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Abstract

The sparse spike estimation problem consists in estimating a number of off-the-
grid impulsive sources from under-determined linear measurements. Information
theoretic results ensure that the minimization of a non-convex functional is able
to recover the spikes for adequatly chosen measurements (deterministic or ran-
dom). To solve this problem, methods inspired from the case of finite dimensional
sparse estimation where a convex program is used have been proposed. Also greedy
heuristics have shown nice practical results. However, little is known on the ideal
non-convex minimization to perform. In this article, we study the shape of the
global minimum of this non-convex functional: we give an explicit basin of attrac-
tion of the global minimum that shows that the non-convex problem becomes easier
as the number of measurements grows. This has important consequences for meth-
ods involving descent algorithms (such as the greedy heuristic) and it gives insights
for potential improvements of such descent methods.

1 Introduction

1.1 Context

Sums of sparse off-the-grid spikes can be used to model impulsive sources (e.g. in
astronomy, miscroscopy,...). Measuring and estimating such signals is known as the
super-resolution problem [6]. In the space M of finite signed measure over Rd, we aim
at recovering x =

∑

i=1,k aiδti from the measurements

y = Ax0 + e, (1)

where δti is the Dirac measure at position ti, the operator A is a linear observation
operator, y ∈ C

m are the m noisy measurements and e is a finite energy observation
noise. Recent works have shown that it is possible to estimate spikes from a finite
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number of adequately chosen measurements as long as their locations are sufficiently
separated, using convex minimization variational methods in the space of measures
[5, 9, 11]. Other general studies on inverse problems have shown that an ideal non-convex
method (unfortunately computionally inefficient) can be used to recover these signals as
long as the linear measurement operator has a restricted isometry property (RIP) [3]. In
the case of super-resolution, adequately chosen random compressive measurements have
been shown to meet the sufficient RIP conditions for separated spikes, thus guaranteeing
the success of the ideal non-convex decoder [15]. Greedy heuristics have also been
proposed to approach the non-convex minimization problem and they have shown good
practical utility [16, 17, 21].

While giving theoretical recovery guarantees, the convex-based method is non-
convex in the space of parameters (amplitudes and locations) due to a polynomial
root finding step. Also, it is difficult to implement in dimensions larger than one in
practice [10]. Greedy heuristics based on orthogonal matching pursuit are implemented
in higher dimension (they can practically be used up to d = 50), but they still miss
theoretical recovery guarantees [16]. It would be possible to overcome the limitations
of such methods if it were possible to perform the ideal non-convex minimization:

x∗ ∈ argmin
x∈Σ

‖Ax− y‖2 (2)

where Σ is a low-dimensional set modeling the separation constraints on the k Diracs.
While simple in its formulation, properties of this minimization procedure have not yet
been thoroughly studied.

In this article, as a first important step towards the understanding of the non-convex
sparse spikes estimation problem (2), we study its formulation in the parameter space
(the space of amplitudes and locations of the Diracs). We observe that a smooth non-
convex optimization can be performed. We link the RIP (guaranteed by a finite number
of measurements) of measurement operators with the conditioning of the Hessian of the
global minimum, and we give explicit basin of attractions of the global minimum. This
study has direct consequences for the theoretical study of greedy approaches. Indeed
a basin of attraction permits to give recovery guarantees for descent methods (the
initialization must fall within the basin), since the gradient descent is a step in the
iterations of the greedy approach.

1.2 Parameterization of the model set Σ

Let Σ ⊂ M a model set (union of subspaces) and x0 ∈ Σ. Let f(x) = ‖Ax− y‖2.
Definition 1.1 (Local minimum in Σ). The point x is a local minimum of f in Σ if
there is ǫ > 0 such that for any x′ ∈ Σ such that ‖x− x′‖ ≤ ǫ, we have f(x) ≤ f(x′).

Definition 1.2 (Parameterization of Σ). A parameterization of Σ is a function such
that Σ ⊂ φ(Rd) = {φ(θ) : θ ∈ R

d}.
We consider the problem

θ∗ ∈ argmin
θ∈E

g(θ) = argmin
θ∈E

‖Aφ(θ)− y‖2. (3)
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where E = R
k(d+1) or E = Θ := φ−1(Σ) and g(θ) = f(φ(θ)).

In the following, we consider the model of separated Diracs:

Σ = Σk,ǫ := {φ(θ) =
∑

r=1,k

arδtr : θ = (a, t1, .., tk) ∈ R
k(d+1), a ∈ R

k, tr ∈ R
d,

∀r 6= l, ‖tr − tl‖2 > ǫ, tr ∈ B2(R)},
(4)

where B2(R) = {t ∈ R
d : ‖t‖2 ≤ R}. Note that, in this paper, the Dirac distribution

could be supported on any compact set. We use B2(R) for the sake of simplicity. For
tr ∈ R

d, we write tr = (tr,j)j=1,d.
We consider the following parameterization of Σk,ǫ:

∑

i=1,k aiδti = φ(θ) with θ =
(a1, .., ak, t1, .., tk). We define

Θk,ǫ := φ−1(Σk,ǫ). (5)

Note that when E = Θk,ǫ, performing minimization (3) allows to recover the minima
of the ideal minimization (2), yielding stable recovery guarantees. Hence we are par-
ticularly interested in this case. When E = R

k(d+1), we speak about unconstrained
minimization for minimization (3).

The objective of this paper is to study the shape of the basin of attraction of the
global minimum of (3) when E = Θk,ǫ.

1.3 Basin of attraction and descent algorithms

In this work, we are interested in minimizing g defined in (3). Since g is a smooth
function, a classical method to minimize g is to consider a fixed step gradient descent.
The algorithm is the following. Consider an initial point θ0 ∈ R

d and a step size τ > 0.
We define by recursion the sequence θn by

θn+1 = θn − τ∇g(θn) (6)

We now give the definition of basin of attraction that we will use in this paper.

Definition 1.3 (Basin of attraction). We say that a set Λ ⊂ R
d is a basin of attraction

of g if there exists θ∗ ∈ Λ and τ > 0, such that if θ0 ∈ Λ then the sequence θn defined
by (6) converges to θ∗.

This definition of basin of attraction is related to the following classical optimization
result (see e.g. [8]):

Proposition 1.1. Assume g to be a smooth coercive convex function, whose gradient
is L Lipshitz. Let θ0 ∈ R

d. Then, if τ < 1
L , there exists θ∗ ∈ R

d such that the sequence
θn defined by (6) converges to θ∗.

An immediate consequence of the previous proposition is the following corollary.

Corollary 1.1. Assume g to be a smooth function. Assume that g has a minimizer
θ∗ ∈ R

d. Assume that there exists an open set Λ ⊂ R
d such that θ∗ ∈ Λ , g is convex

on Λ with L Lipshitz gradient. Then, if θ0 ∈ Λ and τ < 1
L , the sequence θn defined by

(6) converges to θ∗.
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Remark 1.1. Assume that g is C2. Let λmax(t) the largest eigenvalue of the Hessian
matrix of g(t). Let Θ ⊂ R

d an open set. If there exists L > 0 such that for all t in Θ,
λmax(t) ≤ L, then g has a L Lipshitz gradient in Θ.

1.4 Related work

While original for the sparse spikes estimation problem, it must be noted that the study
of non-convex optimization schemes for linear inverse problems has gained attraction
recently for different kinds of low-dimensional models. For low-rank matrix estimation,
a smooth parameterization of the problem is possible and it has been shown that a
RIP guarantees the absence of spurious minima [23, 1]. In [22], a model for phase
recovery with alternated projections and smart initialization is considered. Conditions
on the number of measurements guarantee the success of the technique. In the area of
blind deconvolution and bi-convex programming, recent works have exploited similar
ideas [18, 4].

In the case of super-resolution, the idea of gradient descent has been studied in an
asymptotic regime (k → ∞) in [7] with theoretical conditions based on Wasserstein
gradient flow for the initialization. In our case, we study the particular super-resolution
problem with a fixed number of impulsions and we place ourselves in conditions when
stable recovery is guaranteed, leading to explicit conditions on the initialization.

