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Abstract
In response to the widespread use of control strategies such as Insecticide Treated Nets
(ITN), Anophelesmosquitoes have evolved various resistance mechanisms. Kdr is a muta-
tion that provides physiological resistance to the pyrethroid insecticides family (PYR). In the
present study, we investigated the effect of the Kdrmutation on the ability of female An.
gambiae to locate and penetrate a 1cm-diameter hole in a piece of netting, either treated
with insecticide or untreated, to reach a bait in a wind tunnel. Kdr homozygous, PYR-
resistant mosquitoes were the least efficient at penetrating an untreated damaged net, with
about 51% [39-63] success rate compared to 80% [70-90] and 78% [65-91] for homozygous
susceptible and heterozygous respectively. This reduced efficiency, likely due to reduced
host-seeking activity, as revealed by mosquito video-tracking, is evidence of a recessive be-
havioral cost of the mutation. Kdr heterozygous mosquitoes were the most efficient at pene-
trating nets treated with PYR insecticide, thus providing evidence for overdominance, the
rarely-described case of heterozygote advantage conveyed by a single locus. The study
also highlights the remarkable capacity of female mosquitoes, whether PYR-resistant or
not, to locate holes in bed-nets.

Introduction
In an attempt to separate the hungry malaria mosquito female from its human host, a physical
and chemical barrier was introduced: the PYR ITN [1,2]. The on-going extensive distribution
of ITNs aims to reach universal coverage in endemic countries [2]. Because ITNs are so effec-
tive at killing mosquitoes, and because ITNs can only be treated with PYRs, specific responses
have evolved in mosquito populations to confer either behavioral or physiological insecticide
resistance to these chemicals [3–7]. The most widespread physiological PYR-resistance mecha-
nism among mosquito vectors is the target-site L1014F mutation of the voltage-gated sodium
channel gene, named Kdrmutation. The mutated form decreases the affinity between the PYR
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molecule and the voltage-gated sodium channel, leading to a resistance phenotype that allows
mosquito to survive contact with ITN [6,8]. The impact of this mutation on the host-seeking
behavior of mosquito vectors has been largely overlooked. One especially important compo-
nent of host-seeking behavior, particularly in the context of widespread ITN use, is the mosqui-
toes’ ability to locate and penetrate weaknesses- i.e., holes- in damaged bed nets in order to
reach the human host and be able to reproduce.

We thus investigated how genotype at the Kdr L1014F locus (hereafter indicated as
SS = susceptible homozygotes; RR = resistant homozygotes; RS = heterozygotes) affected the
ability of An. gambiae s.s. females to find a hole in a piece of net (either untreated or treated).
Females sharing the same genetic background with only the Kdr locus altered [9] were individ-
ually video-tracked in a wind tunnel containing an attractive odor plume orientating the mos-
quitoes toward a guinea pig bait. The wind tunnel consisted of two chambers separated by a
holed net (S1 Fig.). Trials were recorded as successful if the mosquito passed through the hole
from the first chamber (C1) to the second chamber (C2) within a 60 min assay.

Results
A first, surprising result was that almost two-thirds of mosquitoes found the 1cm diameter
hole that would have allowed them to reach their blood meal (overall success rate = 62.6%,
N = 376/601, binomial 95% confidence interval CI [58.6–66.3]) in a mean time of 666.0s
[588.8–742.5] (S2 Fig. panel F), regardless of the net treatment or the genotype. However, the
Kdr genotype had a major effect on this success.

Cost of the homozygous resistant genotype for the Kdr locus
With an untreated holed net (UTN), the proportion of successful mosquitoes was significantly
higher for both SS and RS genotypes compared to RR (binomial model odds ratios: ORSS-RR = 3.75
[1.74–8.44], p = 0.0009; ORRS-RR = 3.23 [1.36–8.23], p = 0.0102), while not differing significantly
from each other (ORRS-SS = 1.16 [0.43–3.01], p = 0.75) (Fig. 1A, left panel). The lower performance
of the mutant homozygotes in the untreated net environment thus revealed a recessive behavioral
cost of the Kdrmutation.

