44)

Where Pg, . is a projection onto the separation constraint. Notice that since O is
not a convex set, we cannot easily define the orthogonal projection onto it (it may not
even exists).

If we suppose that the gradient descent step decreases g (i.e. g(0;—7Vg(6;)) < g(6:)),
is it possible to guarantee that applying projection step keeps decreasing g7 Consider:

Po,.(0) € arg min [[|A¢(8) —yll2 — | A6(6) — yl2| (45)

9€®k7€
First consider the following Lemma:

Lemma 4.1. Let d = 1. Let 09,01 € O . Let g(0) = ||Ap(0) — Ad(0o)||. Then for all
a such that 0 = g(0y) < a < g(6h), there exists 0 € Oy, such that g(6*) = .

Proof. See Appendix A.5. O

Lemma 4.1 essentially guarantees that is is possible to continuously map the interval
[0,9(61)] by g with elements of O .. Hence, at a step i + 1, we have

19(0i1) — 9(0:)] = |9(0; — 7V g(0:)) — g(6;)]. (46)

The projection Pg, . defined by (45) is not easy to calculate (in fact, it is a similar
optimization problem as the main problem). Other more "natural” projections on Oy
could be defined as :

Po,.(6) € 6 (arg_inf | Az~ A6(0)]) (47)
or

Po,,.(6) € 67 (arg_inf o = o(0)]n) (48)

€
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However they suffer from the same calculability drawback. This suggests to build a
new family of heuristic algorithms of spike estimation where we propose heuristics to
approach the projection of éi+1 on O .. Recovery guarantees would be obtained by
guaranteeing that the projection heuristic does not increase the value of g by too much
compared to the gradient descent step.

A  Annex

A.1 Proofs for Section 2.2
Proof of Proposition 2.1.

m k
dg(0) 0 ,
9a, O ; ;a’o‘l(t’) Y
m k (49)
= Z 2Re | ay(tr ;) Z aioy(ti) — yi
=1 =1
= 2Re(Ady, , Ap(0) — y)
Similarly,
9g(0) 9 | i
g\v) _ 9 . _
o, — oL, > Zazal(tz) Y
: =1 i=1
m k (50)
= Z 2Re | a,0j0y(t;) Z aiay(ti) —yi
1=1 i=1
= —2a,Re(Ady, ;, Ad(0) — y)
O
Proof of Proposition 2.2. For Hy , g,
dardas — Oas B R P A
=1 i=1 (51)
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For H27T7j1 ENPE

9%g(0) R
= 2Re | a,0j, ay( a;oy(
Oty Ots s Ols;, l; iealt Z o

= Em: 2Re (arajlal(tr) <a58j2al(t5)>> (52)
=1
+ 1(r Z 2Re (arajzaﬂa, (Z a;oy(t ) ) .
=1

FOI' H1277"7S,j

=1
= Z 2Re (al(tr) (asajal(t8)> (53)
=1
m k
+1(r =s) Z 2Re (ajal(tr) (Z aioq(t;) — yl) )
=1 1=1
O

A.2 Proofs for Section 2.3

Proof of Lemma 2.1. Using the assumption,

5 = [ [ olles = tal)dsit) dsuea)) = [ ol = tll) déi(e2) = l0).  (54)

With the fact that [ f(t)ddy, ,(t) dt = —f;(to), we have

(60,800 = / / plltr — tall2) d6y(t1) AL (t2) = / oIt — tall2) A8, (t2)
R4 JRA Rd

(55)
= [, ol — ) 45, )
Rd
Hence (0, 0y)p, = — lim,_,q+ Lllol)=p©) —p'(0) = 0.
Let £+t — £(t) = p([[t]2).
5 = [ [ ot = tal) a0 (0) a8 02 == [ £l =) a8 0. (50)
Hence |18, 12 = — £2(0) = 6" (0)]. O