The objective of this article is to investigate to what extent these ideas can be
applied to the theoretical study of the case of spike super-resolution estimation.

The question of projected gradient descent raised in the last Section has been ex-
plored for general low-dimensional models [2]. It has been shown that the RIP guaran-
tees the convergence of such algorithms with an ideal (often non practical) projection.
Approached projected gradient descents have also been studied and shown to be suc-
cessful for some particular applications [14]. The spikes super-resolution problem adds
the parameterization step to these problems.

1.5 Contributions and organization of the paper

This article gives the following original results:

1. A bound on the conditioning of the Hessian at a global minimum of the mini-
mization in the parameter space is given in Section 2. This bound shows that the
better RIP constants are (RIP constants improve with respect to the number of
measurements), the better the non-convex minimization problem behaves. It also
shows that there is a basin of attraction of the global optimum where no separa-
tion constraints are needed (for descent algorithms with an initialization close to
the minimum, separation constraints can be discarded)

2. An explicit shape of the basin of attraction of global minima is given in Section 3.
The size of the basin of attraction increases when the RIP constant gets better.

To conclude, we discuss the role of the separation constraint in descent algorithms in
Section 4, and we explain why enforcing a separation might improve them.
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2 Conditioning of the Hessian

This section is devoted to the study of the Hessian matrix of g. In particular, we provide
a bound on the conditioning of the Hessian at a global minimum of the minimization
in the parameter space.

2.1 Notations

The operator A is a linear operator modeling m measurements in C
m ( ImA ⊂ C

m ) on
the space of measures on R

d defined by: for l = 1,m,

(Au)l =

∫

Rd

αl(t)u(t)dt (7)

where (αl)l is a collection of functions in C2(B2(R)) (twice continuously differentiable
functions).

In C
m, we consider the Hermitian product 〈u, v〉 =

∑

uiv̄i. An example of such
measurement operator is the Fourier sampling: (Au)l =

1√
m

∫

Rd u(t)e
−j〈ωl,t〉dt for some

chosen ωl ∈ R
d.

Let x =
∑

i=1,k aiδti . By linearity of A, we have

(Ax)l =
k

∑

i=1

(Aδti)l =
k

∑

i=1

aiαl(ti). (8)

With g(θ) = f(φ(θ)) = ‖Aφ(θ)− y‖22, we get:

g(θ) =

m
∑

l=1

∣

∣

∣

∣

∣

k
∑

i=1

aiαl(ti)− yl

∣

∣

∣

∣

∣

2

. (9)

In the following, the notion of directional derivative will be important.

Definition 2.1 (Directional derivatives). Let f be a C1 function, and v ∈ R
d such that

‖v‖2 = 1. Then we can define the directional derivative of f in direction v by:

f ′
v(t) := 〈v,∇f(t)〉 = lim

h→0+

f(t+ hv) − f(t)

h
(10)

Let f be a C2 function, and (v1, v2) ∈ R
2d such that ‖v1‖2 = ‖v2‖2 = 1. Then we can

define the second order directional derivative of f in directions v1 and v2 by:

f ′′
v1,v2(t) := 〈v1,∇2f(t)v2〉 (11)

Notice that of course f ′′
v1,v2(t) = f ′′

v2,v1(t). If v1 = v2, we write f ′′
v1(t) := f ′′

v1,v1(t)

In particular, they permit to introduce derivatives of Dirac measures supported on
R
d.
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Definition 2.2 (Directional derivatives of Dirac). Let v ∈ R
d such that ‖v‖2 = 1.

The distribution δ′t0,v is defined by
∫

R
δ′t0,v(t)f(t)dt = −f ′

v(t0). It is the limit of νη =

− δt0+ηv−δt0
η for η → 0+ in the distributional sense : for all h ∈ C1(Rd),

∫

R
h(t)νη(t) dt →η→0+

∫

R
h(t)δ′t0,v(t), dt.
Similarly, The distribution δ′′t0,v is defined by

∫

R
δ′′t0,v(t)f(t) = f ′′

v (t0) for f ∈ C2(Rd)

and the distribution δ′′t0,v1,v2 is defined by
∫

R
δ′′t0,v1,v2(t)f(t) = f ′′

v1,v2(t0) for f ∈ C2(Rd)
where f ′′

v1,v2 is the derivative of f in direction v1 chained with the derivative of f in
direction v2.

When v = ei is a vector of the canonical basis of Rd , we write δ′t0,i = δ′t0,ei and
δ′′t0,i = δ′′t0,ei,ei.

Finally, we note rintB2(R) the relative interior of B2(R).
We now have the necessary tools to start the study of the Hessian of g.

2.2 Gradient and Hessian of the objective function g

We calculate the gradient and Hessian of g in the two following propositions. We start
with the gradient of g.

Proposition 2.1. For any θ ∈ R
2k, we have:

∂g(θ)

∂ar
= 2Re〈Aδtr , Aφ(θ)− y〉, (12)

∂g(θ)

∂tr,j
= −2arRe〈Aδ′tr ,j, Aφ(θ)− y〉

.

(13)

Proof. See Appendix A.1.

The next proposition gives the values of the Hessian matrix of g which has a simple
expression with the use of derivatives of Diracs.

Proposition 2.2. For any θ ∈ R
k(d+1)

H1,r,s =
∂2g(θ)

∂ar∂as
= 2Re〈Aδtr , Aδts〉. (14)

H2,r,j1,s,j2 =
∂2g(θ)

∂tr,j1∂ts,j2
= 2arasRe〈Aδ′tr ,j1 , Aδ

′
ts,j2〉

+ 1(r = s)2arRe〈Aδ′′tr ,j1,j2 , Aφ(θ)− y〉.
(15)

H12,r,s,j =
∂2g(θ)

∂ar∂ts,j
= 2asRe〈Aδtr , Aδ′ts ,j〉 − 1(r = s)2Re〈Aδ′t0 ,j, Aφ(θ)− y〉. (16)
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Hence the Hessian can be decomposed as the sum of two matrices H = G+ F with

G1,r,s = 2Re〈Aδtr , Aδts〉,
G2,r,j1,s,j2 = 2arasRe〈Aδ′tr ,j1 , Aδ

′
ts ,j2〉,

G12,r,s,j = 2asRe〈Aδtr , Aδ′ts,j〉.
(17)

and

F1,r,s = 0,

F2,r,j1,s,j2 = 1(r = s)2arRe〈Aδ′′tr ,j1,j2, Aφ(θ)− y〉,
F12,r,s,j = −1(r = s)2Re〈Aδ′t0 ,j, Aφ(θ)− y〉.

(18)

Proof. See Appendix A.1.

2.3 Kernel, dipoles and the RIP

In order to be able to build operator with a RIP, we define a reproducible kernel Hilbert
space (RKHS) structure on the space of measures as in [15], see also [20]. The natural
metric on the space of finite signed measures, the total variation of measures, is not well
suited for a RIP analysis of the spikes super-resolution problems, as it do not measure
the spacing between Diracs. When using the RIP, fondamental objects appear in the
calculations: dipoles of Diracs. In this section we show that the typical RIP implies a
RIP on dipoles and their generalization.

Definition 2.3 (Kernel, scalar product and norm). For finite signed measures over Rd,
the Hilbert structure induced by a kernel h (a smooth function from R

d → R) is defined
by the following scalar product between 2 measures π1, π2

〈π1, π2〉h =

∫

Rd

∫

Rd

h(t1, t2)dπ1(t1)dπ2(t2). (19)

We can consequently define
‖π1‖2h = 〈π1, π1〉h. (20)

We have the relation

‖π1 + π2‖2h = ‖π1‖2h + 2〈π1, π2〉h + ‖π2‖2h. (21)

Measuring distances with the help of ‖ · ‖h can be viewed as measuring distances at
a given resolution set by h. Typically we use Gaussian kernels where the sharper the
kernel is, the more accurate it is.

The next definition is taken from [15].