Analysis of behavioral traits from video tracks with untreated nets indicated that An. gam-
biaemosquitoes with the RR genotype spent less time flying than those with SS (Kruskal-Wallis
rank sum test, p = 0.0016; Dunn’s post tests, p<0.01), and had fewer rates of contact with the
holed net compared to both the SS and RS genotypes (Poisson model Contact Rate Ratio:
CRRRR-SS = 0.261 [0.245–0.278], p<0.0001 and CRRRR-RS = 0.187 [0.176–0.2], p<0.0001)
(S2 Fig.). This suggests less efficient host-seeking behavior of RR mosquitoes relative to the SS
and RS types. RR mosquitoes mean flight speed was higher than that of either SS or RS mosqui-
toes (Kruskal-Wallis rank sum test, p<0.0001; Dunn’s post tests, p<0.01) (S2 Fig.). Mosquito
flight speed has been shown to be negatively correlated with attractive odor concentration [10–
12], so that higher flight speed might be an indication of less efficient odor detection in RR
compared with RS and SS mosquitoes. SS and RS mosquitoes showed similar rates of success in
penetrating the net, despite significant differences in the various behavioral traits (S2 Fig. pan-
els A and C).

Overdominance of Kdrmutation under PYR pressure
The behavior of the three Kdr different genotypes was then analyzed in presence of the two
long lasting ITN recommended by the World Health Organization. One type (Olyset Net) has
1000mg/m² permethrin incorporated into it, whilst the other (PermaNet 2.0) is coated with
55mg/m² deltamethrin.
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Faced with the PermaNet 2.0 net, heterozygote mosquitoes tended to be more successful in
finding the hole than either of the homozygotes (Fig. 1A, right panel), although these differences
were not statistically significant (ORRS-SS = 1.97 [0.92–4.43], p = 0.088; ORRS-RR = 1.52
[0.68–3.49], p = 0.315). This trend was reinforced (Fig. 1A, centre panel) and differences were

Fig 1. A- Proportions of Anopheles females of eachKdr genotype successfully penetrating a 1cm
hole in (i) an untreated net, (ii) a permethrin-treated Olyset Net, and (iii) a deltamethrin-treated
PermaNet 2.0. B- Proportions of knocked-down (KD) females among the failed when faced with ITN
(permethrin-treated Olyset Net on the left, deltamethrin-treated PermaNet 2.0 on the right), for each Kdr
genotype (untreated net is not presented since no mosquito from any strain presented the KD phenotype
during those exposures). The number of mosquitoes tested for each genotype (SS, RS and RR: homozygous
susceptible, heterozygous, and homozygous resistant for the Kdrmutation, respectively) is indicated. Error
bars represent the 95% binomial confidence intervals for the different proportions. Significance of the
different tests is indicated (NS p>0.05, * p<0.05, ** p<0.01, *** p<0.001).

doi:10.1371/journal.pone.0121755.g001
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significant when mosquitoes were faced with the Olyset Net (binomial regression, ORRS-SS = 2.85
[1.36, 6.24], p = 0.007; ORRS-RR = 2.47 [1.17–5.43], p = 0.02). Heterozygote mosquitoes were bet-
ter able to penetrate the net than homozygous susceptible or resistant mosquitoes, regardless the
net brand (when pooling data gathered with Olyset and PermaNet 2.0; ORRS-SS = 2.13 [1.30,
3.49], p = 0.0027; ORRS-RR = 2.42 [1.47, 4], p = 0.0005), supporting the heterozygote advantage
hypothesis. There was no significant difference between homozygous susceptible or resistant
mosquitoes regardless the ITN brand (Olyset: ORRR-SS = 1.15 [0.63 2.11], p = 0.64; PermaNet 2.0:
ORRR-SS = 1.30 [0.70 2.45], p = 0.41) (Fig. 1A, center and right panels).

