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D-branes and non-Abelian T-duality

We study the effect of non-Abelian T-duality (NATD) on D-brane solutions of type II supergravity. Knowledge of the full brane solution allows us to track the brane charges and the corresponding brane configurations, thus providing justification for brane setups previously proposed in the literature and for the common lore that Dp brane solutions give rise to D(p+1)-D(p+3)-NS5 backgrounds under SU(2) NATD transverse to the brane. In brane solutions where spacetime is empty and flat at spatial infinity before NATD, the spatial infinity of the NATD is universal, i.e. independent of the initial brane configuration. Furthermore, it gives enough information to determine the ranges of all coordinates after NATD. In the more complicated examples of the D2 branes considered here, where spacetime is not asymptotically flat before NATD, the interpretation of the dual solutions remains unclear. In the case of supersymmetric D2 branes arising from M2 reductions to IIA on Sasaki-Einstein seven-manifolds, we explicitly verify that the solution obeys the appropriate generalized spinor equations for a supersymmetric domain wall in four dimensions. We also investigate the existence of supersymmetric mass-deformed D2 brane solutions.

Introduction

Non-Abelian T-duality (NATD) has recently attracted renewed interest, not least as a tool for generating new supergravity solutions. A partial list of related literature includes [START_REF] De | Duality symmetries from nonAbelian isometries in string theory[END_REF][START_REF] Fridling | Dual Representations and Ultraviolet Divergences in Nonlinear σ Models[END_REF][START_REF] Fradkin | Quantum Equivalence of Dual Field Theories[END_REF][START_REF] Sfetsos | On non-abelian T-dual geometries with Ramond fluxes[END_REF][START_REF] Lozano | Non-abelian T-duality, Ramond Fields and Coset Geometries[END_REF][START_REF] Itsios | Non-Abelian Tduality and the AdS/CFT correspondence:new N=1 backgrounds[END_REF][START_REF] Lozano | Supersymmetric AdS 6 via T Duality[END_REF][START_REF] Lozano | A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow[END_REF][START_REF] Bea | Compactifications of the Klebanov-Witten CFT and new AdS 3 backgrounds[END_REF][START_REF] Lozano | New AdS 3 × S 2 T-duals with N = (0, 4) supersymmetry[END_REF][START_REF] Macpherson | Type IIB supergravity solutions with AdS 5 from Abelian and non-Abelian T dualities[END_REF][START_REF] Zayas | Supergravity solutions with AdS 4 from non-Abelian T-dualities[END_REF][START_REF] Pando Zayas | Supersymmetric IIB background with AdS 4 vacua from massive IIA supergravity[END_REF]. One problem in this context is that NATD only carries local information: even when the starting point (the "seed") is a globally well-defined solution, NATD will typically generate a highly complicated local solution whose global completion, if it exists, is completely obscured. The main motivation of the present paper is to consider, as seeds of the NATD, full-fledged brane solutions -as opposed to AdS near-horizon solutions, which has been the case before. The point is that, as we will see, being able to follow the interpolation between the near-horizon and spatial infinity limit, gives us a better handle on the brane configuration and the global properties of the dual.

Before NATD, standard intersecting brane solutions (i.e. those following the simple harmonic superposition rule) often interpolate between two asymptotic regions, each of which is an independent supergravity solution in its own right: flat space at spatial infinity, and the near-horizon limit -which in the examples considered here always contains an AdS factor. In fact the brane is not strictly-speaking present in these solutions: the brane backreacts on the flat space in which it is initially inserted and dissolves into flux, so that the resulting solution is without sources. 1 In the interpolating and nearhorizon solutions there is still a remnant of the brane, whose charge can be computed by integrating the flux.

The NATD of the spatial infinity limit of a standard intersecting brane solution is then universal, i.e. it is the same for all standard intersecting brane solutions: it is simply the NATD of flat space. As we will see in detail in section 2.2.2, in this case an SU (2) NATD generates a distribution, whose density can be determined explicitly, of parallel NS5 branes continuously distributed along a half line. However after NATD the notion of spatial infinity limit and near-horizon limit are no longer necessarily meaningful. Still, as previously stated, both limits are genuine solutions so that NATD will generate new solutions out of them. These will be called respectively the spatial infinity and near-horizon limit of the dual. For the case of the D3 brane, discussed in section 2, this definition leads to the commutative diagram of figure 1.