Definition 2.4 ((ǫ-)Dipole, separation). An ǫ-dipole (noted dipole for simplicity) is a
measure π = a1δt1 − a2δt2 where ‖t1 − t2‖2 ≤ ǫ. Two dipoles π1 = a1δt1 − a2δt2 and
π2 = a3δt3 − a4δt4 are ǫ-separated if their support are strictly ǫ-separated (with respect
to the ℓ2-norm on R

d), i.e. if ‖t1 − t3‖2 > ǫ, ‖t2 − t3‖2 > ǫ and ‖t1 − t4‖2 > ǫ and
‖t2 − t4‖2 > ǫ.
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Compared to [15], we need to introduce a new definition.

Definition 2.5 (Generalized dipole). A generalized dipole ν is a measure a1δt + a2δ
′
t,v.

Two generalized dipoles are ǫ-separated if their support are strictly ǫ-separated (with
respect to the ℓ2-norm on R

d).

In this article we use regular, symmetrical, translation invariant kernels. Most recent
developments to non translation invariant kernels [19] could be considered to generalize
this work, but they are out of the scope of this article for the sake of simplicity.

Assumption 2.1. A kernel h follows this assumption if

• h ∈ C2(Rd),

• h is symmetrical with respect to 0, translation invariant, i.e. we can write h(t1, t2) =
ρ(‖t1 − t2‖2) where ρ ∈ C2(R).

• there is a constant µh such that, for all two ǫ-separated dipoles, 〈ν1, ν2〉h ≤
µh‖ν1‖h‖ν2‖h (mutual coherence)

• h(0) = 1 = maxt∈Rd h(t), h′v(0) = ρ′(0) = 0, and h′′v(0) = ρ′′(0) ≤ 0

Example The now almost canonical well behaved kernel is the Gaussian kernel. From
[15], for ǫ = 1, using h0(t) = e−t2/(2σ2

k) with σ2
k = 1

2.4log(2k−1)+24 , we have that h0 follows

Assumption 2.1 with µh0
= 3

4(k−1) .

We have the following properties.

Lemma 2.1. Let h be a kernel meeting Assumption 2.1. We have the following prop-
erties for any t ∈ R:

‖δt‖2h = h(0) = 1 (22)

〈δt, δ′t,v〉h = −ρ′(0) = 0 (23)

‖δ′t,v‖2h = |ρ′′(0)| (24)

Proof. See Appendix A.2.

From [15, Lemma 6.5], we have the following Lemma:

Lemma 2.2. Suppose for all two ǫ-separated dipoles, 〈π1, π2〉h ≤ µ‖π1‖h‖π2‖h (mutual
coherence). Then for k, ǫ-separated dipoles π1, ...πk such that maxi ‖πi‖ > 0, we have

1− (k − 1)µ ≤
‖∑i=1,k πi‖2h
∑

i=1,k ‖πi‖2h
≤ 1 + (k − 1)µ (25)

We can generalize the previous result to generalized dipoles.
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Lemma 2.3. Let two ǫ-separated generalized dipoles ν1, ν2. Suppose for all two ǫ-
separated dipoles π1, π2, 〈π1, π2〉h ≤ µ‖π1‖h‖π2‖h (mutual coherence). Then we have:

〈ν1, ν2〉h ≤ µ‖ν1‖h‖ν2‖h (26)

Proof. See Appendix A.2.

A consequence of the previous result is the following Lemma:

Lemma 2.4. Suppose for all two ǫ-separated generalized dipoles, 〈ν1, ν2〉h ≤ µ‖ν1‖h‖ν2‖h
(mutual coherence). Then for k ǫ-separated generalized dipoles ν1, ...νk we have

1− (k − 1)µ ≤
‖∑i=1,k νi‖2h
∑

i=1,k ‖νi‖2h
≤ 1 + (k − 1)µ (27)

Proof. See Appendix A.2.

We are now able to define the Restricted Isometry Property (RIP). The secant set
of the model set Σ is Σ− Σ := {x− y : x ∈ Σ, y ∈ Σ}.

Definition 2.6 (RIP). A has the RIP on Σ−Σ with respect to ‖ · ‖ with constant γ if
for all x ∈ Σ− Σ:

(1− γ)‖x‖2 ≤ ‖Ax‖22 ≤ (1 + γ)‖Ax‖2. (28)

In the following we will suppose that A has RIP γ on Σk,ǫ − Σk,ǫ with respect to
‖ · ‖h. i.e. for

∑

r=1,k arδtr −
∑

r=1,k brδsr ∈ Σk,ǫ − Σk,ǫ, we have

(1− γ)

∥

∥

∥

∥

∥

∥

∑

r=1,k

(arδtr − brδsr)

∥

∥

∥

∥

∥

∥

2

h

≤

∥

∥

∥

∥

∥

∥

A
∑

r=1,k

(arδtr − brδsr)

∥

∥

∥

∥

∥

∥

2

2

(29)

≤ (1 + γ)

∥

∥

∥

∥

∥

∥

∑

r=1,k

arδtr − brδsr

∥

∥

∥

∥

∥

∥

2

h

.

From [15], with a Gaussian kernel h it is possible to build a random A with RIP
constant γ. Whith this choice of A, the ideal minimization (2) yields a stable and
robust estimation of x0.

The RIP on Σk,ǫ − Σk,ǫ implies a RIP on ǫ-separated generalized dipoles.

Lemma 2.5 (RIP on generalized dipoles). Suppose A has the RIP on Σk,ǫ − Σk,ǫ with
constant γ. Let (νr)r=1,k, k ǫ-separated dipoles supported in rintB2(R) , we have

(1− γ)

∥

∥

∥

∥

∥

∥

∑

r=1,k

νr

∥

∥

∥

∥

∥

∥

2

h

≤

∥

∥

∥

∥

∥

∥

A(
∑

r=1,k

νr)

∥

∥

∥

∥

∥

∥

2

2

≤ (1 + γ)

∥

∥

∥

∥

∥

∥

∑

r=1,k

νr

∥

∥

∥

∥

∥

∥

2

h

(30)

Proof. See Appendix A.2.
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In a similar fashion, the RIP implies the following bound.

Lemma 2.6. Suppose A has RIP on Σk,ǫ − Σk,ǫ with constant γ. Then, for any t ∈
rintB2(R), with directions v1, v2, we have

‖Aδ′′t0,v1,v2‖2 ≤ 2
√

1 + γ‖δ′t0,v1‖h = 2
√

1 + γ
√

|ρ′′(0)|. (31)

Proof. See Appendix A.2.

2.4 Control of the conditioning of the Hessian with the restricted

isometry property

We can now give a lower (resp. upper) bound for the highest (resp. lowest) eigenvalues
of the Hessian matrix H of g (computed in Proposition 2.2).

Theorem 2.1 (Control of the Hessian). Let θ = (a1, .., ak, t1, ..tk) ∈ Θk,ǫ with t ∈
rintB2(R) and θ∗ ∈ Θk,ǫ a minimizer of (3). Suppose h follows Assumption 2.1. Let H
the Hessian of g at θ. Suppose A has RIP γ on Σk,ǫ − Σk,ǫ. We have

sup
‖u‖2=1

uTHu ≤ 2(1 + γ)(1 + (k − 1)µ)max(1, (a2r |ρ′′(0)|)r=1,l) + ξ; (32)

inf
‖u‖2=1

uTHu ≥ 2(1− γ)(1− (k − 1)µ)min(1, (a2r |ρ′′(0)|)r=1,l)− ξ (33)

where ξ = 2d
√
1 + γ(‖Aφ(θ)−Aφ(θ∗)‖2 + ‖e‖2)

√

|ρ′′(0)|max(2maxr(|ar|), 1).
Proof. See Appendix A.3.

Remark 2.1. Notice that, in the noiseless case, (33) ensures in particular that g has a
positive Hessian matrix in θ∗. Moreover, if minr |ar| > 0, there exists a neighbourhood
of θ∗, in which g remains convex. We will give an explicit size for this neibourhood in
the next section. Notice also that (32) gives an upper bound on the Lipschitz constant of
the gradient of g. This implies the existence of a basin of attraction (see Definition 1.3)
with a uniform bound for the step size.