To further quantify this heterozygote advantage, we computed the proportion of success pi as a
proxy of the relative fitness (wi) of each genotype i for each treatment, aswi = pi/pSS (thus wSS = 1, as
reference). Moreover, by decomposing the relative fitness aswSS = 1, wRS = 1+hs andwRR = 1+s, we
were able to estimate selection (s) and dominance (h) coefficients in the different treatments. We
confirmed that in the absence of PYR the R allele is deleterious (s = -0.35, 95% confidence interval
[-0.18, -0.49]), and that this cost is recessive (h = 0.09 [0.01, 0.68]). However, R is advantageous in
an environment with ITNs (s = 0.07 [0.001, 0.43] and 0.11 [0.001, 0.40] for Olyset and PermaNet
2.0, respectively). Furthermore, in ITN trials, we always found a dominance coefficient h> 1, con-
firming the observed heterozygote advantage, although quantifying this parameter precisely is more
difficult: h = 6.72 [1.33,>100] and 2.42 [0.001,>100], for Olyset and PermaNet 2.0, respectively.

The better performances of the heterozygotes during the experiments are explained by two
antagonistic forces of selection:

i. Benefit of R allele in presence of insecticide
SS females failed to find the hole because of the fast-acting knock-down (KD) effect of the PYR
insecticides: 97.7% [85.3–99.9] (43/44) and 97.4% [83.2–99.9] (37/38) of the failed SS mosqui-
toes were KD with Olyset Net and PermaNet 2.0 respectively (Fig. 1B, multinomial model
ORPermaNet-Olyset = 0.861 [0.052–14.269], p = 0.917). By contrast, almost all of the unsuccessful
RR mosquitoes had resisted the KD effect (KD 5.1% [0–18.6] (2/39) and 7.4% [0.04–25.7]
(2/27) with Olyset Net and PermaNet 2.0, respectively) (Fig. 1B, ORPermaNet-Olyset = 1.483
[0.196–11.242], p = 0.703). For heterozygotes, the result depended on the net: less than half of
the failed RS were KD with permethrin-treated Olyset Net (46.2% [17.7–73.9], 6/13), while
they were more affected by the deltamethrin-treated PermaNet 2.0 (91.7% [56.1–99.6], 11/12)
(Fig. 1B, ORPermaNet-Olyset = 12.911 [1.264–131.878], p = 0.031). This difference may be due to
the difference in insecticide molecule, concentration and/or availability on the net fiber.

ii. Cost of RR in absence of insecticide.
Because of the cost carried by RR mosquitoes, SS and RS mosquitoes showed higher success
rates in penetrating a 1cm hole in an untreated net (Fig. 1A). Moreover, the performance of
RS and RRmosquitoes in finding the hole were not altered by the insecticides (binomial
model, p>0.05), while SS mosquitoes' success rate was indeed reduced by 30% [14.5–45.5]
and 21.8% [6.8–36.7] with Olyset Net and PermaNet, respectively (binomial model,
ORUTN-Olyset = 4 [1.96–8.61], p<0.001; ORUTN-PermaNet = 2.87 [1.4–6.16], p = 0.005) (Fig. 1A).

Overall, the balance between the two antagonistic selection pressures, a negative influence
of Kdrmutation on individuals’ ability to find the hole on one hand, and the benefit for resis-
tance to KD on the other, was most favorable to heterozygotes, providing evidence for an over-
dominant effect at the Kdr locus on this behavioral trait.

