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INTRODUCTION

Microporous materials such as zeolites, metal-organic frameworks, and porous carbons are widely used in catalysis, separation, selective adsorption, and metal decontamination. [START_REF] Kazakov | Hydrocracking of Vacuum Gas Oil over NiMo/γ-Al 2 O 3 : Effect of Mesoporosity Introduced by Zeolite Y Recrystallization[END_REF][START_REF] Bellussi | Zeolite science and technology at Eni[END_REF] These applications benefit from the large surface areas and small pore sizes of these materials, leading to strong interactions with the surface. However, these materials suffer from internal diffusion limitation due to the small size of their pores, which limits their efficiency. [START_REF] Kazakov | Hydrocracking of Vacuum Gas Oil over NiMo/γ-Al 2 O 3 : Effect of Mesoporosity Introduced by Zeolite Y Recrystallization[END_REF] In Order to increase the transport in microporous materials, mesopores have been created to produce micro-/mesoporous materials. [START_REF] Serrano | Hierarchical ZSM-5 zeolite with uniform mesopores and improved catalytic properties[END_REF][START_REF] Ivanova | Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications[END_REF][START_REF] Perez-Ramirez | Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization[END_REF][START_REF] Mitchell | Visualization of hierarchically structured zeolite bodies from macro to nano length scales[END_REF][START_REF] Jong | Zeolite Y with trimodal porosity as ideal hydrocracking catalysts[END_REF] One simple way to create mesopores in microporous zeolites consists of a post-treatment in basic medium with alkyltrimethylammonium surfactants. [START_REF] Ying | Mesostructured zeolitic materials, and methods of making and using the same US patent[END_REF][START_REF] Li | Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking[END_REF][START_REF] Linares | In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite[END_REF] Such hierarchical structures retain the micropores needed for a specific application and provide improved transport properties due to the presence of mesopores. The portions of micropore and mesopore surfaces are key factors to better understand these materials, which most of the time are characterized by their specific surface areas.

There are two main tools to calculate specific surface areas from adsorption measurements: the BET equation and the t-plot method, both being subject to controversy for materials containing micropores. [START_REF] Rouquerol | Is the BET equation applicable to microporous adsorbents? Stud[END_REF][START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF][START_REF] Villemot | Adsorption-based characterization of hierarchical metal-organic frameworks[END_REF][START_REF] Thommes | Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[END_REF][START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF][START_REF] Gregg | Surface area and porosity[END_REF] The t-plot method is a widely used procedure to estimate the total surface area as well as the external surface area of materials. In this method, the average thickness of an adsorbed film is first determined for a reference material containing no porosity, or only macroporosity, and having the same surface chemistry as the studied porous material.

Then the so-called t-plot is created by plotting the adsorbed volume at a given pressure against the average thickness of the adsorbate film (t) obtained at the same pressure for the non-porous reference material. [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF][START_REF] Gregg | Surface area and porosity[END_REF] For mesoporous materials, the adsorbed volume (V) varies linearly with the film thickness (t) and passes through the origin. The total surface area (S tot ) is directly given by the slope of the first linear fit at low pressure with V = S tot t. Once all pores are filled, adsorption occurs only on the external surface of the material and leads to a second linear fit at high pressure, the slope of which allows the determination of the external surface (S ext ) with V = S ext t.

For materials containing micropores, the first linear fit of the t-plot at low pressure most of the time does not pass through the origin or is not linear at very low pressure. [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] The first linear fit is done using several data points and the intercept with the Y-axis is usually taken to be the micropore volume. However, it was demonstrated experimentally in a previous publication [START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF] that the t-plot method underestimates the micropore volume when it exceed more than 10% of the total pore volume. By modeling, it also was highlighted that the t-plot method overestimates the surface areas of hierarchical microporous/mesoporous materials, such as mesoporous MOF structures (CuBTC). [START_REF] Villemot | Adsorption-based characterization of hierarchical metal-organic frameworks[END_REF] One goal of the present study is to verify experimentally this observation of overestimation of surface area by t-plot analysis.

To analyze carefully micropore and mesopore surface areas in a material by the t-plot method, it is of prime importance to use a good reference isotherm with the same surface chemistry as the analyzed materials. Different models of film thickness (e.g., Harkins and Jura, Halsey, Lecloux, etc) have been proposed in the literature. [START_REF] Gregg | Surface area and porosity[END_REF] But none of them are accurate for porous silica. As shown previously for purely mesoporous MCM-41 silica with a mesopore diameter of 4 nm, the t-plots do not pass through the origin. [START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF] Consequently, reference isotherms for materials of similar surface chemistry first need to be established. Toward this end, reference isotherms have been recorded for different types of non-porous [START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF] and macroporous silica [START_REF] Jaroniek | Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas[END_REF] and all of them are available for t-plot analysis of porous silica-based materials.