17



Proof of Lemma 2.5. Let two e-separated generalized dipole vq, 5. The v; are the limit
(in the distributional sense) of a family of e-separated dipole v;" for n; — 07. With the
hypothesis, we have

W v n < il allvs® [l (57)

Furthermore,
= [ [ ol = tall) () 1) 53)
Remark that by construction fy, (ta) := [pap(llt1 — tall2) dvf" (t1) = o+ f(t2) =

Jga p(lt1 = t2]|2) dvi(t1) < +o00 where fy, is inC? and f is C' thanks to the assumption
on h and p. Hence by boundedness of the integrals and the dominated convergence

theorem, for any 79
W v =m0t (V1 V8 )he (59)

Moreover, by construction of v3?,

(v, v ) = /Rd ft2) dv? (t2) =0t /Rd f(t2) dva(t2)

(60)
:/ / ot — tall2) dun (1) dua(ta),
R4 JRA

and
W VP ) =m0+ oot (Y1, V2)h (61)

Let v = ady + bd;,, with [|v[l = 1 and 7 = ady — bétﬂig_ét = <a+ %) o — bét*T””.
We have ||v||2 = a® + b?|p”(0)| (with Lemma 2.1) and

it (8 () o) o
=a+2 <%>2+2%b —2a—bp(77) -2 <é>2p(n) (62)
= a4+ 2221 = pla) + 275 (1~ pla),

But 1_2(77) = p(o);p(") — —p/'(0) when n — 0T, and p/(0) = 0.

Moreover, p(n) = h(0) + np'(0) + %p”(()) +o(n?) =1- —]p (0)] + o(n?). Hence

1—
A —ps0r 3107 O)]

We thus deduce that [|[v7]|7 — a2 + b%[p”(0)| = ||v||n when n — OF.
Hence we can take the limit 7;,7m2 — 0 in Equation (57) to get the result.

O

Proof of Lemma 2.4. Using Lemma 2.3, and the same proof as in Lemma 2.2, we get
the result.
O
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Proof of Lemma 2.5. Let v, = a,d;, + br(ﬁhv the e-separated generalized dipoles. Simi-

larly to Lemma 2.3, take vy = (a + %)5“, — bét*%. For sufficiently small n the v, are
e-separated dipoles, hence Y 1,/ € ¥ — X and

2 2 2

C=|[ D v <||AS v <@+ || > v - (63)

r=1,k h r=1,k 9 r=1,k h

Now remark that gi(n) = [| 32,1 4 v/||2 and go(n) = A =1k v)||3 are continu-
ous functions of 7 that converge to || 3, _; (ard:, + b6}, )17 and A, =1 x(ard, +
b6}, ,))|I3 when 1 — 0:

e For g, use the same proof as in Lemma 2.3 with the linearity of the limit.

e For go:
2

— Z Z/ Y(a, ddy, (t) — %(détr-l-nv(t)_détr(t)))

I=1m |r=1k

2

= - — Oé tr +nv) — oyt

palbo) (wate (0 0) — 1))

2
-0+ Z Z (al(tr)ar _br(al);(tT))
I=1m |r=1k
9 2

=3 1Y [ a®)ado, () +bdsy ()] =|[ACD @by, + 0,9 )

I=1,m |r=1,k r=1,k 9
(64)
Taking the limit of Equation (63) for n — 0 yields the result.
O
Proof of Lemma 2.6. We have
HA(Sto V1, ’U2H2 Z | A(Sto , V1,02 l|2
I=1,m
= Z |Oé2/,t(),1)17’l)2 (to)g (65)
I=1,m
<m  sup |af, ., (05 <mDig

I=1,m;teB2(R)
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where D4 g is given in (33), i.e. D4 g is the supremum of directional second deriva-
tives of the a; over By(R). We have D4 p < 400 because the o; are supposed to be in

C*(By(R)).
O

Lemma A.l. Let K be a symmetrical convolution kernel in C?> and hy - (t1,t2) —
hi(t1,t2) = [K*K|(t1 —t2) (the convolution of K by itself) then for any x € Xy — Xk,
we have