Discussion
Insecticide resistance mechanisms are adaptations selected by challenging environmental con-
ditions. The Kdrmutation is an example of a specific amino acid change at a unique position of
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the voltage-gated sodium channel that confers resistance to organochlorine and PYR insecti-
cide classes in a major malaria vector in Africa, Anopheles gambiae s.l. [13]. PYR pressure can
affect the mosquitoes at different stages of their life cycle: larva (contaminated breeding sites)
and adult, both during resting (insecticide residual spraying) and host-seeking (ITN) periods.
At these different stages, the Kdrmutation can allow survival, and thus reproduction, in pres-
ence of insecticides (selective advantages). However, it also imposes deleterious side-effects (se-
lective costs), revealed in absence of insecticides. Conventional tests used to evaluate the
insecticide effects on susceptible and resistant mosquitoes rely on forced and prolonged contact
of the mosquitoes with the insecticide [14]. The results of these tests summarize the selection
processes occurring at both the larval and adult stages of the mosquito's life and are meant to
reflect the levels of resistance in the local mosquito population. Because of the higher resistance
of the RR genotype, and if the mutation induces no fitness cost, prolonged insecticide selection
in a population should lead to fixation of the Kdrmutation beyond the treated population [15].
However, as pointed out by Lynd et al. [16], there is a serious lack of evidence of Kdrmutation
fixation in wild Anopheles populations, even in areas with high insecticide pressure (either
from agriculture or from public health programs). Thus, they hypothesized that a fitness cost
associated with the Kdrmutation explained the absence of fixation [16]. Such costs have been
documented in Culex quinquefasciatus (through life history trait experiments) [17], however,
none have been reported so far in An. gambiae. Interestingly, Lynd et al. [16] also suggested
that the balance of advantages and costs could lead to overdominance, in which case the het-
erozygotes would be fitter than the SS and RR homozygotes [18–21].

Our study provides the first evidence of both a behavioural cost associated with the Kdr al-
lele that conveys pyrethroid and DDT resistance in An. gambiae. Importantly, this evidence
comes from an experimental set-up in which mosquito contacts with insecticide were unforced,
and thus could be interrupted, similar to the situation in natural settings.

We first noted that the host-seeking performance was reduced in females homozygous for
the resistance Kdr allele (RR) in the absence of insecticide. The RR females are less apt at find-
ing the hole in the net to reach their blood meal. This is the first evidence of behavioral costs as-
sociated with this mutation. It suggests a deficiency in the nervous system of RR females. The
voltage-gated sodium channel indeed plays a central role in message propagation in the ner-
vous system. The Kdrmutation enhances closed-state inactivation of nerves, meaning that
more stimulation is required before nerves fire and release acetylcholine into the synaptic cleft,
relative to susceptible individuals [22]. Consequently, the Kdrmutation probably affects several
behavior-related nervous pathways [23]. In Kdr resistant Heliothis virescensmoths, pharmaco-
logical and biophysical properties of sodium channels were found to cause sluggish neural ac-
tivity in the absence of PYR, and were characterized by decreased cellular and behavioral
excitability of sodium channels [24]. Further physiological and behavioral investigations are
underway to better understand the physiological processes underlying the behavioral changes
we report here.

A second finding is that, while still partially resistant to the insecticide, the heterozygous fe-
males are not affected by the cost observed in RR females. This is evidence for heterosis, or hy-
brid vigor, in which the product of a cross is superior to either parent [25]. One of the
modalities of heterosis is overdominance, the superior fitness of the heterozygous genotype
over both homozygotes [26], though reports suggesting heterozygote advantage for single gene
mutations are rare and controversial. Interestingly, the majority of the few examples came
from the study of resistance to infectious diseases, such as the major histocompatibility com-
plex in vertebrates; in insects, one of the best examples is the alcohol dehydrogenase (Adh)
locus in Drosophila melanogaster [21]. Studying contemporaneous heterozygote advantage im-
plies fulfillment of three criteria: i) identifying genes under selection, ii) establishing relative
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fitness and iii) understanding the selection mechanism [21]. The present study fulfills these cri-
teria and, thus, provides an unambiguous new example of overdominance. A single substitu-
tion in the gene encoding the voltage-gated sodium channel (Kdr) indeed provides
heterozygotes with resistance to the KD effect of PYR higher than susceptible homozygotes SS,
while imposing little cost, if any, as compared to the decreased host-seeking success seen in re-
sistant homozygotes RR. Compared to the homozygotes, the RS genotype maintains a better
balance between the antagonistic selective pressures to survive insecticide exposure while per-
forming a complex behavior.