Another way to calculate total surface area is to fit the adsorption data to the BET equation. This is a routine characterization technique for porous materials. [START_REF] Rouquerol | Is the BET equation applicable to microporous adsorbents? Stud[END_REF][START_REF] Thommes | Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[END_REF][START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF][START_REF] Gregg | Surface area and porosity[END_REF] The BET specific surface area (S BET ) is usually assessed from adsorption experiments prior to capillary condensation of the fluid. The hypothesis of the BET model is that (1) adsorption occurs on energetically homogeneous sites and (2) molecules can adsorbed on each other. [START_REF] Rouquerol | Is the BET equation applicable to microporous adsorbents? Stud[END_REF][START_REF] Thommes | Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[END_REF][START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF][START_REF] Gregg | Surface area and porosity[END_REF] In this case, the adsorption energy for all molecules adsorbed above the first layer is constant and equal to the cohesion energy in the bulk liquid. The pressure range used to estimate the BET surface should follow the Rouquerol criterion, [START_REF] Rouquerol | Is the BET equation applicable to microporous adsorbents? Stud[END_REF][START_REF] Thommes | Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[END_REF][START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF][START_REF] Villemot | Adsorption and Dynamics in Hierarchical Metal-Organic Frameworks[END_REF] which makes use of the adsorption data up to the p/p 0 pressure where V(1-p/p 0 ) exhibits a maximum. Adsorption beyond this value represents the point where the adsorbed amount increases less rapidly with pressure in comparison to the first adsorbed layer. [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] The resulting monolayer capacity V m obtained from the BET plot provides a reasonable estimate of the geometrical surface when V m is converted to surface area using the common value of 0.162 nm 2 for the molecular cross section of nitrogen. [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] However, care should be taken when using this approach. Depending on the surface chemistry of the material, the ovoid nitrogen molecules can pack differently on the surface. The effective cross sections for nitrogen, for instance, can varying from 0.135 nm 2 for hydroxylated silica surfaces to 0.162 nm 2 for hydrophobic surfaces. [START_REF] Galarneau | Micelle-templated silicates as a test bed for methods of mesopore size evaluation[END_REF] The present study is in two parts. The first part concerns the use of the BET equation and the t-plot method to assess surface areas for micro-/mesoporous materials. The surface area determined by the BET equation for microporous FAU-Y zeolite is compared to the geometrical calculation of the surface by chord length distribution. The surface areas for micro-/mesoporous samples are compared to the areas determined by linear combination of the adsorption data for mechanical mixtures of FAU-Y and MCM-41 with known micropore and mesopore surface areas, respectively. A methodology is proposed to decouple the micropore, mesopore and external surface areas of the materials.

In the second part of this study, the corrected surface areas determined from the t-plots of mechanical mixtures of MCM-41 and FAU-Y are used to obtain the micropore and mesopore surfaces of a family of hierarchical micro-/mesoporous FAU-Y materials (denoted FAUmes) synthesized by post-treatment of FAU-Y in presence of octadecyltrimethylammonium (C18TAB) surfactant in basic medium at different NaOH/Si ratios (0.05 < NaOH/Si < 0.25).

EXPERIMENTAL SECTION

Synthesis of mesoporous FAU-Y (FAUmes).

In a beaker (250 mL), x g of NaOH pellets (x = 0.199 -1.998 g) was added to 180 g of H 2 O and the mixture was magnetically stirred until complete dissolution at room temperature (25 °C). Then 7.843 g of octadecyltrimethylammonium bromide (C18TAB) was added and stirring was continued until dissolution was again complete.

The magnetic stirrer was then replaced by an endless screw stirrer, which is more gentle and necessary to keep the particle size and shape of the initial particles. The endless screw stirrer was described previously for the pseudomorphic transformation of silica particles into MCM-41 particles. [START_REF] Galarneau | Controlling the morphology of mesostructured silicas by pseudomorphic transformation : a route towards application[END_REF] Then 12g of the parent dealuminated H-FAU-Y zeolite (Si/Al = 15), obtained from Zeolyst under the trade name CBV720, was then added and the mixture stirred for 1-2 h at room temperature (25 °C) to obtain a homogeneous white suspension. The suspension was then transferred into a Teflon-lined stainless-steel autoclave (250 mL) and kept under static conditions for 20 hours at 115 °C. The resulting mixture was then filtered and washed with water until neutral pH. The sample was dried in an oven at 80 °C for 12 h and calcined at 550 °C for 8 h (heating rate 5 °C/min). The molar ratios of the reaction mixtures were 1.0 FAU-Y / 0.10 C18TAB / n NaOH / 50 H 2 O (n = 0.025 -0.25).

Synthesis of MCM-41.