)7, = 1K =272 (66)
Proof of Lemma A.1. Write x = > a;0, and use the symmetry of K:

| K * |32 :/‘ZaiK —Zaiaj/K(t—ti)K(t—tj)dt
i,J
= Z a;Q; /K(t)K(t +t; — tj) dt (67)
i,J
= > aia[K = K]t — ;) = |27 .-
i,J

A.3 Proofs for Section 2.4

We will use the following Lemma on directional derivatives of Diracs.

Lemma A.2. Let u,tg € R%. Suppose u# 0. Then , >._, auidy, = [lul[20;

O u
ullz

Proof. Let f a function in C?(R%), we have [,_pq f(t )ZZ 1qwidoy (1) = =301 qui0if(to) =
—(ui, V f(to)) = —HUH2f"‘ﬁ2(to)' Hence, 3;_; 4 uibh ; = |[ull20] . O

Mull2

To prove Theorem 2.1, we control first the eigenvalues of G in the decomposition
H=G+F.

Lemma A.3. Suppose h follows Assumption 2.1. Let § = (a1, .., a, t1,..ty) € O with
t € rintBa(R). Let H the Hessian of g at 0. Suppose A has RIP vy on ¥ — X .. We
have

s G 20 4+9) (1 (k= D) ma(, 6216 (0))r=10) (68)
Jn " Gu > 2(1 = )1 (k — Dy min(L, (@216 (0) 1) (69)

where G is defined in Proposition 2.2.
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Proof. Let u € R¥(@+1) such that ||ul|; = 1. We index u as follows: u, € R for r = 1, k.
u, € RY for r = k + 1,2k (it follows the indexing of H and G we used). Remark that

T
u Gu = E urusGl,T’,S + E urvj1u57j2G27r7j1’S7j2
rs=1k r=k+1,2k;j1=1,d;s=k+1,2k;jo=1.d
+ g urus,jG12,r,s,j + Z uT7ju8G217T7j75
r=1,k;s=k-+1,2k;j=1,d r=k+1,2k;j=1,d;s=1k
=2 g Re(Au,04,, Ausdy, )
r,s=1,k
/ !
+2 E Re(Au,j, r 0,y 1> Als o0k, jy)
r=k+1,2k;j1=1,d;s=k+1,2k;jo=1,d
!
—2 E R€<Aur5tr,Aus,jas—k5t57k7j>
r=1,k;s=k+1,2k;j=1,d
!
_2 E R6<Aur7jar_k5t'r'7kvj’ Au85t8>
r=k+1,2k;j=1,d;s=1,k
(70)
Thus we have
9 2
Tr, _ E : , !
u Gu =2||A updy, || +2||A Z ur,]ar—kétrfk,j
r=1,k 9 r=k+1,2k;j=1,d 2
!/
—2R€ A E u’f‘(str b A : u/r7ja‘r_k5t'r7k7j
r=1k r=k+1,2k;j=1,d
!/
—2Re( A E Ur jOr—k0p, _, j> A Z Urdt, (71)
r=k+1,2k;j=1,d r=Lk
2
_2 A E ur(str - E ur:] ar_kétrfk: J
r=1,k r=k+1,2k;j=1,d 2
2
- !/
=2(|A| > wd—ar Y w6,
r=1,k Jj=1d 2
. o /
Using Lemma A.2, we have Zj:l,d wﬁthj = HwH25tr,H15”“2 and
2
T !/
u'Gu =24 (urbt, —ar|lurrill20,  win )| - (72)

AN]
T’:l,k ““7“+k:“2
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We use the lower RIP in Lemma 2.5,