Furthermore, all examples considered here will be seen to be consistent with the common lore that Dp brane solutions give rise to D(p+1)-D(p+3)-NS5 backgrounds under SU(2) NATD transverse to the brane [START_REF] Lozano | Three-dimensional N = 4 linear quivers and non-Abelian T-duals[END_REF] 2 .

More generally, for nonstandard brane solutions, such as the D2 branes considered here in sections 4, 5, 6, the geometry may not asymptote to flat space even before NATD. In that case the original solution and its dual will in general contain non-vanishing fluxes even at spatial infinity. Nevertheless, by zooming in near the locus of the NS5, one can still see the presence of a continuous distribution of NS5 branes in accordance with the harmonic superposition prescription for intersecting branes. (d) continuous linear distribution of NS5 branes along a half line. The spatial infinity limit of the dual solution is defined by taking the limit before the NATD.

Having the full interpolating solution can facilitate reading off the possible global completions of the geometry after NATD. In particular the topology of the slices r = constant can be studied more easily by taking the spatial infinity limit r → ∞, where the various expressions simplify. As already mentioned, this becomes most clear in the standard cases where, before the NATD, the space becomes flat at spatial infinity and the NATD is universal.

In order to describe the supersymmetric D2-branes of our paper arising from M2 reductions to IIA on Sasaki-Einstein seven-manifolds, we used the formalism of generalized geometry and the sevendimensional pure spinors of [START_REF] Haack | Domain walls from ten dimensions[END_REF]. We explicitly verify that this class of solutions obeys the appropriate generalized spinor equations for a supersymmetric domain wall in four dimensions. One of our main motivations in deriving these supersymmetric domain wall equations was to search for the brane solution, if it exists, whose near horizon limit corresponds to the massive IIA solution found in [START_REF] Lüst | New supersymmetric AdS(4) type II vacua[END_REF]. The near horizon limit of the D2 brane solution we study in section 4 corresponds to the massless limit and provides a simple solution to these supersymmetry equations in the case of SU(3) structure. A longer term goal is to understand whether the massive IIA deformation of the backgrounds in section 4 are related to a class of massive IIA AdS 4 solutions [START_REF] Rota | AdS 4 compactifications of AdS 7 solutions in type II supergravity[END_REF] which arise as a compactification from AdS 7 , and are dual to 3d twisted compactifications of 6d (1,0) SCFTs. This work was initiated as a first step towards perhaps a better understanding of the mass deformation solution in [START_REF] Lüst | New supersymmetric AdS(4) type II vacua[END_REF] and its NATD found in [START_REF] Pando Zayas | Supersymmetric IIB background with AdS 4 vacua from massive IIA supergravity[END_REF] in that context. While we were unable to find that interpolating mass deformed solution in this paper, by investigating the existence of supersymmetric mass-deformed D2 brane solutions we have ruled out a large class of Ansätze.

The outline of the paper is as follows. We revisit the case of the D3 brane in section 2. Various D2 brane solutions are examined in sections 4, 5, 6. These are obtained by reduction from eleven dimensional solutions of M2 branes transverse to cones over S 7 or Y p,q reviewed in section 3. In section 7 we examine massive deformations of the supersymmetric massless IIA D2 brane solutions of section 4. We start by casting the supersymmetry equations of the branes in the formalism of generalized geometry in section 7.1. Massive deformations of the resulting pure spinor equations are examined in section 7.2. We conclude in section 8. In the appendix we explain our various conventions and compare them to the literature.