Al-MCM-41(C16, Si/Al = 15), used in the preparation of mechanical mixtures of FAU-Y and MCM-41, was synthesized as follows. NaAlO 2 (Carlo Erba) was added to an alkaline solution containing cetyltrimethylammonium bromide surfactant (C16TAB) (Aldrich). The mixture was stirred at 50 °C until complete dissolution before adding Aerosil 200 silica (Degussa) and stirring for 1 h. The composition of the mixture in molar ratio is 1 SiO 2 / 0.07 NaAlO 2 / 0.1 C16TAB / 0.25 NaOH / 50 H 2 O. The slurry was then placed in a stainless-steel autoclave and heated at 115 °C for 24 h. The resulting material was then filtered and washed until neutral pH, dried at 80 °C, and calcined at 550 °C for 8 h under air-flow. Materials Characterization. N 2 adsorption isotherms at 77 K were measured on a Belsorb apparatus using 200-300 mg samples outgassed in vacuum at 250 °C for 12 h before analysis. Ar adsorption isotherms at 87 K were obtained on a Quantachrome Autosorb-1C apparatus. The 50-mg samples were outgassed under vacuum at 200 °C for 20 h before analysis.

RESULTS AND DISCUSSION

Surface areas of FAU-Y and MCM-41. The nitrogen sorption isotherms at 77 K of FAU-Y and MCM-41 are reported in Figure 1 andt-plot curves are provided in Figure 2. The surface areas of FAU-Y and MCM-41 were determined using the BET equation and the t-plot method. reference isotherm and fitted by Eq. 5-7 for the pressure range 0.01 < p/p 0 < 0.80. For the low pressure range (p/p 0 < 0.01) t-plots were produced using (circles) LiChrospher 1000 (Si1000) as reference isotherm described by Jaroniec et al. [START_REF] Jaroniek | Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas[END_REF] (see supporting informations for the equations).

The BET surface areas have been calculated using the Rouquerol criterion. [START_REF] Rouquerol | Is the BET equation applicable to microporous adsorbents? Stud[END_REF] The Rouquerol plot, which is V(1-p/p 0 ) as a function of p/p 0, has been plotted to identify the first maximum pressure useful for a linear fit to the BET equation (Eq. 1).
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The adsorption data are then fit to the BET equation (Eq. 1) by a linear regression (y = ax + b).

The slope a and the intercept b are used to calculate the monolayer volume (V m ) and then the BET surface area (S BET ) with the following equations (Eq. 2,3):

V m = 1/(a+b) (2) 
(3

)
where V N2 is the molar gas volume, N A is Avogadro number, and σ N2 is the cross-section of the N 2 molecule, which corresponds experimentally to (Eq. 4) for σ N2 = 0.162 nm 2 :

S BET (m 2 /g) = 4.36 V m (mL STP) (4) 
For MCM-41, the BET surface area was 843 m 2 /g. The use of BET equation for microporous materials surface analysis is subject to controversy. However, computational studies of hierarchical micro-/mesoporous MOF materials (e.g., CuBTC) demonstrated that the BET surface area is well representative of the total surface area (micropore + mesopore + external surface areas). Moreover, the BET surface area is in agreement with the accessible surface area calculated by chord length distribution (S chord = 2187 m 2 /g and S BET = 2108 m 2 /g), [START_REF] Villemot | Adsorption and Dynamics in Hierarchical Metal-Organic Frameworks[END_REF] provided the Rouquerol criterion is respected. Similar results have been obtained for a purely microporous MOF (S chord = 1979 m 2 /g and S BET = 1958 m 2 /g). [START_REF] Villemot | Adsorption and Dynamics in Hierarchical Metal-Organic Frameworks[END_REF] it is therefore possible to use a BET calculation to determine the total surface area for materials containing microporosity.

The nitrogen isotherm at 77 K for FAU-Y has been recorded (Figure 1) and the BET surface area has been calculated taking into account the Rouquerol criterion. S BET for FAU-Y is 937 m 2 /g. This value is close, but slightly lower than the accessible total surface area of FAU-Y calculated by computational chord length distribution (S chord = 1259 m 2 /g). The reported surface area of FAU-Y accessible to water molecules (0.28 nm kinetic diameter) is 1211 m 2 /g, in accordance with the chord length distribution calculation of this study. [START_REF] Foster | A geometric solution to the Largest-Free-Sphere problem in zeolite frameworks[END_REF] The experimentally calculated S BET from the N 2 isotherm is lower (S BET = 937 m 2 /g), which can be explained by the use of the larger nitrogen molecule (0.364 nm kinetic diameter).

The BET surface area of FAU-Y was also determined from Ar isotherms at 87 K (S BET = 821 m 2 /g). This latter value is lower than the one obtained with N 2 . Ar has a similar kinetic diameter (0.34 nm) as N 2 , [START_REF] Sing | The Use of Molecular Probes for the Characterization of Nanoporous Adsorbents[END_REF] but Ar is a globular nonpolar molecule that leads essentially to nonspecific interactions with all types of adsorbents. On the other hand, N 2 has a particular ovoid shape and is quandrupolar, leading to specific interactions with hydroxylated surfaces. One hypothesis is that the ovoid shape of N 2 allows nitrogen to partially enter the sodalite cages (window aperture approx. 0.28 nm). Argon apparently only probes the supercages of FAU-Y (window aperture 0.74 nm). Thus, the total micropore + external surface area of FAU-Y, as determined using the BET equation, is 937 m 2 /g and 821 m 2 /g, respectively, when nitrogen and argon are used as adsorbates.

