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Abstract—In this paper, the estimation of the regularization
parameter of the on-line Non-negative Matrix Factorization
(NMF) with minimum volume constraint on sources is addressed.
Adding a volume constraint in the model is important to
ensure uniqueness of the solution and good data representation.
However, the effectiveness of this approach is hampered by the
optimal determination of the strength of minimum volume term.
To solve this problem, we formulate it as a bi-objective opti-
mization problem and three Minimum Distance Criterion (MDC)
strategies are proposed and evaluated. The three strategies yield
similar results but one of them in particular yields an interesting
tradeoff between accuracy and computation time.

Index Terms—on-line Non-negative Matrix Factorization, min-
imum volume simplex, bi-objective optimization, Minimum Dis-
tance Criterion

I. INTRODUCTION

Non-Negative Matrix Factorization (NMF) is a problem

arising in applications such as hyperspectral imaging (which

is the main concern of this work) where the observed non-

negative data are non-negative linear mixtures of r non-

negative sources (endmembers). For a non-negative matrix

X ∈ R
n×m
+ , the NMF consists in finding two non-negative

matrices S ∈ R
n×r
+ and A ∈ R

r×m
+ with r ≤ min(n,m) such

that [10]: X ≈ SA. In hyperspectral imagery, the m columns

of X represent the pixel spectra sampled at n wavelengths. S

is a matrix containing the r normalized endmembers and A

is a matrix containing on its column the mixing coefficients

(the abundances) for the recorded samples. In general, the

NMF suffers from non-uniqueness of the solution [14]. To

be more precise, the uniqueness of the NMF relies on the

sparsity of the underlying latent variables. In particular, if

either S and/or A have only no zero entries, the NMF is

not unique and additional constraints such as sparsity [8]

or minimum volume constraint [12] need to be added to

have an unique factorization. Over the last decade, a lot of

attention has been paid to the development of on-line NMF,

sequentially updating the parameters S and A as the size of

the data matrix X increases [2], [11], [18], [19]. In particular,

we recently proposed [15] the on-line MVS-NMF (Minimum

Volume Simplex-NMF) which includes a minimum volume

constraint. This algorithm is well-adapted to real-time unmix-

ing of hyperspectral images, which is required in industrial

applications for controlling and sorting input materials. In

MVS-NMF, the strength of the minimum volume constraint is
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controlled by an hyperparameter; the main goal of this work

is to provide a method to determine it automatically. Some

classical approaches for regularization parameter estimation

are the generalized cross validation (GCV) method [4] and

the L-curve [6], [7]. As the NMF problem is bilinear, GCV

is not applicable. The L-curve is a log-log plot of the data

fitting versus regularization cost for varying regularization pa-

rameters; the optimal value of the hyperparameter corresponds

to the maximum curvature of the L-curve. Its link to multi-

objective optimization was first mentioned in [9]. However,

the L-curve approach has some undesirable properties dis-

cussed in [17] and [5]: it is non-convex and the maximum

curvature is not guaranteed to be unique. To overcome the

non-uniqueness of the maximum curvature, [1] proposed the

Minimum Distance Criterion (MDC) applied to the L-curve

(bi-objective case) and L-hypersurface (multi-objective case).

This leads to a simple fixed-point iterative algorithm for

computing regularization parameters in both bi-objective and

multi-objective cases but it requires to limit the range of

the hyperparameter to ensure that the corresponding part of

the L-curve remains convex. An approach using the L-curve

for estimating the regularization parameters of a Thikonov

regularized NMF was proposed in [13]. Similarly to [1], this

leads to a simple fixed point algorithm which also suffers

from the same problems: hyperparameter range limitation,

non-uniqueness of the maximal curvature. To overcome these

two main drawbacks, it was proposed in [16] to estimate

the hyperparameter by determining the MDC on response

curve (bi-objective case) or response surface (multi-objective

case) defined as the linear plot of the data fitting versus

regularization cost. This paper aims at investigating the interest

of such an approach for estimating the minimum volume

hyperparameter of the on-line MVS-NMF. Unlike [16] which

applies the MDC to a deconvolution case with a Tikhonov

regularization, the problem considered in this paper is the on-

line source separation with minimum volume constraint, and

presents different implementation problems, as explained in

the following sections. The remainder of the paper is organized

as follows: section 2 is briefly presenting the on-line MVS-

NMF algorithm. Section 3 aims at analyzing the response

curves for the on-line MVS-NMF. Section 4 presents several

MDC-based strategies for estimating the minimum volume

constraint hyperparameter. Conclusions and perspectives are

drawn in section 4.