Remark 2.2. With the method to choose A from [15, Lemma 6.5], for any γ and
m & k2dpolylog(k, d)/γ2, we can find A that has RIP with high probability with kernel
h0 having the right properties.

We can control the conditioning of the Hessian matrix κ(H) at a global minimum as
the term ‖Aφ(θ)−Aφ(θ∗)‖2 vanishes in the control from Theorem 2.1. Particularly, in
the noiseless case we have the following Corollary. The lower bound is useful to confirm
the dependency on the ratio of amplitudes when it converges to +∞. For this next
result, we make the additional assumption that minr |ar| > 0. In practice, this amounts
to assuming that when estimating the Diracs, we do not over-estimate their number
(which will often be the case, in particular in the presence of noise). When the number
Dirac is overestimated, the minimizers of (3) are points that are not isolated, the notion
of basin of attraction would have to be generalized to a basin of attraction of a set of
minimizers (when ar = 0, g(θ) does not depend on tr), which is out of the scope of this
article for clarity purpose.
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Corollary 2.1. Let x0 =
∑

r=1,k arδtr ∈ Σk,ǫ = φ(θ0) and e = 0. Suppose h follows
Assumption 2.1. Let H the Hessian of g at θ0. Suppose A has RIP γ on Σk,ǫ − Σk,ǫ,
and that minr |ar| > 0. We have

(1− γ)max(1, (a2r |ρ′′(0)|)r=1,l)

(1 + γ)min(1, (a2r |ρ′′(0)|)r=1,l)
≤ κ(H)

≤ (1 + γ)(1 + (k − 1)µ)max(1, (a2r |ρ′′(0)|)r=1,l)

(1− γ)(1− (k − 1)µ)min(1, (a2r |ρ′′(0)|)r=1,l)

(34)

Proof. See Appendix A.3.

It is easy to see that for a noise e with small enough energy (i.e. such that ξ is
strictly lower than 2(1 − γ)(1 − (k − 1)µ)min(1, (a2r |ρ′′(0)|)r=1,l), if minr |ar| > 0, then
the Hessian at a global minimum is strictly positive. Of course, this may require a very
small noise since the ratio of amplitudes at the global minimum can be large.

Remark 2.3. We remark that for a same maximal ratio of amplitudes in θ∗, a better
conditioning bound is achieved when maxr=1,l a

2
r |ρ′′(0)| ≥ 1 ≥ minr=1,l a

2
r |ρ′′(0)|. We

attribute this to the fact that we estimate amplitudes and locations at the same time.
The amplitudes must be appropriately scaled to match the variations of g with respect to
locations. Intuitively, alternate descent with respect to amplitudes and locations might
be better than the classical gradient descent for easily setting the descent step.

Remark 2.4. As g is C2, ensuring the strict positivity of the Hessian at the global
minimum guarantees the existence of a basin of attraction as emphasized in Section 1.3.
In the next Section, we give an explicit formulation of a basin of attraction.

3 Explicit basin of attraction of the global minimum

Let θ1 ∈ R
d. Can we guarantee, for some notion of distance d, that d(θ1, θ0) ≤ C and

θ1 6= θ0, with C an explicit constant, implies ∇g(θ1) 6= 0 ? The following theorems show
that it is in fact the case. With a strong RIP assumption, we can give an explicit basin of
attraction of the global minimum for minimization (3) without separation constraints.

3.1 Uniform control of the Hessian

In the noiseless case, a global minimum θ∗ of the constrained minimization of g over
Θk,ǫ is also a global minimum of the unconstrained minimization because g(θ∗) = 0. In
the presence of noise, we can no longer guarantee that the minimizer of the constrained
problem θ∗ is a global minimum of the unconstrained problem. However, the shape of
the constraint guarantees that it is a local minimum (see next Lemma).

Lemma 3.1. Suppose θ∗ = (a1, .., ak, t1, .., tk) is a result of constrained minimiza-
tion (3) with ti ∈ rintB2(R). Then θ∗ is a local minimum of g.

11



Proof. let θ∗ = (a1, .., ak, t1, .., tk). As for all i 6= j, |ti − tj | > ǫ, there exists η > 0 such
that for all θ = (b1, .., bk, s1, .., sk) such that |si − ti| < η, we have θ ∈ Θk,ǫ. Hence,
θ∗ +B∞(η) ⊂ Θk,ǫ, and θ∗ ∈ argminθ∈θ∗+B∞(η) g(θ).

Hence we can still calculate a basin of attraction of θ∗ (for the unconstrained mini-
mization). The expression of the basin in the next Section is a direct consequence of the
following Theorem that uniformly control the Hessian of g in an explicit neighbourhood
of θ∗.

Theorem 3.1. Suppose A has RIP γ on Σk, ǫ
2
−Σk, ǫ

2
and that h follows Assumption 2.1

and has mutual coherence constant µ on ǫ
2-separated dipoles. Let θ∗ = (a1, .., ak, t1, .., tk) ∈

Θk,ǫ be a result of constrained minimization (3) such that ti ∈ rintB2(R). Suppose
0 < |a1| ≤ |a2|... ≤ |ak|. Let 0 ≤ β ≤ 1 and

Λθ∗,β, ǫ
4
= {θ = (b1, .., bk, s1, .., sk) :

sign(bi) = sign(ai),
‖biδsi − aiδti‖h

|ai|
< β, sup |sj − tj | <

ǫ

4
}

(35)

If θ ∈ Λθ∗,β, ǫ
4
, then H the Hessian of g at θ has the following bounds :

sup
‖u‖2=1

uTHu ≤ 2(1 + γ)(1 + (k − 1)µ)max(1, (|ak |(1 + β))2|ρ′′(0)|)) + ξ; (36)

inf
‖u‖2=1

uTHu ≥ 2(1− γ)(1 − (k − 1)µ)min(1, (|a1|(1− β))2|ρ′′(0)|) − ξ (37)

where ξ = 2d
√
1 + γ(supθ∈Λθ∗,β, ǫ

4

‖Aφ(θ)−Aφ(θ∗)‖2+‖e‖2)
√

|ρ′′(0)|max(2|ak|(1+β), 1)

Proof. See Appendix A.4.

Remark 3.1. We observe that we require a stronger RIP than the usual one on Σk,ǫ−
Σk,ǫ to guarantee that unconstrained minimization converges in the basin of attraction
Λθ∗,β, ǫ

4
.

When the separation constraint is added for the basin of attraction (we look for
potential critical points in Σk,ǫ), we can provide better bounds. We will discuss what
we could expect from constrained descent algorithms in Section 4.

Theorem 3.2. Suppose A has RIP γ on Σk,ǫ−Σk,ǫ and that h follows Assumption 2.1
and has mutual coherence constant µ on ǫ-separated dipoles. Suppose 0 < |a1| ≤ |a2|... ≤
|ak|.

Let θ∗ = (a1, ..., ak , t1, ..tk) ∈ Θk,ǫ be a result of constrained minimization (3) such
that ti ∈ rintB2(R). Let 0 ≤ β ≤ 1 and

Λθ∗,β,∞ = {θ = (b1, ..bk, s1, ..sk) :

sign(bi) = sign(ai),
‖biδsi − aiδti‖h

|ai|
< β}

(38)
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Then for θ ∈ Θk,ǫ ∩ Λθ∗,β,∞, then H the Hessian of g at θ has the following bounds:

sup
‖u‖2=1

uTHu ≤ 2(1 + γ)(1 + (k − 1)µ)max(1, (|ak |(1 + β))2|ρ′′(0)|)) + ξ; (39)

inf
‖u‖2=1

uTHu ≥ 2(1− γ)(1 − (k − 1)µ)min(1, (|a1|(1− β))2|ρ′′(0)|) − ξ (40)

where ξ = 2d
√
1 + γ(supθ∈Λθ∗,β, ǫ

4

‖Aφ(θ)−Aφ(θ∗)‖2+‖e‖2)
√

|ρ′′(0)|max(2|ak|(1+β), 1)

Proof. See Appendix A.4.