The second way to calculate the surface areas of porous materials is by the t-plot method, which plots the volume adsorbed as a function of the thickness (t) of the adsorbed film. [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF][START_REF] Gregg | Surface area and porosity[END_REF] In order to obtain accurate t-plot curves, the choice of a reference isotherm with a surface chemistry similar to the studied material is essential. A non-porous silica (Aerosil-200) was used in this study as a reference isotherm over the partial pressure range 0.009 < p/p 0 < 0.80. For this range of pressure, the Aerosil 200 reference isotherm is in good agreement with the reference isotherms reported by Jaroniec et al. [START_REF] Jaroniek | Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas[END_REF] for the macroporous silica LiChrospher Si-1000, as well as other forms of standard adsorption isotherms. [START_REF] Jaroniek | Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas[END_REF] For our study, the Aerosil 200 reference isotherm was fit by parts to Eqs. 5-7 below. In comparison to the fitting procedure we reported in a previous publication, [START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF] the present fitting results were in better agreement with the data presented by Jaroniec et al. [START_REF] Jaroniek | Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas[END_REF] These new fits were preferred for this study.

Equations 5-7 were used to transform p/p 0 into adsorbate layer thickness t: 0.009 < p/p 0 < 0. 

In order to obtain mesopore + external surface areas (S mes+ext ), the first linear t-plot fit was carried out at low t with the equation:

S(m 2 /g) = Slope/(ρ N2gas / ρ N2liq ) (8) 
corresponding experimentally to:

S(m 2 /g) = (Slope/646) 10 4 (9) 
For external surface area determinations (S ext ), the second linear fit of the t-plot (Figure 2) was performed at t below 0.92 nm; that is, at pressures below p/p 0 = 0.8 where the domain of validity is observed for the t-plot curve obtained for Aerosil-200. S ext is calculated from the slope of the second linear fit at high t (Eq. 9).

The t-plot curve of MCM-41 shows two slopes (Figure 2), one before the condensation step due to mesopore filling and one after due to the adsorption on the external surface. The first slope represents the total surface area (mesopore + external surface), which is equivalent to BET the surface area for mesoporous materials, and the second slope at high pressure represents the external surface area. The mesopore surface area is calculated by difference between the total surface area and the external surface area. This can be done by two ways: the subtraction of the external surface area from the total surface area determined by (i) the BET equation or (ii) by the t-plot. The total pore volume (or mesopore volume in the case of MCM-41) is obtained when the experimental points start being inferior to the second linear fit of the t-plot at high pressure (high t, Figure 2). The external surface of MCM-41 is 143 m 2 /g. A good correlation was found for MCM-41 between BET surface area (843 m 2 /g) and mesopore + external surface area (823 m 2 /g) determined by t-plot. The error in surface area determination is therefore ± 20 m 2 /g or around 2.5 % of the measured surface areas. The mesopore surface (S mes ) of MCM-41 is then calculated by difference between S BET and S ext (S mes = 700 m 2 /g) or between S mes+ext and S ext (S mes = 680 m 2 /g).

The total or mesopore volume of MCM-41 (V = 0.66 mL/g) was taken as the point where the second slope of the t-plot departs from the experimental data (Figure 2).

In order to calculate the micropore surface area of FAU-Y, the external surface was first determined from the t-plot. The use of t-plot method for calculating the surface areas of microporous materials is subject to controversy [START_REF] Villemot | Adsorption-based characterization of hierarchical metal-organic frameworks[END_REF][START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] and only external surface area calculation is recommended using the fit at high pressure (or high film thickness). [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] T-plot of FAU-Y was determined (Figure 2) and S ext for FAU-Y was calculated (85 m 2 /g). The micropore surface (S mic ) of FAU-Y was then obtained by the difference between S BET and S ext , which provided the value S mic = 852 m 2 /g. The micropore volume of FAU-Y is difficult to assess by the t-plot method due to the compressibility of nitrogen in micropores, [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] which, contrary to nitrogen in mesopores, leads to a non-constant nitrogen film thickness for a given pressure. The thickness of the film increases with decreasing micropore diameter. [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] For materials containing micropores, the intercept of the first slope with the Y-axis usually is used to determine the micropore volume. But as shown by computational studies for pure microporous or micro-/mesoporous materials, t-plots underestimate micropore volumes [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] and overestimate surface areas. [START_REF] Villemot | Adsorption-based characterization of hierarchical metal-organic frameworks[END_REF] The underestimation of micropore volume by t-plot method has been demonstrated experimentally for materials containing more than 10% micropore volume. [START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF] For dealuminated FAU-Y, it is also difficult to measure exactly the micropore volume by t-plot as a few small mesopores (2-4 nm) arise in the material through dealumination, leading to additional volume. However the examination of the nitrogen adsorption at very low pressure expressed as log(p/p 0 ) (Figure S1) allows better identification of these small mesopores. The micropore volume (V mic ) of FAU-Y has been assumed to be filled completely at p/p 0 = 0.1 (V mic = 0.317 mL/g). Thus, the intercept of the first slope of the t-plot with the Y-axis (Figure 2) for this purely micoporous material is misleading, because it corresponds instead to the underestimated value of (V mic )tpt = 0.232 mL/g. [START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF] By careful use of BET equations and t-plot methods, it was possible to assess the different surface areas for purely mesoporous materials and purely microporous materials. For mesoporous MCM-41, the two types of surface areas were S mes = 680-700 m 2 /g and S ext = 143 m 2 /g, whereas for FAU-Y, surface areas were S mic = 852 m 2 /g and S ext = 85 m 2 /g.