D3 brane

The metric describing a stack of parallel D3 branes is given by,

ds 2 = H(r) -1/2 ds 2 (R 1,3 ) + H(r) 1/2 [dr 2 + r 2 ds 2 (S 5 )] , (1) 
where H(r) = (1 + L 4 r 4 ). The S 5 is parameterized as follows,

ds 2 (S 5 ) = dα 2 + sin 2 α dθ 2 + 1 4 cos 2 α (σ 2 1 + σ 2 2 + σ 2 3 ) , (2) 
where α ∈ [0, π 2 ], θ ∈ [0, 2π], and σ i are left-invariant SU (2) Maurer Cartan one-forms given by,

σ 1 = -sin ψ 1 dθ 1 + cos ψ 1 sin θ 1 dφ 1 σ 2 = cos ψ 1 dθ 1 + sin ψ 1 sin θ 1 dφ 1 σ 3 = cos θ 1 dφ 1 + dψ 1 , (3) 
with ranges

ψ 1 ∈ [0, 4π], θ 1 ∈ [0, π], φ 1 ∈ [0, 2π].
This background is supported by a constant dilaton and an F 5 flux given by,

F 5 = (1 + )dx 0 ∧ dx 1 ∧ dx 2 ∧ dx 3 ∧ dH(r) -1 = dx 0 ∧ dx 1 ∧ dx 2 ∧ dx 3 ∧ dH(r) -1 -4L 4 dΩ 5 . ( 4 
)
Upon quantization of the five-form flux, one obtains the well-known relation between the constant L in the harmonic function and the number N D3 of D3 branes:

L 4 = 4πα 2 N D3 .
The D3 branes lie along the R 1,3 directions. This can be seen in a probe approach. Consider the same expression as (4) for a flux living now in R 1,9 . The coordinates now refer to the metric (1), but with H = 1. Since in spherical coordinates the S 5 collapses at r = 0, its volume form dΩ 5 is ill-defined. However F 5 is a well-defined current (i.e. a distribution-valued form) and we can compute:

dF 5 = d F 5 = 4L 4 δ(r)dr ∧ dΩ 5 (5) 
This means that a brane is inserted in r = 0. In this coordinate system this is a codimension 6 space, and thus a D3 lying along R 1,3 . In the transverse space R 6 the brane looks like a point.

The D3 now acts as a source for the flux F 5 , which backreacts on the metric through Einstein's equations to give [START_REF] De | Duality symmetries from nonAbelian isometries in string theory[END_REF]. The global geometry has changed, and the S 5 no longer collapses. The supergravity equations are solved without sources and the brane cannot be seen anymore. Nevertheless the information about the brane is still present in the charge carried by the flux.

Near-Horizon and spatial infinity

Taking (1) as an ansatz for the metric, the supergravity equations reduce to an equation on H. In the probe interpretation this amounts to saying that H is harmonic in the transverse space. If we further constrain H to depend on r only, the general solution is of the form,

H(r) = a + b r 4 , (6) 
where a and b are two integration constants. b can readily be interpreted as the brane charge. Then two limiting cases arise:

Spatial infinity: If b = 0, H is a constant and the space is flat without flux: no brane is inserted. Since H → a when r → ∞, this case is called the spatial infinity limit.

Near Horizon: If a = 0, the solution becomes,

ds 2 = ds 2 (AdS 5 ) + L 2 ds 2 (S 5 ) = r 2 L 2 ds 2 (R 1,3 ) + L 2 r 2 dr 2 + L 2 ds 2 (S 5
)

F 5 = (1 + ) 4r 3 L 4 dx 0 ∧ dx 1 ∧ dx 2 ∧ dx 3 ∧ dr , (7) 
which is the well-known AdS 5 × S 5 background. For r → 0, H ∼ b r 4 so that this case is called the near horizon limit.

It is remarkable at first sight that both limits correspond to genuine backgrounds. The reason behind this is that they ultimately correspond to different choices of integration constants. These considerations might seem trivial for now, but they will be relevant in the following, when the brane configurations become more involved.