II. ON-LINE MVS-NMF

The on-line MVS-NMF allows real-time blind unmixing of

hyperspectral images acquired by a hyperspectral pushbroom

imager installed on a production line. The main feature of

pushbroom imaging system is that the hyperspectral data cube

is acquired slice by slice, sequentially in time (which in fact is

representing the so-called along track spatial dimension OY ).

Each slice is a nx×nλ image, where nx represents the across

track spatial dimension (one line of the scene) and nλ, the

spectral dimension (wavelengths). The hyperspectral image is

created by moving the objects on the conveyor belt. To cast

the data in matrix form, the hyperspectral image is unfolded

as shown in figure 1. X̃
(1)

= X(1) is the first slice of the

hyperspectral image and X̃
(k)

, the kth slice. The entire dataset

at time instant (k + 1), X(k+1), can be represented as the

concatenation of the first k samples with the new incoming

sample i.e., X(k+1) =
[

X(k) X̃
(k+1)

]

. Similarly, we define

A(k+1) =
[

A(k) Ã
(k+1)

]

.

X̃
(1) ...

X̃
(k)

X̃
(k+1)nλ

knx

nx nx nx

X(k)

Fig. 1. Unfolded pushbroom hyperspectral image

To estimate
(

S̃
(k+1)

, Ã
(k+1)

)

, we consider the following

cost function:

J (k+1)
(

S(k+1),A(k+1)
)

= α

k
∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(ℓ)
Ã

(ℓ)
∥

∥

∥

2

F

+ (1− α)
∥

∥

∥
X̃

(k+1)
− S̃

(k+1)
Ã

(k+1)
∥

∥

∥

2

F

+ µ ln det
(

S̃
(k+1)T

S̃
(k+1)

)

, (1)

where the weighting coefficient α (0 ≤ α ≤ 1) adds some

tracking capacity to the algorithm. Following [2], we assume

that the endmembers vary only slightly between consecutive

samples i.e. S̃
(k+1)

≈ S̃
(k)

. The term ln det
(

S̃
(k+1)T

S̃
(k+1)

)

refers to the minimum volume constraint on the sources and

µ > 0 is the regularization parameter controlling the strength

of the minimum volume constraint. The on-line MVS-NMF

algorithm alternatively updates the matrices S̃
(k+1)

and Ã
(k+1)

by minimizing the cost function (1) using a gradient descent

technique, where the step size is chosen in order to obtain

multiplicative update rules (similarly to the classical NMF

[10]). Let us mention that we introduce the logarithm in the

minimum volume constraint because it results in simplifica-

tions of the update rule derivation. The different steps of

MVS-NMF are given in Algorithm 1. The interested reader

is referred to [15] for the complete derivation of the algorithm

and the analysis of the influence of α and Niter on its

convergence. While it was observed that the parameter µ

strongly influences the quality of the results, its value was

determined experimentally using a trial and error approach.

The objective of this paper is to propose an unsupervised

approach for estimating µ.

Algorithm 1 On-line MVS-NMF

Input : X̃
(1)

, r, α, µ, Niter = number of iterations
Initialization:

N = zeros(nλ, r), M = zeros(r, r),
Ã = rand(r, nx), S̃ = rand(nλ, r)
A = [ ]
Output : A and S̃

while New sample available do

iter = 1
while iter < Niter do

Ãrj ← Ãrj

(

S̃
T

X̃
)

rj
(

S̃
T

S̃Ã
)

rj

N← αN + (1− α)X̃Ã
T

M← αM + (1− α)ÃÃ
T

S̃ir ← S̃ir

(

NS̃
T

S̃
)

ir
(

S̃MS̃
T

S̃
)

ir
+µS̃ir

iter← iter + 1
end while

A← [A, Ã]
end while

III. RESPONSE CURVES FOR THE ON-LINE MVS-NMF

A. Response curve

Consider a hyperspectral image composed of K slices

X̃
(k)