Surface areas of mechanical mixtures of FAU-Y and MCM-41.

As said previously, for micro-/mesoporous materials, it has been shown by modeling that the t-plot method overestimates surface areas. [START_REF] Villemot | Adsorption-based characterization of hierarchical metal-organic frameworks[END_REF] To experimentally verify this conclusion, mechanical mixtures with different weighted portions of FAU-Y and MCM-41 with known micropore and mesopore surfaces, respectively, have been prepared by simple powders mixing without grinding and analyzed by nitrogen adsorption at 77 K. The micropore and mesopore surface areas of the mixtures have been calculated independently by linear combination and compared to the results of the t-plot analysis (Figures 3,S3). S3). The slightly lower values of (S mes+ext )calc calculated by method 1 (Figures 3,S3, circles) are due to a small contribution of the mesopore surface in S mic of FAU-Y due to the fact that FAU-Y is a dealuminated zeolite and contains a small volume (0.036 mL/g) of small mesopores (diameter between 2 -4 nm).

For the mechanical mixtures of FAU-Y and MCM-41, the mesopore + external surface areas (S mes+ext )tpt and micropore volumes (V mic )tpt were then determined from the first linear fit of the t-plot at low t (Figure S2). The linear fit of the first slope is in general in the range 0.01 < p/p 0 < 0.17, corresponding to 0.2 < t < 0.4 nm, and contains the volumes and relative pressures at which all micropores are filled (ie. p/p 0 > 0.10, corresponding to t > 0.36 nm). The micropore volume (V mic )tpt was obtained from the intercept of the first linear fit (low t) with the Y-axis and (S mes+ext )tpt was calculated from the slope of this first fit (low t) with Eq. 9. The external surface area (S ext )tpt was determined using Eq. 9 and the second linear fit of the t-plot (Figure S2) performed at high t below 0.92 nm. The second linear fit corresponded to pressures below p/p 0 = 0.8 where the domain of validity was observed for the t-plot curve for the Aerosil-200 silica reference.

The comparison between t-plot analysis for (S ext )tpt and (S mes+ext )tpt, and linear combination calculations for (S ext )calc and (S mes+ext )calc (Figures 3 andS3), reveals that the values for the external surface areas are equivalent. Although there is no overestimation of external surface areas by t-plot analysis (Figure S3), the S mes+ext determined by t-plot (S mes+ext )tpt overestimates the "calculated" value of S mes+ext ((S mes+ext )calc) determined by linear combination for materials presenting a micropore surface area higher than 200 m 2 /g (Figures 3 andS3).

To better quantify the overestimation of (S mes+ext )tpt by the t-plot method, the ratio (S mes+ext )calc/(S mes+ext )tpt was represented as a function of the fraction of micropore volume (V mic /V tot ) contained in the mechanical mixtures as determined by t-plot ((V mic /V tot )tpt) (Figure 3). As explained previously, the total pore volume (V tot ) was taken from the t-plot (Figure S2)

when the second fit (high t) deviates from the experimental points as previously demonstrated by modeling. [START_REF] Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF] The micropore volume is given by the intercept of the first fit of the t-plot (low t)

with the Y-axis (Figure S2). The highest ratio (V mic /V tot )tpt observed by t-plot is for pure FAU-Y and corresponds to (V mic /V tot )tpt = 70%, not 100% due to the underestimation of micropore volume. [START_REF] Galarneau | Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials[END_REF] As a result, this graph (Figure 3) shows that the t-plot method gives accurate results for S mes+ext ((S mes+ext )calc = (S mes+ext )tpt) for materials containing less than 30% of micropore volume (0 < (V mic /V tot )tpt < 30 %). For larger amounts of micropore volume, S mes+ext is overestimated by the t-plot method, and the overestimation increases linearly with increase in the micropore volume until a maximum is reached (V mic /V tot )tpt > 55 % (Figure 3).

The following equations (Eq. 10 -12) have are provided to correct (S mes+ext )tpt determined by t-plot method for microporous/mesoporous materials:

(V mic /V tot )tpt < 30%: (S mes+ext )calc /(S mes+ext )tpt = 1 (10) 30 < (V mic /V tot )tpt < 55%: (S mes+ext )calc /(S mes+ext )tpt = 1.6 -0.02138 (V mic /V tot ) tpt (11) (V mic /V tot )tpt > 55%: (S mes+ext )calc /(S mes+ext )tpt = 0.38 (12) with (V mic /V tot )tpt expressed in %.