3.2 Explicit basin of attraction in the noiseless and noisy case

With the help of this uniform control of the Hessian we give an explicit (yet suboptimal)
basin of attraction.

Corollary 3.1 (of Theorem 3.1, noiseless case). Under the hypotheses of Theorem 3.1,
let θ∗ ∈ Θk,ǫ be a result of constrained minimization (3).

Take β ≤ βmax where βmax := min

(

1
2 ,

(1−γ)(1−(k−1)µ) min(1,(|a1|2|ρ′′(0)|/4)
(1+γ)

√
|ρ′′(0)|kd|ak|max(3|ak |,1)

)

.

Then the set Λθ∗,β,ǫ/4 is a basin of attraction of θ∗.

Proof. See Appendix A.4.

The parameter β controls the distance between a parameter and the optimal param-
eter as ‖bδs−aδt‖2h = (b−a)2+2ab(1−ρ(‖s− t‖2)) ≥ min((b−a)2, 2|ab|(1−ρ(‖s− t‖2))
when sign(a) = sign(b). When the RIP constant γ decreases (and generally as the
number of measurement increases), the size of the basin of attraction increases. When
the mutual coherence constant µ decreases, the basin of attraction also increases. Fi-
nally, we note that the smaller β is, the smaller is the upper bound on the operator
norm of the Hessian.

When the noise contaminating the measurements is small enough, we have similar
results with a smaller basin of attraction.

Corollary 3.2 (of Theorem 3.1, noisy case). Under the hypotheses of Theorem 3.1, let
θ∗ ∈ Θk,ǫ be a result of constrained minimization (3). Suppose ‖e‖ ≤ k|ak|βmax where

βmax := 1
2 min

(

1
2 ,

(1−γ)(1−(k−1)µ) min(1,|a1|2|ρ′′(0)|/4
(1+γ)

√
|ρ′′(0)|kd|ak|max(3|ak |,1)

)

.

Take β ≤ βmax. Then the set Λθ∗,β,ǫ/4 is a basin of attraction of θ∗.

Proof. See Appendix A.4.

4 Towards new descent algorithms for SR estimation?

We have shown that, given an appropriate measurement operator for separated Diracs,
a good initialization is sufficient to guarantee the success of a simple gradient descent.
Moreover the gradient descent can be used as a refinement step in the greedy heuristic
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based on orthogonal matching pursuit [16]. If we could guarantee that greedily esti-
mating Diracs, we fall within the basin of attraction, we would have a full non-convex
optimization technique with guarantees of convergence to a global minimum.

In other works [12, 13], it has been shown that discretization (on grids) of convex
methods have a tendancy to produce spurious spikes at Dirac locations. Our results
seem to indicate that fusioning spikes that are close to each other when performing a
gradient descent might break the barrier between continuous and discrete methods.

Theorem 3.2 brings another question as the Hessian of g is more easily controled in
Θk,ǫ. More generally, can we build a simple descent algorithm that stays in Θk,ǫ to get
larger basins of attraction? Consider the problem for d = 1 in the noiseless case for the
sake of clarity. We want to use the following descent algorithm:

θi+1 = PΘk,ǫ
(θi − τ∇g(θi)) (41)

Where PΘk,ǫ
is a projection onto the separation constraint. Notice that since Θk,ǫ is

not a convex set, we cannot easily define the orthogonal projection onto it (it may not
even exists).

If we suppose that the gradient descent step decreases g (i.e. g(θi−τ∇g(θi)) < g(θi)),
is it possible to guarantee that applying projection step keeps decreasing g? Consider:

PΘk,ǫ
(θ) ∈ arg min

θ̃∈Θk,ǫ

∣

∣

∣
‖Aφ(θ̃)− y‖2 − ‖Aφ(θ)− y‖2|

∣

∣

∣
(42)

First consider the following Lemma:

Lemma 4.1. Let d = 1. Let θ0, θ1 ∈ Θk,ǫ. Let g(θ) = ‖Aφ(θ) −Aφ(θ0)‖. Then for all
α such that 0 = g(θ0) ≤ α ≤ g(θ1), there exists θ∗ ∈ Θk,ǫ such that g(θ∗) = α.

Proof. See Appendix A.5.

Lemma 4.1 essentially guarantees that is is possible to continuously map the interval
[0, g(θ1)] by g with elements of Θk,ǫ. Hence, at a step i+ 1, we have

|g(θi+1)− g(θi)| = |g(θi − τ∇g(θi))− g(θi)|. (43)

The projection PΘk,ǫ
defined by (42) is not easy to calculate (in fact, it is a similar

optimization problem as the main problem). Other more ”natural” projections on Θk,ǫ

could be defined as :

PΘk,ǫ
(θ) ∈ φ−1(arg inf

x∈Σk,ǫ

‖Ax−Aφ(θ)‖2) (44)

or
PΘk,ǫ

(θ) ∈ φ−1(arg inf
x∈Σk,ǫ

‖x− φ(θ)‖h). (45)

However they suffer from the same calculability drawback. This suggest to build a
new family of heuristic algorithms of spike estimation where we propose heuristics to
approach the projection of θ̂i+1 on Θk,ǫ. Recovery guarantees would be obtained by
guaranteeing that the projection heuristic does not increase the value of g by too much
compared to the gradient descent step.
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A Annex

A.1 Proofs for Section 2.2

Proof of Proposition 2.1.

∂g(θ)

∂ar
=

∂

∂ar

m
∑

l=1

∣

∣

∣

∣

∣

k
∑

i=1

aiαl(ti)− yl

∣

∣

∣

∣

∣

2

=
m
∑

l=1

2Re



αl(tr,j)





k
∑

i=1

aiαl(ti)− yl









= 2Re〈Aδtr , Aφ(θ)− y〉.

(46)

Similarly,

∂g(θ)

∂tr,j
=

∂

∂tr

m
∑

l=1

∣

∣

∣

∣

∣

k
∑

i=1

aiαl(ti)− yl

∣

∣

∣

∣

∣

2

=
m
∑

l=1

2Re



ar∂jαl(tr)





k
∑

i=1

aiαl(ti)− yl







 .

= −2arRe〈Aδ′t0 ,j, Aφ(θ)− y〉

(47)

Proof of Proposition 2.2. For H1,r,s,

∂2g(θ)

∂ar∂as
=

∂

∂as

m
∑

l=1

2Re



αl(tr)





k
∑

i=1

aiαl(ti)− yl









=

m
∑

l=1

2Re
(

αl(tr)
(

αl(ts)
))

.

(48)

For H2,r,j1,s,j2,

∂2g(θ)

∂tr,j1∂ts,j2
=

∂

∂ts,j1

m
∑

l=1

2Re



ar∂j1αl(tr)





k
∑

i=1

aiαl(ti)− yl









=

m
∑

l=1

2Re
(

ar∂j1αl(tr)
(

as∂j2αl(ts)
))

+ 1(r = s)
m
∑

l=1

2Re



ar∂j2∂j1αl(tr)





k
∑

i=1

aiαl(ti)− yl







 .

(49)
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For H12,r,s,j

∂2g(θ)

∂ar∂ts,j
=

∂

∂ts,j

m
∑

l=1

2Re(αl(tr))





k
∑

i=1

aiαl(ti)− yl





=

m
∑

l=1

2Re
(

αl(tr)
(

as∂jαl(ts)
))

+ 1(r = s)
m
∑

l=1

2Re



∂jαl(tr)





k
∑

i=1

aiαl(ti)− yl







 .