Interestingly, overdominance is favorable for the evolution of new resistance alleles in the
form of heterozygote duplications (i.e. duplications in which the duplicates are different alleles
[27–29]). An advantageous heterozygous genotype bears a segregation cost, as only half of two
heterozygotes' progeny will bear this fitter genotype. A duplication associating both alleles on
the same chromosome would allow this advantageous genotype to fix by eliminating this segre-
gation cost. A similar heterosis situation is probably responsible for the selection of duplica-
tions of the ace-1 gene (encoding the target of organophosphorous insecticides) in both Cx.
pipiens and An. gambiae [30–33]. With one susceptible and one resistance allele in tandem on
the same chromosome, individuals with the duplication have fitness similar to that of heterozy-
gotes (resistance and reduced cost [29]); such duplication allows the fixation of this heterozy-
gote advantage in a population [30]. The overdominance at the Kdr locus thus provides ground
for similar evolution. Interestingly, a study of An. gambiae Kdr resistance by Pinto et al. [34] in
Gabon showed a significant excess of the heterozygote genotype, which could be a sign of the
presence of gene duplication for Kdr, as was shown in the case of ace-1 [30,33,35].

In a more applied perspective, our work highlights the overall high performance of all geno-
types in the trials: our results confirmed the remarkable ability of both susceptible and resistant
mosquitoes to find the only way through a bednet. These observations are in agreement with
previous experimental hut studies on the blood feeding rates of An. gambiae (see review [36]).
The Kdr resistance currently at high frequencies across much of Africa is only one of the
mechanisms conferring resistance to insecticides. The impact of such insecticide resistance
mechanisms on behavior and/or infection by Plasmodium spp. is of crucial interest [9,37,38]. A
multi-disciplinary approach is needed to study in depth the complex interactions among mos-
quito behavior, parasite infection and human-made insecticidal barriers, with the objective
of designing innovative tools that can more specifically target resistant and infectious mosqui-
toes [39,40].

Our study highlights the importance of behavioral studies for developing a full understand-
ing of the evolution of insecticide resistance and its impacts. By modulating host-seeking be-
havior, insecticide resistance can affect the vectorial capacity of female mosquitoes. Given the
ability of heterozygous mosquitoes in particular to readily overcome the barrier of a damaged
ITN, the effects of insecticide resistance on host choice and biting behavior remain to
be investigated.

Experimental Procedures
Mosquito strains and rearing
PYR insecticides target the voltage-gated sodium channel on the insects’ neurons. Non-
synonymous mutations in this target site that cause resistance to insecticides are often referred
to as knock-down resistance mutations (Kdr). These alleles confer the ability to survive pro-
longed exposure to insecticides without being ‘knocked-down' [6]. The substitution of a leucine
by a phenylalanine at codon 1014 (L1014F) is the most common sodium channel mutation, as-
sociated with PYR resistance in African malaria vectors [41].
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Two strains of An. gambiae s.s. were used. One is the insecticide susceptible strain Kisumu
(VectorBase, http://www.vectorbase.org, KISUMU1), isolated in Kenya in 1975. This strain is
susceptible and homozygous (SS) for the L1014 codon. The second strain named Kdrkis is re-
sistant to PYR and homozygous (RR) for the L1014F Kdrmutation. Kdrkis was obtained by in-
trogression of the L1014F mutation into the Kisumu genome through repeated backcrosses [9].
Heterozygous individuals (RS) were obtained through more than 15 crosses of Kisumu SS fe-
males with Kdrkis RR males. The three genotypes thus share a common genetic background
for most of their genome [9].

The genotype of both susceptible and resistant strains are confirmed every 3 months by
PCR following standard operational procedures of a WHO collaborating centre. For the pres-
ent study, Kisumu and KdrKis strains were checked by PCR (for the Kdr and ace-1mutations)
before the beginning of the behavioral assays (July 2012) and after the end of the study (May
2013) confirming that both strains were respectively homozygous susceptible and resistant
for Kdr.