2
u’ Gu > 2(1 - 7) Z (ur(str_ar||ur+k”25; Urik )
r—1,k " My g T2
Then the hypothesis on || - ||, and Lemma 2.4 yields
[ Z (ur&tr—ar”ur+ku25;ﬂ Utk )”]2'1,
7‘:1,k 7“ur+k 2
> (1= (k—1p) Z ”ur‘str-_aruur-l—k”25; Urtk H%L
r=1.k "My gll2
and
TGu>2(1—y)(1— (k-1 S, — § 2
u' Gu =21 —7)(1 = (k—1)p) l[wrdt, —ar|[trikll28, win i
syt " Tap g kll2
>2(1—7)(1 = (k= 1)) D <|url2—2arurIIUk+r||2<5tr,5; ek o
r=1,k e trllz

Faluesr 319, e IR).
MMupykell2

Then using Lemma 2.1:

u"Gu > 2(1=)(1 = (k= Dp) Y (lurl* + af s3]0 (0)])
r=1,k

2201 =)A= (k= D) inf D (furl’ + e 3a7lo” (O)])
T r=1k

=2(1 = 7)(1 = (k = D)) min(1, (a7[p" (0)])=1.)-

Similarly, using the upper RIP in Lemma 2.5:
u'Gu < 2L+ D (b, + arlluriull28],  wes )3
r=1,k " My g T2
Then the hypothesis on || - || yields (Lemma 2.4)

1S (urdy, + urinard;)|3
r=1,k

<A+ (k-1p) Z w6, + ar’Hur-l—k”25; Urtk H%

T
r=1,k llup 4 kll2
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and

uf'Gu <2(1+75)(1+ (k- 1)p) Z [[urdt, + ar”ur+kH25;T w3 (79)

b
r=1k lTep g ll2

Then using Lemma 2.1:

u"Gu <21+ 7)1+ (k=) > (Jurl* + afurs+ 310" (0)])
r=1,k

<2(1+7) 1+ (k—1p) e > (el + lluksrl3a21p"(0)])  (80)
ull2=1,_ 1,k

=2(1+ 7)1+ (k — D) max(L, (a7]p"(0))r=14).
O

Proof of Theorem 2.1. Let 8* a minimizer of (4). Consider H the Hessian of g at §. We
recall that H = G+ F (see Proposition 2.2). Using Lemma A.3, we just need to bound
the operator norm of F' and then to combine it with the bounds on the eigenvalues of
G to get bounds on eigenvalues of H = G + F.

We use Lemma 2.6, the Cauchy-Schwartz and triangle inequalities. We have [[Ad; ; . [2 <
vVmD 4 g and

[ Forjis.ga| < 1(r = 8)[2ar[[|AGE, 5, 5, 2]l Ad(0) — ylla-
< 1(r = s)2|a;|VmDa gl Ad(0) — ylla- (81)
< 1(r = s)2|ar[v/mDa,r|[A¢(0) — Ap(07) + Ap(0") — y| 2.
< 1(r = s)2[ay[vVmDar(||[Ad(0) — Ap(07) 12 + |lell2).
Similarly, with Lemma 2.5,
F12,r EN < ]- 7" =S 2\/ 1+ ||5£0,] |h||A¢ ) - yH2 (82)
< 1(r =5)2/1+9V|p"(0)[([[A(0) — Ad(67)]|2 + [[e]]2)-
Let || - [|op be the £2 operator norm of a matrix. With Gerschgorin circle theorem [17],
we have
1 llop < max ||y ]lx (83)
where Fj . is the [-th row of F'. We get
[Flop < max(dma;c [Fi2,r,s.51, ma;< [Fi,rs,] + drljllla}§2 [Fo,r 15,52 )
< 2(d + 1) max(max | Fig s |, max |Frjisl)(|AS(0) — AS(07)]l2 + llel2)
< 2(d + 1) max(max |ay[v'mDa g, /1 + 710" (0)) ([ A¢(0) — AG(67) ]2 + llell2)
(84)
Hence, using Weyl’s perturbation inequalities on H = G + F, i.e. A\pin(H) >
Amin(G) = Amaz(F) and Aoz (H) < Mgz (G) + Apaz (F), we get the result. O
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Proof of Corollary 2.1. First, observe that at 6y, F' = 0.