(50)

A.2 Proofs for Section 2.3

Proof of Lemma 2.1. Using the assumption,

‖δt‖2h =

∫

Rd

∫

Rd

h(t1 − t2)δt(t1)δt(t2) dt1dt2) =

∫

Rd

h(t1 − t)δt(t1)dt1 = h(0). (51)

By abuse of notation (as h is translation invariant), write h(t, s) = h(t − s). With the
fact that

∫

R
f(t)δ′t0,v(t)dt = −f ′

v(t0) and using the translation invariance, we have

〈δt, δ′t〉h =

∫

Rd

∫

Rd

h(t1 − t2)δt(t1)δ
′
t,v(t2)dt1dt2 =

∫

Rd

h(t− t2)δ
′
t,v(t2)dt2

=

∫

Rd

h(t2 − t)δ′t,v(t2)dt2

(52)

where the last equality comes from the symmetry of h. Hence 〈δt, δ′t〉h = −h′v(0) =

− limη→0+
ρ(η‖v‖)−ρ(0)

η = −ρ′(0) = 0.

‖δ′t‖2h =

∫

Rd

∫

Rd

h(t1 − t2)δ
′
t,v(t1)δ

′
t,v(t2)dt1dt2 = −

∫

Rd

h′(t− t2)δ
′
t,v(t2)dt2. (53)

Hence ‖δ′t,v‖2h = −h′′v(0) = |ρ′′(0)|.

Proof of Lemma 2.3. Let two ǫ-separated generalized dipole ν1, ν2. The νi are the limit
(in the distributional sense) of a family of ǫ-separated dipole νηii for η → 0+. We have

〈νη11 , νη22 〉h ≤ µ‖νη11 ‖h‖νη22 ‖h (54)

Furthermore, using Fubini’s theorem,

〈νη11 , νη2j 〉h =

∫

Rd

∫

Rd

ρ(‖t1 − t2‖2)dνη11 dνη22 →η2→0+

∫

Rd

∫

Rd

ρ(‖t1 − t2‖2)dνη11 dν2 (55)
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and
∫

Rd

∫

Rd

ρ(‖t1 − t2‖2)dνη11 dν2 →η1→0+

∫

Rd

∫

Rd

ρ(‖t1 − t2‖2)dν1dν2. (56)

Hence
〈νη11 , νη2j 〉h →η1→0+,η2→0+ 〈ν1, νj〉h. (57)

Let ν = aδt + bδ′t,v with ‖v‖2 = 1 and νη = aδt − b
δt+ηv−δt

η =
(

a+ b
η

)

δt − b
δt+ηv

η .

We have ‖ν‖2h = a2 + b2|ρ′′(0)| (with Lemma 2.1) and

‖νη‖2h =

(

a+
b

η

)2

+

(

b

η

)2

− 2

(

a+
b

η

)

b

η
ρ(η)

= a2 + 2

(

b

η

)2

+ 2
ab

η
− 2

ab

η
ρ(η) − 2

(

b

η

)2

ρ(η)

= a2 + 2
ab

η
(1− ρ(η)) + 2

b2

η2
(1− ρ(η)).

(58)

But 1−ρ(η)
η = ρ(0)−ρ(η)

η → −ρ′(0) when η → 0+, and ρ′(0) = 0.

Moreover, ρ(η) = h(0) + ηρ′(0) + η2

2 ρ
′′(0) + o(η2) = 1 − η2

2 |ρ′′(0)| + o(η2). Hence
1−ρ(η)

η2
→η→0+

1
2 |ρ′′(0)|.

We thus deduce that ‖νη‖2h → a2 + b2|ρ′′(0)| = ‖ν‖h when η → 0+.
Hence we can take the limit η1, η2 → 0 in Equation (54) to get the result.

Proof of Lemma 2.4. Using Lemma 2.3, and the same proof as in Lemma 2.2, we get
the result.

Proof of Lemma 2.5. Let νr = arδtr + brδ
′
tr ,v the ǫ-separated generalized dipoles. Simi-

larly to Lemma 2.3, take νηr = (a + b
η )δtr − b

δtr+ηv

η . For sufficiently small η the νηr are

ǫ-separated dipoles, hence
∑

νηr ∈ Σ− Σ and

(1− γ)

∥

∥

∥

∥

∥

∥

∑

r=1,k

νηr

∥

∥

∥

∥

∥

∥

2

h

≤

∥

∥

∥

∥

∥

∥

A(
∑

r=1,k

νηr )

∥

∥

∥

∥

∥

∥

2

2

≤ (1 + γ)

∥

∥

∥

∥

∥

∥

∑

r=1,k

νηr )

∥

∥

∥

∥

∥

∥

2

h

. (59)

Now remark that g1(η) = ‖∑r=1,k ν
η
r ‖2h and g2(η) = ‖A(∑r=1,k ν

η
r )‖22 are continu-

ous functions of η that converge to ‖∑r=1,k(arδtr + brδ
′
tr ,v)‖2h and ‖A(∑r=1,k(arδtr +

brδ
′
tr ,v))‖22 when η → 0:

• For g1, use the same proof as in Lemma 2.3 with the linearity of the limit.
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• For g2:

g2(η) =
∑

l=1,m

∣

∣

∣

∣

∣

∣

∑

r=1,k

∫

αl(t)(arδtr −
br
η
(δtr+ηv − δtr )

∣

∣

∣

∣

∣

∣

2

=
∑

l=1,m

∣

∣

∣

∣

∣

∣

∑

r=1,k

(
∫

αl(tr)ar −
br
η
(αl(tr + ηv)− αl(tr))

)

∣

∣

∣

∣

∣

∣

2

→η→0+

∑

l=1,m

∣

∣

∣

∣

∣

∣

∑

r=1,k

(
∫

αl(tr)ar − br(αl)
′
v(tr)

)

∣

∣

∣

∣

∣

∣

2

=
∑

l=1,m

∣

∣

∣

∣

∣

∣

∑

r=1,k

∫

αl(t)(arδtr + brδ
′
tr ,v)

∣

∣

∣

∣

∣

∣

2

=

∥

∥

∥

∥

∥

∥

A(
∑

r=1,k

arδtr + brδ
′
tr ,v)

∥

∥

∥

∥

∥

∥

2

2

.

(60)

Taking the limit of Equation (59) for η → 0 yields the result.

Proof of Lemma 2.6. Remark that δ′′t0,v1,v2 can be written as the limit when η → 0 of a
sequence sum of two Dirac derivatives δ′t0,v1 + δ′t0+ηv2,v1 . Using Lemma 2.5. We have,
with the triangle inequality and the RIP,

‖A(δ′t0,v1 + δ′t0+ηv2,v1)‖2 ≤ ‖A(δ′t0 ,v1)‖2 + ‖A(δ′t0+ηv2,v1)‖2
≤

√

1 + γ(‖δ′t0,v1‖h + ‖δ′t0+ηv2,v1‖h)
(61)

taking the limit η → 0 yields the result.

A.3 Proofs for Section 2.4

We will use the following Lemma on directional derivatives of Diracs.

Lemma A.1. Let u, t0 ∈ R
d. Suppose u 6= 0. Then ,

∑

i=1,d uiδ
′
t0,j

= ‖u‖2δ′t0, u
‖u‖2

Proof. Let f a function in C2(Rd), we have
∫

t∈Rd f(t)
∑

i=1,d uiδ
′
t0,i

dt = −∑

i=1,d ui∂if(t0) =
−〈ui,∇f(t0)〉 = −‖u‖2f ′

u
‖u‖2

(t0). Hence,
∑

i=1,d uiδ
′
t0,i

= ‖u‖2δ′tr , u
‖u‖2

To prove Theorem 2.1, we control first the eigenvalues of G in the decomposition
H = G+ F .

Lemma A.2. Suppose h follows Assumption 2.1. Let θ = (a1, .., ak, t1, ..tk) ∈ Θk,ǫ with
t ∈ rintB2(R). Let H the Hessian of g at θ. Suppose A has RIP γ on Σk,ǫ − Σk,ǫ. We
have

sup
‖u‖2=1

uTGu ≤ 2(1 + γ)(1 + (k − 1)µ)max(1, (a2r |ρ′′(0)|)r=1,l); (62)
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inf
‖u‖2=1

uTGu ≥ 2(1− γ)(1 − (k − 1)µ)min(1, (a2r |ρ′′(0)|)r=1,l). (63)

where G is defined in Proposition 2.2.