The mosquitoes were reared at 27 ± 1°C, 60–70% R.H. under 16:8h L:D photoperiod at the
insectaries of the Institut de Recherche pour le Développement (IRD) in Montpellier, France.
Adults were fed with a 10% glucose solution and received a blood meal twice a week. Gravid fe-
males laid eggs on cups placed inside mesh-covered cages. Eggs were dispensed into plastic
trays containing de-ionized water. Larvae were kept in these trays and fed with TetraMin fish
food. Pupae were removed daily and allowed to emerge inside 50x50x50cm cages. Adult fe-
males used to generate these lines were fed with rabbit blood.

Mosquitoes used in the experiments were 7–8 days old females that had never received a
blood meal and were deprived of sugar the night before testing. The temperature of the experi-
mental room was maintained at 27 ± 1°C and 60–70% R.H.

Experimental setup
Experiments were conducted in a wind tunnel (40x13x13cm), divided into two chambers of
equal dimensions separated by a piece of netting (treated with insecticide or untreated) with a
1cm diameter hole in its center (HN) (S1 Fig.). Three types of holed nets were tested in this
study: untreated polyester net, Olyset Net (incorporated with 1000mg/m² of permethrin), and
PermaNet 2.0 (coated with 55mg/m² of deltamethrin). The chambers (C) were numbered 1
and 2, respectively. The tunnel was made of foam board with a white opaque Plexiglas floor
and a removable transparent Plexiglas roof. The ends of the chambers were screened with un-
treated net (NS) prevented the mosquitoes from escaping. The airflow entered the tunnel via a
10 cm diameter circular opening covered with an untreated net screen that acted as a dia-
phragm to regulate airflow in the tunnel at 16±3 cm.s-1.

The tunnel was softly illuminated by 12 blue LEDs (450nm) from 83cm underneath. Illumi-
nation inside the tunnel was 186.66 10-4 mW/cm-2.

The tunnel was completed by a glass cage (GC; 60x26x26cm), which held the attractive
guinea pig bait (able to move in a limited area in the upper part of the cage) and a fan aimed di-
rectly down the tunnel.

Mosquitoes were released individually for each trial. The trial was replicated for each geno-
type and treatment. In order to get enough replicates for the analysis of the performances, a
minimum of 40 mosquitoes successfully passing through the piece of net was required. The
number of replicates range from 40 to 91 depending of the treatment and genotype. Each
mosquito was filmed during 60 min maximum using a Sony Digital HD Video Camera
(HDR-XR550), placed 50cm above the tunnel. The camera was connected to a computer in an
external room from where the assay was controlled in real-time. Recording was stopped when
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the mosquito passed through the hole to chamber 2. MPEG-2 videos (PAL video: 720x576 pix-
els at 25 frames/s) were analyzed using Ethovision XT software (v.7, Noldus Information Tech-
nology, Wageningen, The Netherlands). During the trials, the mosquito was recorded as
successful if it passed through the holed net to reach the upwind chamber and unsuccessful
otherwise (i.e. it was still in the downwind chamber after the 60 min). Because ITN can induce
a fast-acting effect known as Knock-down (KD), unsuccessful mosquitoes were recorded as
KD if they were lying on their side or back with none of their tarsi in contact with the floor, or
otherwise alive. Moreover, the following behavioral variables were measured in chamber 1 for
the assay duration (60min or until the mosquito passed through the hole): (1) time spent on
the walls (except the holed net) of chamber 1, (2) time spent on the holed net, (3) number of
contacts with the holed net, (4) flight time, (5) mean flight speed, and (6) elapsed time before
passing through the hole (if successful).

During the setting-up phase of each experiment, latex gloves were used to avoid any con-
tamination with human skin odors. Mosquitoes were released individually from an opening
(1cm diameter) at the downwind extremity of one of the tunnel walls. Cotton was used to plug
the hole after releasing.

Statistical analysis
All statistical analyses were conducted using the software R version 3.0.2 [42] with the addi-
tional nnet, pgrmess and spaMM packages [43–45].