Surface areas of a family of hierarchical mesoporous FAU-Y. In order to improve transport properties of zeolite crystals mesopores can be created. [START_REF] Kazakov | Hydrocracking of Vacuum Gas Oil over NiMo/γ-Al 2 O 3 : Effect of Mesoporosity Introduced by Zeolite Y Recrystallization[END_REF][START_REF] Bellussi | Zeolite science and technology at Eni[END_REF][START_REF] Serrano | Hierarchical ZSM-5 zeolite with uniform mesopores and improved catalytic properties[END_REF][START_REF] Ivanova | Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications[END_REF][START_REF] Perez-Ramirez | Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization[END_REF][START_REF] Mitchell | Visualization of hierarchically structured zeolite bodies from macro to nano length scales[END_REF][START_REF] Jong | Zeolite Y with trimodal porosity as ideal hydrocracking catalysts[END_REF][START_REF] Ying | Mesostructured zeolitic materials, and methods of making and using the same US patent[END_REF][START_REF] Li | Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking[END_REF][START_REF] Linares | In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite[END_REF] In 2005, an attractive procedure was proposed consisting of the transformation of a silica-rich FAU-Y into mesoporous FAU-Y by a post-treatment in an alkaline solution containing alkyltrimethylammonium bromide surfactants (CnTAB). This created homogeneous ordered mesopores as in MCM-41 materials inside the FAU-Y crystals. [START_REF] Ying | Mesostructured zeolitic materials, and methods of making and using the same US patent[END_REF][START_REF] Li | Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking[END_REF][START_REF] Linares | In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite[END_REF] In the present study, mesoporous FAU-Y materials (named FAUmes) were synthesized using C18TAB surfactant with different NaOH/Si ratio (0.025 < NaOH/Si < 0.25).

Their nitrogen isotherms at 77 K have been performed (Figure 1) and their BET surface areas and t-plots have been analyzed (Figures 2 andS4) to calculate their external, micropore and mesopores surface areas taking into account the corrections of (S mes+ext )tpt (Eq. 10 -12) provided by the results for mechanical mixtures of FAU-Y and MCM-41.

(S mes+ext )tpt surface areas were calculated from the slope (Eq. 9) of the first linear fit of the t-plot. The linear fit of the first slope was in general in the range 0.01 < p/p 0 < 0.17 (corresponding to 0.2 < t < 0.4 nm) and contains the volumes and relative pressures at which all micropores are filled (ie. p/p 0 > 0.10, corresponding to t > 0.36 nm) (Figures 2,S4). (V mic )tpt micropore volumes were measured at the intercept of the Y-axis with this first linear fit. (S ext )tpt surface areas were calculated from the slope (Eq. 9) of the second linear fit. The linear fit of the second slope was in general in the range 0.65 < p/p 0 < 0.82 (corresponding to 0.7 < t < 0.9 nm) and contains the volumes and relative pressures below p/p 0 < 0.80 (corresponding to t < 0.92 nm), where the domain of validity was observed for the t-plot curve for the Aerosil-200 silica ACS Paragon Plus Environment reference. The total pore volumes (V tot )tpt were taken from the second linear fit of the t-plot where it leaves the experimental data points (Table 1). The above equations (Eq. 10-12) have been applied to (S mes+ext )tpt to obtain corrected values named (S mes+ext )cor (Table 1).

The transformation of FAU-Y into FAUmes depends of the NaOH/Si ratio used in the synthesis. The step at p/p 0 around 0.4 in the nitrogen isotherms (Figure 1) is characteristic of the formation of ordered mesopores of ca. 1).

To assess micropore surface areas of FAUmes materials by subtracting (S mes+ext )cor from the total surface area, the total surface areas of the materials have been calculated by BET equation (S BET ) using the Rouquerol criterion 11 (Figures 4,S5) to determine the highest p/p 0 pressure to use in the fit of the BET equation. The total surface areas (S BET ) is constant (937 m 2 /g) for FAU-Y and for untransformed FAU-Y (0 < NaOH/Si < 0.05), whereas S BET increases from 894 to 956 m 2 /g with increase of NaOH/Si ratio for 0.075 < NaOH/Si < 0.125 and then remains constant (949 m 2 /g) for higher values of NaOH/Si (0.125 < NaOH/Si < 0.25) (Table 1). The S BET surface areas calculated from nitrogen adsorption isotherms are sensitive to the surface chemistry of the materials, as the cross-section of N 2 molecules can vary from 0.135 nm 2 for a hydrophilic surface to 0.162 nm 2 for a hydrophobic surface depending on the orientation of the molecule with the surface. [START_REF] Galarneau | Micelle-templated silicates as a test bed for methods of mesopore size evaluation[END_REF] The latter cross-section (0.162 nm 2 ) is typically used in S BET calculation (Eq. 3,4).