The upper bound is a direct consequence of Theorem A.3.

We show the result in the case max(1, (a2|p”(0)]),=1,) # 1 and min(1, (a2[p”(0)|)r=1,1) #
1 (the proof is similar in the other case). For the lower bound let v € RF(4+1) and
io = argmax,—1(a2|p"(0)]), set ||vy|l2 = 1 and v; = 0 for j # io.

” s|1|1p1uTHu > v Hv > 2(1 — y) max(1, (a2]p"(0)])r=1,)- (85)
ulla=
Similarly, let v € R*(H1) and iy = argmin((a2|p”(0)])r=14), ||vio]] = 1 and v; = 0 for
J # io.
i Hu < 201 ) min(L, (@) 0)) ) (36)
U

A.4 Proofs for Section 3

Proof of Theorem 3.1. Let 0* = (a1, ...,ak, t1,..t;) € O the global minimum of g and
0= (by,...,bg, $1,..5k) € Ag*ﬁ&. Hence for all j, [s; —¢;| < §. Hence for i # j we have
’Si—Sj‘ = ‘Si—ti—f‘ti—tj—l-tj—sj" > ’ti—tj‘ — \ti—si] — ‘tj—Sj‘ > 6—26/4 :6/2
and ¢(0) € Xy <.
We use Theorem 2.1 to get the bound on the min and max eigenvalues of the Hessian.
We then notice that:

lady — b3 7, = a® (|07, + b*[16¢ 17 — 2ab{d:, 0s)n
— a? 45— 2abp(]s — ]2) (87)
= (b—a)* +2ab(1 — p(||s — t]2))
Hence we see that ||ad; — bds||n/|a| < B is equivalent to

(b= a)® + 2ab(1 — p(||s — tl|2)) < a*5” (83)

and it therefore implies that ||b] — |a|| = [b — a| < |a|B when sign(a) = sign(b). We
thus deduce that |a|(1 — 3) < [b] < |a|(1 + B). Hence, for any r, we get the following
inequality:

jaa[(1 = B) <lar[(1 = B) < [br] < lar|(1+ 5) < |ax|(1+5) (89)

We can then plug these inequalities into the one of Theorem 2.1.
Finally we notice the fact that suppes,. , , | Ap(0)—Ap(07) |2 exists because Ag« g /4
is bounded.
]

Proof of Theorem 3.2. This is a direct consequence of Theorem 2.1. The proof follows
the same lines as the one of Theorem 3.1. O
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Proof of Corollary 3.1. The set A = Ag« g/4 is an open set where the Hessian of g at
A is positive as long as ¢ < 2(1 —)(1 — (k — 1)) min(1, (lar|(1 — B))?|p”(0)|) with
Theorem 3.1.

In this case g is convex on A. Theorem 3.1 also gives a uniform bound for the operator
norm of the Hessian: ||[H ||, < 2(1 +7)(1 + (k — 1)p) max(1, (Jax|(1 + B))?]p"(0)]) + &
and g has Lipschitz gradient. We thus deduce from Corollary 1.1 that A is a basin of
attraction.

Hence we just need to show that ¢ < 2(1—v)(1—(k—1)u) min(1, (|ai|(1—-3))2|p"(0)]).
Let 6 € A, we have, with the RIP hypothesis

§(0) == 2(d + 1) max(max|a,|[VmDa g, I+ 7/ O))| A6(6) — Aé(67)|l2
< 2(d+ ) max(lalvmDar: 1+ 719" 0Dk sup [ A(bids; — aide,)ln
< 2(d+ 1) max(laxl VimDag, T+ 3V ODkV/T+ 750 [0ids, = aidr,
< 2(d + 1) max(|ar|v/mDa g, v/1+ V10" (0)) /1T + 75l ax|

where we wrote 60* =Y. a;0;, and 0 =), b;jds, such that |s; —t;| < €/4. The fact that
B < 1/2 implies