Performances
We analyzed the performance (i.e. probability of passing through the holed net) using a bino-
mial logistic model with Kdr genotypes (SS, RS or RR), treatments of the holed net (untreated,
Olyset Net or PermaNet) and interactions as explanatory variables. The model was written as
follow:

logitðPðy ¼ 1ÞÞ ¼ b0 þ bGenotype
i þ bTreatment

k þ bGenotype
i % bTreatment

k

, where bGenotype
i denotes the effect on the logit of classification in category i (SS, RS or RR) of Ge-

notype and bTreatment
k denotes the effect of classification in category k (untreated, Olyset Net or

PermaNet) of Treatment. Each combination of categories i and k of the explanatory variables
was successively used as reference class to allow multiple comparisons among genotypes and
treatments. Odds ratios and their 95% confidence intervals were computed. We calculated bi-
nomial confidence interval of the proportions of successful mosquitoes using Wilson's score
method [46] with a continuity correction [47].

The selection parameters h (for dominance) and s (for selection) determine the proportion
p of successful mosquitoes for the different genotypes in each trial, which are estimated by a bi-
nomial generalized linear model with predictor logit (p) = ag for the three genotypes g = SS, RS,
RR. h and s are complex functions of the three ag coefficients. For simplicity, we therefore ran-
domly generated aRS and aRR values (100,000 such pairs in a uniform distribution), and for all
such pairs we fitted aSS and plotted the attained likelihood against the corresponding h or s val-
ues. The upper boundary of either cloud of points is the profile likelihood for either parameter,
from which maximum likelihood estimates and likelihood ratio confidence intervals
were computed.

A multinomial logistic model with 3 possible outcomes (successful, unsuccessful alive or un-
successful KD) was used to compare the proportions of KD relative to the unsuccessful mos-
quitoes among genotypes and between insecticidal treatments (Olyset Net or PermaNet). The
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multinomial model allowed us to take into account the proportion of successful mosquitoes in
the analysis. Odds ratios and their 95% confidence interval were computed. We calculated mul-
tinomial confidence intervals for the proportions of KD using the method by Sison and Glaz
[48] (R package "MultinomialCI").

Behavioral variables recorded using video analyses
The number of contacts with the holed untreated net per time unit was compared among geno-
types using a Poisson model with the log of the video duration (i.e. the elapsed time before the
mosquito passed through the hole and 60min for successful and unsuccessful mosquitoes, re-
spectively) as an offset.

Proportion of flight time, mean flight speed, proportions of time spent on the holed net and
on the walls of chamber 1 were not normally distributed and were therefore compared among
genotypes using Kruskal-Wallis tests followed by Dunn’s post-hoc tests [45,49].

For successful mosquitoes, the time needed to pass through the hole in the untreated net
was also compared among genotypes using a Kruskal-Wallis tests followed by Dunn’s post-
hoc tests.

Ethical Considerations
The IRD lab where the experiments were run received the approval from the animal care and
use committee named “Comité d’éthique pour l’expérimentation animale; Languedoc Roussil-
lon” (CEEA-LR-1064 for guinea pigs and CEEA-LR-13002 for the rabbits).

Supporting Information
S1 Fig. Panel A. A wind tunnel to study the ability of malaria vector mosquitoes to pass
through a holed net. C1: Chamber one (release chamber); C2: Chamber 2; GC: Glass cage re-
ceiving the guinea pig bait; RO: Release opening; NS: Net screens; HN: Holed net. Panel
B. Photo of the experimental setup.
(TIF)

S2 Fig. Tukey’s boxplots of (A) contact rates, (B) proportions of flight time, (C) flight
speed, (D) proportion of time spent on the holed net, (E) proportions time spent on the
tunnel walls, and (F) elapsed time before passing through the hole in An. gambiae of the
three kdr genotypes faced with an untreated holed net. Whiskers indicate the most extreme
data that is no more than 1.5 times the interquartile range. Outliers are not shown. ns: non sig-
nificant, &&: p<0.01, &&&:p<0.001 according to (A) a Poisson model and (B, C, D, E, F) Dunn’s
post tests after a Kruskal-Wallis test.
(TIF)
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