In order to evaluate surface hydrophilicity, S BET surface areas were also assessed from Ar isotherms at 87 K. The S BET calculated from the Ar isotherms were constant (780 m 2 /g) except for untransformed FAU-Y materials (0 < NaOH/Si < 0.05), which show the highest surface areas (820 m 2 /g). To analyze the micropore + mesopore surface areas of the materials, the external surface areas (S ext )tpt were subtracted from the total surface areas (S BET ) (Figure S6). The resulting micropore + mesopore surface areas for FAUmes materials determined from Ar isotherms were constant (740 m 2 /g) for all NaOH/Si ratio (0 < NaOH/Si < 0.25), whereas the micropore + mesopore surface areas determined from nitrogen isotherms increase from 855 to 930 m 2 /g with increase in NaOH/Si ratio in the range 0 < NaOH/Si < 0.125 and then remain constant (920 m 2 /g) for higher NaOH/Si ratio (0.125 < NaOH/Si < 0.25) (Figure S6).

The Ar isotherm results show that the progressive increase of micropore + mesopore surface area observed from N 2 isotherms for the 0.05 < NaOH/Si < 0.125 samples is due to a change of the orientation of the nitrogen molecules on the surface. The progressive increase in the hydrophilic character of the surface during the transformation into FAUmes arises from an increase in the density of silanol groups on the surface of the materials. [START_REF] Kazakov | Hydrocracking of Vacuum Gas Oil over NiMo/γ-Al 2 O 3 : Effect of Mesoporosity Introduced by Zeolite Y Recrystallization[END_REF] FAU-Y and untransformed FAU-Y (0 < NaOH/Si < 0.05) feature a hydrophobic surface as silanol groups are isolated and nitrogen molecules are lying on the surface giving a cross-section of 0.162 nm [START_REF] Bellussi | Zeolite science and technology at Eni[END_REF] . By increasing the NaOH/Si ratio, silanol groups are formed 1 and the interactions between silanol groups increase, increasing the hydrophilic character of the surface of FAUmes materials. N 2 molecules are progressively oriented more perpendicularly to the surface and N 2 molecules crosssection decreases. The cross-section value of nitrogen molecules for the highest hydrophilic character of the materials (FAUmes synthesized with 0.125 < NaOH/Si < 0.25) corresponding to 920 m 2 /g instead of 855 m 2 /g can be estimated by assuming a constant BET surface area for all materials (as demonstrated by Ar adsorption). The N 2 molecule cross-section would become 0.1404 nm 2 instead of 0.162 nm 2 .

Corrections of S BET determined by nitrogen have been done with this new nitrogen crosssection for FAUmes synthesized with 0.075 < NaOH/Si < 0.25 and called S BET * (Table 1). The micropore, mesopore and micropore + mesopore surface areas have been calculated for all materials using either S BET or S BET * taking also into account corrections of S mes+ext determined by t-plot method (S mes+ext )cor. S BET was used for materials synthesized with 0 < NaOH/Si < 0.0625 and S BET * for 0.075 < NaOH/Si < 0.25. The micropore surface areas have been calculated from the difference of total surface areas (S BET or S BET *) with (S mes+ext )cor and named (S mic )cor or (S mic *)cor, respectively (Table 1). The mesopore surface areas were calculated by subtracting (S ext )tpt from (S mes+ext )cor and named (S mes )cor (Table 1). The micropore + mesopore surface areas have been calculated by difference of S BET or S BET * with external surface areas (S ext )tpt (Figure 5). NaOH/Si ratio in the synthesis, while the micropore +mesopore surface areas remain constant (Figure 5). The transformation of FAU-Y into mesoporous FAU-Y occurs with the same surface area (micropore + mesopore surface areas) as FAU-Y (937 m 2 /g). The microporous surface is replaced by a mesoporous structure of similar surface area (954 m 2 /g for FAUmes synthesized

with NaOH/Si = 0.25 with almost no microporosity). The transformation of FAU-Y into

FAUmes is accompanied by an increase of the surface hydrophilicity. A FAUmes material featuring an equivalent micropore and mesopore surface area should be obtained with NaOH/Si = 0.095 in the synthesis (Figure 5) and would feature an intermediate hydrophobicity/hydrophilicity in between FAU-Y and amorphous ordered mesoporous material as the one synthesized with NaOH/Si = 0.25 (Figure S6).

CONCLUSIONS

A methodology to decouple total, external, mesopore and micropore surface areas for micro-/mesoporous materials using the t-plot method and BET equation has been provided. S BET can be used to evaluate the total surface areas (microporous + mesoporous + external surface) of micro-/mesoporous materials if the Rouquerol criterion is well respected. By using mechanical mixtures of FAU-Y and MCM-41 materials of experimentally determined micropore and mesopore surface areas, respectively, it was shown that mesoporous + external surface areas (S mes+ext ) determined by the t-plot are overestimated for materials containing more than 30% of micropore volume.

Corrections for the overestimation of S mes+ext have been provided. This methodology has been applied to decouple the micropore and the mesopore surface areas of a family of hierarchical micro-/mesoporous FAU-Y (FAUmes) synthesized from FAU-Y in presence of octadecyltrimethyl ammonium bromide and different NaOH/Si ratios (0 < NaOH/Si < 0.25).