, k = 1, . . . ,K which is used to learn the value of µ. We

assume that the values of α and Niter are fixed. Let S(K)
µ

and A(K)
µ denote the estimated endmembers and abundances

for a given value of µ. Following [16] the response curve

(bi-objective case) is the linear plot of the data fitting versus

minimum volume constraint cost for µ ∈ [0,+∞). The two

objectives are respectively defined as:

J1(µ) = J1(S
(K)
µ ,A(K)

µ ) =
1

K

K
∑

k=1

∥

∥

∥
X̃

(k)
− S̃

(k)

µ Ã
(k)

µ

∥

∥

∥

2

F
,

(2)

J2(µ) = J2(S
(K)
µ ) =

1

K

K
∑

k=1

det
(

S̃
(k)T

µ S̃
(k)

µ

)

. (3)

Note that the minimum volume constraint cost (3) used here

does not include the ln function as in criterion (1). This is to

avoid the non-convexity of the response curve induced by a log

scale along the J2-axis (we are currently working at proving

the convexity of the response curve). It is well known that the

NMF problems (including MVS-NMF) are bilinear and thus

non-convex. This has important consequences on the conver-

gence of the alternate algorithms such as the one proposed in

Algorithm 1: only the convergence toward a local minimizer



can be guaranteed and the obtained solution depends on the

initial values of the endmembers and abundances. To take into

account this point, we defined a response curve for some given

initial values (S̃
(0)

, Ã
(0)

). In the sequel, we consider the two

following questions: (i) what is the shape of a response curve?

(ii) what is the variability of the response curves for different

initial values? These two points are addressed numerically,

using a simulated hyperspectral image of size 119× 36× 36
consisting in the non-negative mixture of three endmembers

(with 119 wavelengths), not varying over time. None of the

three endemembers has any zero value, which results in a non-

unique NMF problem. In other words, without the minimum

volume constraint the model is not identifiable. The three

abundance maps are matrices of size 36×36, randomly drawn

from a continuous uniform distribution on the interval [0, 1].
By doing so, we ensure (with high probability) that the pure

pixel condition is approximately fulfilled; thus, in the noise-

free case, the minimum volume enclosing simplex yields the

correct endmembers. For the noisy case, a noise drawn from

a uniform distribution with positive support is added to reach

a SNR of 26dB. In all simulations, the values of parameters

for the on-line MVS-NMF were set to r = 3, α = 0.99 and

the number of iterations was fixed to 500 allowing to reach

a good tradeoff between convergence rate and computational

burden.

B. Shape of response curve

The response curves are evaluated for 44 values of µ ∈
[0.0001 0.0028]. Figure 2(a) corresponds to the noise-free

situation while figure 2(b) is for the noisy one. In addition,

the simplexes corresponding to the estimated endmembers for

different values of µ are shown in figures 2(c) and 2(d).
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(b) Response curve (noisy case)
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(c) Evolution of the estimated end-
member simplex for different values
of µ (noise-free case)
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(d) Evolution of the estimated end-
member simplex for different values
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Fig. 2. Response curve and estimated endmember simplex

For both cases, the response curve includes three main

parts: the first region corresponds to low values of µ. The

minimum volume simplex enclosing the data D is included

in the endmember simplex S i.e. D ⊂ S. This situation is

observed on figures 2(c) and 2(d) for µ = 0.0001 and 0.0005.

The second region corresponds to large values of µ, and the

endmember simplex volume tends to zero, indicating that the

endmembers tend to be collinear. In that case, D 6⊂ S. This

situation is observed on figures 2(c) and 2(d) for µ = 0.002.

The third region is the corner of the response curve which

corresponds to values of µ for which D ≈ S. The optimal

value of µ is in this part of the curve. This situation is observed

on figures 2(c) and 2(d) for µ = 0.0009. Comparing the noise-

free and the noisy scenarios, we observe that the noise is right

shifting the response curve by a value which increases with the

noise level. We can observe that the response curve seems to be

convex, on the considered domain; we are currently working at

proving it formally. Also, it appears that for large value of µ,

the data fitting tends to a maximum value which corresponds

to the case of three collinear endmembers. In this limit case,

the endmember is located in the gravity center of the data point

cloud. Figure 3 illustrates the influence of µ on the estimated

endmembers.
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Fig. 3. Estimated endmember for different values of µ

C. Influence of the initial conditions

As mentioned before, the NMF is a non-convex problem

and therefore it is very sensitive to initialization. This means

that the response curves will depend on the initial values

(S̃
(0)

, Ã
(0)

). To assess the influence of these initial values,

we evaluated the response curves obtained for 31 different

initial values drawn randomly from uniform distribution on the

interval [0 , 1]. It appears (figure 4) that most of the response

curves are very similar, but some are deviating from the “mean

response curve”. This is quite an important aspect since it

opens the possibility to use a single realization of the response

curve to estimate the optimal value of µ. We will address this

issue in the next section.