Proof. Let u ∈ R
k(d+1) such that ‖u‖2 = 1. We index u as follows: ur ∈ R for r = 1, k.

ur ∈ R
d for r = k + 1, 2k (it follows the indexing of H and G we used). Remark that

uTGu =
∑

r,s=1,k

urusG1,r,s +
∑

r=k+1,2k;j1=1,d;s=k+1,2k;j2=1,d

ur,j1us,j2G2,r,j1,s,j2

+
∑

r=1,k;s=k+1,2k;j=1,d

urus,jG12,r,s,j +
∑

r=k+1,2k;j=1,d;s=1,k

ur,jusG21,r,j,s

=2
∑

r,s=1,k

Re〈Aurδtr , Ausδts〉

+ 2
∑

r=k+1,2k;j1=1,d;s=k+1,2k;j2=1,d

Re〈Aur,j1ar−kδ
′
tr−k,j1

, Aus,j2as−kδ
′
ts−k ,j2

〉

+ 2
∑

r=1,k;s=k+1,2k;j=1,d

Re〈Aurδtr , Aus,jas−kδ
′
ts−k ,j

〉

+ 2
∑

r=k+1,2k;j=1,d;s=1,k

Re〈Aur,jar−kδ
′
tr−k,j

, Ausδts〉

(64)

Thus we have

uTGu =2

∥

∥

∥

∥

∥

∥

A
∑

r=1,k

urδtr

∥

∥

∥

∥

∥

∥

2

2

+ 2

∥

∥

∥

∥

∥

∥

A
∑

r=k+1,2k;j=1,d

ur,jar−kδ
′
tr−k,j

∥

∥

∥

∥

∥

∥

2

2

+ 2Re

〈

A
∑

r=1,k

urδtr , A
∑

r=k+1,2k;j=1,d

ur,jar−kδ
′
tr−k ,j

〉

+ 2Re

〈

A
∑

r=k+1,2k;j=1,d

ur,jar−kδ
′
tr−k ,j

, A
∑

r=1,k

urδtr

〉

=2

∥

∥

∥

∥

∥

∥

A
∑

r=1,k



urδtr +
∑

r=k+1,2k;j=1,d

ur,jar−kδ
′
tr−k,j





∥

∥

∥

∥

∥

∥

2

2

=2

∥

∥

∥

∥

∥

∥

A
∑

r=1,k



urδtr + ar
∑

j=1,d

ur+k,jδ
′
tr ,j





∥

∥

∥

∥

∥

∥

2

2

.

(65)

Using Lemma A.1, we have
∑

j=1,dwjδ
′
tr ,j

= ‖w‖2δ′tr , w
‖w‖2

and

uTGu =2

∥

∥

∥

∥

∥

∥

A
∑

r=1,k

(urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

)

∥

∥

∥

∥

∥

∥

2

2

. (66)
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We use the lower RIP in Lemma 2.5,

uTGu ≥ 2(1 − γ)

∥

∥

∥

∥

∥

∥

∑

r=1,k

(urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

)

∥

∥

∥

∥

∥

∥

2

h

. (67)

Then the hypothesis on ‖ · ‖h and Lemma 2.4 yields

‖
∑

r=1,k

(urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

)‖2h

≥ (1− (k − 1)µ)
∑

r=1,k

‖urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

‖2h
(68)

and

uTGu ≥ 2(1 − γ)(1− (k − 1)µ)
∑

r=1,k

‖urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

‖2h

≥ 2(1 − γ)(1− (k − 1)µ)
∑

r=1,k

(

|ur|2 + arur‖uk+r‖2〈δtr , δ′tr , ur+k
‖ur+k‖2

〉h

+a2r‖uk+r‖22‖δ′tr , ur+k
‖ur+k‖2

‖2h
)

.

(69)

Then using Lemma 2.1:

uTGu ≥ 2(1− γ)(1 − (k − 1)µ)
∑

r=1,k

(

|ur|2 + a2r‖uk+r‖22|ρ′′(0)|
)

≥ 2(1− γ)(1 − (k − 1)µ) inf
‖u‖2=1

∑

r=1,k

(

|ur|2 + ‖uk+r‖22a2r |ρ′′(0)|
)

.

= 2(1− γ)(1 − (k − 1)µ)min(1, (a2r |ρ′′(0)|)r=1,l).

(70)

Similarly, using the upper RIP in Lemma 2.5:

uTGu ≤ 2(1 + γ)‖
∑

r=1,k

(urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

)‖22. (71)

Then the hypothesis on ‖ · ‖h yields (Lemma 2.4)

‖
∑

r=1,k

(urδtr + ur+karδ
′
tr )‖22

≤ (1 + (k − 1)µ)
∑

r=1,k

‖urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

‖22
(72)
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and

uTGu ≤ 2(1 + γ)(1 + (k − 1)µ)
∑

r=1,k

‖urδtr + ar‖ur+k‖2δ′tr , ur+k
‖ur+k‖2

‖22. (73)

Then using Lemma 2.1:

uTGu ≤ 2(1 + γ)(1 + (k − 1)µ)
∑

r=1,k

(

|ur|2 + a2r‖uk+r‖22|ρ′′(0)|
)

≤ 2(1 + γ)(1 + (k − 1)µ) sup
‖u‖2=1

∑

r=1,k

(

|ur|2 + ‖uk+r‖22a2r|ρ′′(0)|
)

= 2(1 + γ)(1 + (k − 1)µ)max(1, (a2r |ρ′′(0)|)r=1,l).

(74)

Proof of Theorem 2.1. Let θ∗ a minimizer of (3). Consider H the Hessian of g at θ. We
recall that H = G+F (see Proposition 2.2). Using Lemma A.2, we just need to bound
the operator norm of F and then to combine it with the bounds on the eigenvalues of
G to get bounds on eigenvalues of H = G+ F .

We use Lemma 2.6, the Cauchy-Schwartz and triangle inequalities. We have ‖Aδ′′tr ,j1,j2‖2 ≤
2
√
1 + γ

√

|ρ′′(0)| and

|F2,r,j1,s,j2| ≤ 1(r = s)|2ar|‖Aδ′′tr ,j1,j2‖2‖Aφ(θ)− y‖2.
≤ 1(r = s)4|ar|

√

1 + γ
√

|ρ′′(0)|‖Aφ(θ)− y‖2.
≤ 1(r = s)4|ar|

√

1 + γ
√

|ρ′′(0)|‖Aφ(θ)−Aφ(θ∗) +Aφ(θ∗)− y‖2.
≤ 1(r = s)4|ar|

√

1 + γ
√

|ρ′′(0)|(‖Aφ(θ)−Aφ(θ∗)‖2 + ‖e‖2).

(75)

Similarly, with Lemma 2.5,

F12,r,s,j ≤ 1(r = s)2
√

1 + γ‖δ′t0,j‖h‖Aφ(θ)− y‖2
≤ 1(r = s)2

√

1 + γ
√

|ρ′′(0)|(‖Aφ(θ)−Aφ(θ∗)‖2 + ‖e‖2).
(76)

Hence, using Weyl’s perturbation inequality, we get the result because we have
‖F‖op ≤ d

√
1 + γ(‖Aφ(θ)−Aφ(θ∗)‖2 + ‖e‖2)

√

|ρ′′(0)|max(2|ar|, 1) (where ‖ · ‖op is the
ℓ2 operator norm).