These characterizations of FAUmes show that the micropore surface area decreases and the mesopore surface area increases with the increase of NaOH/Si ratio, while the micropore + mesopore surface area remains constant. An equivalent micropore surface area and mesopore surface area is expected for a FAUmes material synthesized with NaOH/Si = 0.095. Comparisons of BET surface areas of FAUmes materials determined by N 2 isotherms at 77 K and Ar isotherms at 87 K show that FAU-Y features a hydrophobic character and that by transforming FAU-Y into FAUmes the hydrophilicity of the surface increases with the increase of NaOH/Si, especially in between 0.065 < NaOH/Si < 0.11, and then the surface remains hydrophilic for 0.125 < NaOH/Si < 0.25. The combination of t-plot method and BET equation is a powerful tool to evaluate independently the micropore and mesopore surface areas of micro-/mesoporous materials.

Equations given in this study to correct the overestimation of mesopore surface areas determined by t-plot method for hierarchical microporous/mesoporous materials apply to nitrogen isotherms at 77 K. However, these are not suitable for Ar adsorption at 87 K. Similar work will be performed to assess the micropore and mesopore surface areas from Ar isotherms in a future work. 
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 1 Figure 1. Nitrogen sorption isotherms at 77 K of (a) H-FAU-Y (Si/Al = 15) (CBV720), (b) Al-
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 2 Figure 2. t-plot curves of (a) H-FAU-Y (Si/Al = 15) (CBV720), (b) Al-MCM-41(C16) (Si/Al =
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 3 Figure 3. For mechanical mixtures of MCM-41 and FAU-Y, comparison of mesopore + external

  4 nm in the materials due to micelle-templating. This step is observed for 0.0625 < NaOH/Si < 0.25 revealing the transformation of FAU-Y into FAUmes for this range of NaOH/Si ratio. Too low NaOH/Si ratio, such as NaOH/Si = 0.05, does not allow for the transformation into FAUmes. External surface areas for FAU-Y and untransformed FAU-Y (0 < NaOH/Si < 0.05) were around 100 m 2 /g and decrease to ca. 30 m 2 /g for FAUmes (0.0625 < NaOH/Si < 0.25). Initial FAU-Y particles are built by an aggregation of crystals of different size and morphology around 1 μm diameter forming aggregates of ca. 10 μm. The transformation of FAU-Y into FAUmes occurs also in between the crystal aggregates and on the outer surface the crystals leading to a slight increase of particles diameter of ca. 30 μm 23 and, therefore, to a decrease of external surface areas by a factor 3 to 4. Mesopore surface areas (S mes )cor have been calculated by difference between corrected S mes+ext surface areas (S mes+ext )cor and external surface areas (S ext )tpt: (S mes )cor = (S mes+ext )cor -(S ext )tpt (Table

Figure 4 .

 4 Figure 4. Examples of Rouquerol plots of hierarchical microporous/mesoporous FAUmes

Figure 5 .

 5 Figure 5. Micropore (S mic )cor and mesopore (S mes )cor surface areas of hierarchical

Table 1 .

 1 Textural features of hierarchical mesoporous FAU-Y (FAUmes) synthesized with C18TAB surfactant and different NaOH/Si ratios produced from nitrogen sorption isotherms at 77 K. Total, mesopore and micropore volumes and surface areas have been calculated using BET equation and t-plot analysis (tpt) and corrected values of t-plot (cor). For t-plot analysis Aerosil 200 was used as reference isotherm. BET calculated with nitrogen surface 0.1404 nm 2 for 0.075 < NaOH < 0.25

	NaOH/Si S BET	S BET*	V tot	V mic	S mes+ext	V mic	V mes	S mes+ext	S mes	S mic	S mic *	S ext
				tpt	tpt	tpt	cor	cor	cor	cor	cor	cor	tpt
		m 2 /g	m 2 /g	mL/g	mL/g	m 2 /g	mL/g	mL/g	m 2 /g	m 2 /g	m 2 /g	m 2 /g	m 2 /g
	0	937		0.431 0.265 276	0.371 0.060 105	6	832		99
	0.025	868		0.383 0.258 208	0.361 0.022 79	-47	789		126
	0.05	861		0.437 0.233 278	0.326 0.111 128	32	733		96
	0.0625	885		0.479 0.222 339	0.311 0.168 206	143	679		63
	0.075	894	775	0.534 0.209 391	0.280 0.254 298	269	596	476	29
	0.0875	923	780	0.592 0.190 474	0.242 0.350 433	411	490	366	22
	0.10	926	802	0.634 0.180 509	0.222 0.411 509	479	417	293	30
	0.125	957	829	0.714 0.149 618	0.170 0.544 618	592	339	211	26
	0.15	949	822	0.766 0.116 701	0.122 0.644 701	670	248	121	31
	0.175	960	832	0.782 0.102 739	0.103 0.678 739	700	221	93	39
	0.20	956	828	0.790 0.085 771	0.085 0.705 771	730	185	58	41
	0.25	954	827	0.811 0.057 827	0.057 0.754 827	793	127	0	34
	*with S											
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