IV. HYPERPARAMETER ESTIMATION

In order to estimate the optimal value of µ, we propose to

use the MDC [16]. Three strategies are considered: the first one

consists in applying the MDC to the Pareto Front estimated

from the set of response curves, which corresponds in the best

achievable performance. The second one applies the MDC to

a single realization of the response curve. Finally, to assess

how the variability induced by the different initialization is

affecting the result we apply the MDC to the average response

curve.
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Fig. 4. Evolution of the response curve for different values of µ and different
initializations

A. Pareto Front

The definition of the Pareto front relies on the notion of

domination defined in [3]. A solution is said to dominate

another solution, if the first solution is not worse than the

second one in all objectives, and the first solution is strictly

better than the second one in at least one objective. The

solution is said to be non-dominated or Pareto optimal for

a bi-objective problem if all other solution in the feasible

set has a higher value in at least one of the objectives Ji,
with i ∈ {1, 2}. The image of all the non-dominated solutions

is called Pareto front. The shape of the Pareto front reveals

the nature of the trade-off between the different objective

functions and represents the set of the best achievable trade-

offs between conflicting objectives. It is worth noting that,

even if each response curve is convex, the Pareto front cannot

be guaranteed to be convex.

B. Minimum Distance Criterion

The Minimum Distance Criterion [16] consists in finding

the point of the response curve or Pareto front which is

at minimum distance to the ideal point. The ideal point I

corresponds to the point whose coordinates are the minima of

the two objective functions (see figure 5); it can be considered

as a reference point and the optimal point M of the response

surface will be the one having the minimum distance to this

ideal point. Let I = (I1, I2) denotes the coordinates of the

ideal point. The function D(µ) is the squared distance from

the ideal point I to the point M(µ) = (J1(µ),J2(µ)) on the

response surface:

D(µ) =

2
∑

i=1

(Ji(µ) − Ii)
2 (4)

The solution of the MDC is thus given by:

µ∗ = arg min
µ

D(µ) (5)

C. Results

The Pareto Front and the average response curve are eval-

uated from the 31 response curves. The MDC is applied

to the Pareto front, to the average response curve and to a

single realization of the response curve. The corresponding

ideal points are Ip, Ia and Is, respectively, while the optimal

points determined by the MDC are Mp, Ma and Ms (figure

6). The red line segment represents the minimum distance

Fig. 5. Representation of the response curve. The ideal point is denoted by
I and the optimal point is denoted by M

between points I and M . The Mp, Ma and Ms points on

figure 6 may seem visually not optimal with respect to the

MDC. This is because, for illustration purpose, we applied a

much stronger zoom on the horizontal axis compared to the

vertical axis. The estimated values of µ are: 0.001 (Pareto

Front), 0.0011 (average response curve) and µ = 0.00095
(single realization response curve). While these differences

may seem important regarding the results of figure 3, all these

values of µ yield endmembers which are very close to the

true ones, when we are closed to the optimal value. Thus,

the estimated µ is not very sensitive to the chosen strategy.

Even for the very different response curve (see figure 4) the

single realization response curve strategy yields an estimated

µ = 0.0014. This is a very important result, since it states that

the hyperparameter can be estimated by the single realization

strategy. This is the one with the lowest computational burden

and opens the possibility to perform on-line estimation of µ.
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Fig. 6. Pareto curve and optimal point

A similar procedure could be used to estimate α. However,

this would require the estimation of the Pareto Front each

time a new sample arrives, which represents an unacceptable

computational cost for an on-line algorithm.

V. CONCLUSION

This paper addresses the problem of regularization param-

eter estimation for the on-line MVS-NMF. Three different

MDC-based strategies were proposed, all yielding similar

results. Among the three strategies, the single realization

response curve approach is the most attractive since it presents

the lowest computational cost. The results presented in this

paper open the possibility to develop an on-line learning of

the regularization parameter, which is an aspect of utmost

importance in industrial applications.
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