(90)

£(9) < 2k(d + Dar| T+ ymax(|ax|vmDa,r, VT + 710" (0))S
min(1, a1 [2(1 = 8)?[p"(0)]) ~ min(1, |a; [*[p"(0)]/4) -

(A=) (A= (k=1)p) min(1,]a1 [*|p"(0)|/4) we
ak|vI+y max(lag |vmD a,r,v/IH74/ 10" (0)])

. . <
Hence using the hypothesis that § < pre)

have

£(6) < 2(1 = )(1 — (k — Dp) min(1, (|a1|(1 — 8))?|p" (0))). (92)
O

Proof of Corollary 3.2. The set A = Ag- g /4 is an open set where the Hessian of g at
A is positive as long as ¢ < 2(1 — 7)(1 — (k — 1)) min(1, (lar|(1 — B))?|p”(0)|) with
Theorem 3.1.

In this case g is convex on A. Theorem 3.1 also gives a uniform bound for the operator
norm of the Hessian: ||[H ||y < 2(1 4+ 7)(1 + (k — 1)p) max(1, (Jax|(1 + B))?]p"(0)]) + &
and g has Lipschitz gradient. We thus deduce from Corollary 1.1 that A is a basin of
attraction.

Hence we just need to show that & < 2(1—v)(1—(k—1)x) min(1, (Ja1|(1—3))?|p"(0)]).
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Let 0 € A, we have, with the RIP hypothesis,
£(0) := 2(d + 1) max(max a, |vmDa,r, V1T + 710" (O))) (1 46(8) — Ab(67) 2 + llell2)
< 2(d + 1) max(lag|vVmDa,r, /1 +7/]0"(0)]) (k sup || A(bids; — aid)lln + llef2)
< 2(d + 1) max(|ag|v/mDa g, /1 +7V/]p"(0)]) (ky/1 + vsup [[bids, — aidi.||n + flell2)

< 2(d + 1) max(Jaxlv/mDa,r, 1 + 710" (0)]) (ky/1 +7Blar] + |le2)

(93)

where we wrote 0* =Y. a;0;, and 0 =), b;jds, such that |s; —t;| < €/4. The fact that
B <1/2 and |le||2 < kB|ak| implies

£(9) < 2k(d + Dlag|(1 + VT + ) max(lag|v/mDa,r, VT +7v1p"(0))B

min(1, [a1 (1 — B)?[p"(0)| ~ min(1, a1 [?]p”(0)]/4)

(94)
: : (=) (1= (k=1)p) min(1,|a1|?|p" (0)| /4)
<
Hence using the hypothesis that 8 < @ Dlar | (+viT) max(as DAy T O we
have

£(0) < 2(1 —)(1 = (k= Dp) min(1, (jar|(1 = 8))[0"(0)]) (95)
O

A.5 Proofs for Section 4

Proof of Lemma 4.1. Remark that g(f) does not depend on the ordering of the posi-
tions. Reorder 0y = (a,t) and 6, = (b, s) such that t; < t3... < tx and s1 < sg... < sj.
Consider the function g1(A) = g(6)) with 8y = (1 — A)fy + A\0;. Remark that ¢; is a
continuous function of A taking values ¢1(0) = g(6p) and g1(1) = ¢g(61). Hence, with the
intermediate value theorem, there is A such that g(6)) = ¢g1(\) = a. Moreover, denoting
0\ = (ax,ty), we have, using the sorting of t and s, for 1 <i < k,

|t>\,z’+1 - t>\,i| = [(1 = Ntir1 + Asip1 — (1 — Nt — Asy

96
= (1= N|tix1 — ti| + Alsiz1 —si| > (1 = Ne+ de =€ (96)

Hence 0 € O . O
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