Proof of Corollary 2.1. First, observe that at θ0, F = 0.
The upper bound is a direct consequence of Theorem A.2.
We show the result in the case max(1, (a2r |ρ′′(0)|)r=1,l) 6= 1 and min(1, (a2r |ρ′′(0)|)r=1,l) 6=

1 (the proof is similar in the other case). For the lower bound let v ∈ R
k(d+1) and

i0 = argmaxr=1,l(a
2
r |ρ′′(0)|), set ‖vi0‖2 = 1 and vj = 0 for j 6= i0.

sup
‖u‖2=1

uTHu ≥ vTHv ≥ 2(1 − γ)max(1, (a2r |ρ′′(0)|)r=1,l). (77)
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Similarly, let v ∈ R
k(d+1) and i0 = argmin((a2r |ρ′′(0)|)r=1,l), ‖vi0‖ = 1 and vj = 0 for

j 6= i0.

inf
‖u‖2=1

uTHu ≤ 2(1 + γ)min(1, (a2r |ρ′′(0)|)r=1,l). (78)

A.4 Proofs for Section 3

Proof of Theorem 3.1. Let θ∗ = (a1, ..., ak, t1, ..tk) ∈ Θk,ǫ the global minimum of g and
θ = (b1, ..., bk , s1, ..sk) ∈ Λθ∗,β, ǫ

4
. Hence for all j, |sj − tj| ≤ ǫ

4 . Hence for i 6= j we have
|si − sj| = |si − ti + ti − tj + tj − sj| ≥ |ti − tj| − |ti − si| − |tj − sj| > ǫ − 2ǫ/4 = ǫ/2
and φ(θ) ∈ Σk, ǫ

2
.

We use Theorem 2.1 to get the bound on the min and max eigenvalues of the Hessian.
We then notice that:

‖aδt − bδs‖2h = a2‖δt‖2h + b2‖δt‖2h + 2ab〈δt, δs〉h
= a2 + b2 + 2abρ(‖s − t‖2)
= (b− a)2 + 2ab(1− ρ(‖s − t‖2))

(79)

Hence we see that ‖aδt − bδs‖h/|a| ≤ β is equivalent to

(b− a)2 + 2ab(1 − ρ(‖s− t‖2)) ≤ a2β2 (80)

and it therefore implies that ||b| − |a|| = |b − a| ≤ |a|β when sign(a) = sign(b). We
thus deduce that |a|(1 − β) ≤ |b| ≤ |a|(1 + β). Hence, for any r, we get the following
inequality:

|a1|(1 − β) ≤ |ar|(1− β) ≤ |br| ≤ |ar|(1 + β) ≤ |ak|(1 + β) (81)

We can then plug these inequalities into the one of Theorem 2.1.
Finally we notice the fact that supθ∈Λθ∗,β,ǫ/4

‖Aφ(θ)−Aφ(θ∗)‖2 exists because Λθ∗,β,ǫ/4

is bounded.

Proof of Theorem 3.2. This is a direct consequence of Theorem 2.1. The proof follows
the same lines as the one of Theorem 3.1.

Proof of Corollary 3.1. The set Λ = Λθ∗,β,ǫ/4 is an open set where the Hessian of g at
Λ is positive as long as ξ ≤ 2(1 − γ)(1 − (k − 1)µ)min(1, (|a1|(1 − β))2|ρ′′(0)|) with
Theorem 3.1.

In this case g is convex on Λ. Theorem 3.1 also gives a uniform bound for the operator
norm of the Hessian: ‖H‖op ≤ 2(1 + γ)(1 + (k − 1)µ)max(1, (|ak |(1 + β))2|ρ′′(0)|) + ξ
and g has Lipschitz gradient. We thus deduce from Corollary 1.1 that Λ is a basin of
attraction.
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Hence we just need to show that ξ ≤ 2(1−γ)(1−(k−1)µ)min(1, (|a1|(1−β))2|ρ′′(0)|).
Let θ ∈ Λ, we have, with the RIP hypothesis

ξ(θ) := 2d
√

1 + γ(‖Aφ(θ)−Aφ(θ∗)‖2)
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

≤ 2d(1 + γ)‖φ(θ)− φ(θ∗)‖h
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

≤ 2d(1 + γ)k sup
i

‖biδsi − aiδti‖h
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

≤ 2d(1 + γ)kβ|ak|
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

(82)

where we wrote θ∗ =
∑

i aiδti and θ =
∑

i biδsi such that |si − ti| ≤ ǫ/4. The fact that
β ≤ 1/2 implies

ξ(θ)

min(1, |a1|2(1− β)2|ρ′′(0)|) ≤ 2(1 + γ)kdβ|ak|
√

|ρ′′(0)|max(3|ak|, 1)
min(1, |a1|2|ρ′′(0)|/4)

(83)

Hence using the hypothesis that β ≤ (1−γ)(1−(k−1)µ) min(1,|a1|2|ρ′′(0)|/4)
(1+γ)

√
|ρ′′(0)|kd|ak|max(3|ak |,1)

we have

ξ(θ) ≤ 2(1− γ)(1 − (k − 1)µ)min(1, (|a1|(1− β))2|ρ′′(0)|) (84)

Proof of Corollary 3.2. The set Λ = Λθ∗,β,ǫ/4 is an open set where the Hessian of g at
Λ is positive as long as ξ ≤ 2(1 − γ)(1 − (k − 1)µ)min(1, (|a1|(1 − β))2|ρ′′(0)|) with
Theorem 3.1.

In this case g is convex on Λ. Theorem 3.1 also gives a uniform bound for the operator
norm of the Hessian: ‖H‖op ≤ 2(1 + γ)(1 + (k − 1)µ)max(1, (|ak |(1 + β))2|ρ′′(0)|) + ξ
and g has Lipschitz gradient. We thus deduce from Corollary 1.1 that Λ is a basin of
attraction.

Hence we just need to show that ξ ≤ 2(1−γ)(1−(k−1)µ)min(1, (|a1|(1−β))2|ρ′′(0)|).
Let θ ∈ Λ, we have, with the RIP hypothesis,

ξ(θ) := 2d
√

1 + γ(‖Aφ(θ) −Aφ(θ∗)‖2 + ‖e‖2)
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

≤ 2d(1 + γ)(‖φ(θ) − φ(θ∗)‖h + ‖e‖2)
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

≤ 2d(1 + γ)(k sup
i

‖biδsi − aiδti‖h + ‖e‖2)
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

≤ 2d(1 + γ)(kβ|ak |+ ‖e‖2)
√

|ρ′′(0)|max(2|ak|(1 + β), 1)

(85)

where we wrote θ∗ =
∑

i aiδti and θ =
∑

i biδsi such that |si − ti| ≤ ǫ/4. The fact that
β ≤ 1/2 and ‖e‖2 ≤ kβ|ak| implies

ξ(θ)

min(1, |a1|2(1− β)2|ρ′′(0)| ≤
4(1 + γ)kdβ|ak |

√

|ρ′′(0)|max(3|ak|, 1)
min(1, |a1||ρ′′(0)|/4)

(86)
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Hence using the hypothesis that β ≤ (1−γ)(1−(k−1)µ) min(1,|a1|2|ρ′′(0)|/4)
2(1+γ)

√
|ρ′′(0)|kd|ak|max(3|ak |,1)

, we have

ξ(θ) ≤ 2(1− γ)(1 − (k − 1)µ)min(1, (|a1|(1− β))2|ρ′′(0)|) (87)

A.5 Proofs for Section 4

Proof of Lemma 4.1. Remark that g(θ) does not depend on the ordering of the posi-
tions. Reorder θ0 = (a, t) and θ1 = (b, s) such that t1 < t2... < tk and s1 < s2... < sk.
Consider the function g1(λ) = g(θλ) with θλ = (1 − λ)θ0 + λθ1. Remark that g1 is a
continuous fonction of λ taking values g1(0) = g(θ0) and g1(1) = g(θ1). Hence, with the
intermediate value theorem, there is λ such that g(θλ) = g1(λ) = α. Moreover, denoting
θλ = (aλ, tλ), we have, using the sorting of t and s, for 1 ≤ i < k,

|tλ,i+1 − tλ,i| = |(1− λ)ti+1 + λsi+1 − (1− λ)ti − λsi|
= (1− λ)|ti+1 − ti|+ λ|si+1 − si| > (1− λ)ǫ+ λǫ = ǫ.

(88)

Hence θλ ∈ Θk,ǫ.
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Learning of Mixture Models. Preprint, 2016.

[17] N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval. Compressive k-means.
In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on, pages 6369–6373. IEEE, 2017.

[18] S. Ling and T. Strohmer. Regularized gradient descent: a non-convex recipe for
fast joint blind deconvolution and demixing. Information and Inference: A Journal
of the IMA, 2017.
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