The NATD

After performing NATD along the SU(2) isometry in the σ i , cf. (3), the background (1), (4) becomes,

ds 2 = H(r) -1/2 ds 2 (R 1,3 ) + H(r) 1/2 [dr 2 + r 2 (dα 2 + sin 2 αdθ 2 )] + 1 4 
α 2 Ξ dρ 2 + Ξ 2 64α ∆ ρ 2 (dχ 2 + sin 2 χdξ 2 ) B 2 = - ρ 3 Ξ 256∆ sin χdχ ∧ dξ e -2φ = ∆, ∆ = Ξ 64α 3 (α 2 ρ 2 + Ξ 2 ), Ξ = r 2 cos 2 α H(r) , (8) 
and nonzero RR fluxes given by,

F 2 = - Ξ 8α 3/2 H (r) H(r) r 3 cos α sin αdα ∧ dθ F 4 = Ξ 2 2048α 3/2 ∆ H (r) H(r) r 3 ρ 3 cos α sin α sin χdα ∧ dθ ∧ dχ ∧ dξ . (9) 
In particular we see that the NATD has resulted in a metric which is singular at α = π 2 . Moreover the duality has generated a nonvanishing Kalb-Ramond field B 2 and a varying dilaton φ.

Note that the background (8) contains a family of solutions, inheriting its degrees of freedom from the D3 solutions before duality: for each choice of harmonic function H, NATD generates a different solution. We will keep the same denomination for the different limits, namely the near-horizon for H = L 4 r 4 and spatial infinity for H = 1 (i.e. L = 0). However their interpretation as different limits of the interpolating dual background is less meaningful. We will study them separately to get a better view on the brane configurations.

For later use let us rewrite the metric in [START_REF] Lozano | A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow[END_REF] in terms of the coordinates defined by, x = r sin α cos θ ; y = r sin α sin θ ; u = r cos α . [START_REF] Lozano | New AdS 3 × S 2 T-duals with N = (0, 4) supersymmetry[END_REF] Recalling the ranges of the α, θ coordinates, cf. (2), we see that u ≥ 0, while x, y ∈ R. Simplifying with r 2 = x 2 + y 2 + u 2 then gives,

ds 2 = H -1/2 ds 2 (R 1,3 ) + α 2 4u 2 dρ 2 + H 1/2 dx 2 + dy 2 + du 2 + α 2 ρ 2 u 2 4(α 2 ρ 2 + Hu 4 ) (dχ 2 + sin 2 χdξ 2 ) . ( 11 
)
In these coordinates, the metric is singular at u = 0.

Brane configuration and charges

The non-vanishing fluxes might indicate the presence of branes. Here we could expect NS5, D4 and D6 branes as magnetic sources for H, F 4 and F 2 . The first clue is given by the corresponding charges.

Let us start with the NS flux. An appropriate cycle would be the following: start at constant α = α 0 and integrate along ρ, χ, ξ where ρ goes from 0 to ρ 0 . At ρ = 0 the cycle closes but we need to close it at ρ 0 . To do so, keep ρ constant and vary α from α 0 to π/2. The resulting charge will be independent of α 0 so we can take the limit α 0 → π/2.

Along the cycle

Σ 3 = [ρ, χ, ξ], α = π 2 , H 3 simplifies to H 3 = 1 4 α sin χdξ ∧ dχ ∧ dρ . ( 12 
)
Integrating H 3 yields,

Q N S5 = 1 2κ 2 10 T N S5 α 4 ρ 0 0 dρ π 0 sin χdχ 2π 0 dξ = ρ 0 4π = N N S5 , (13) 
In fact the charge will depend only on the value of ρ when the cycle reaches α = π/2. As we will see more explicitly in the simpler case of the spatial infinity limit in section 2.2.2, this suggests a continuous distribution of NS5 branes at α = π/2 along the ρ direction, with constant charge density. For the flux to be quantized we need to close the cycle at quantized values of ρ, namely ρ 0 = 4nπ. The NS5 branes are thus located at the singularity: this can be seen from the form of the metric and NS-NS fields in the limit α → π 2 , which is consistent with the general form expected from the harmonic superposition rule [START_REF] Youm | Black holes and solitons in string theory[END_REF]. After defining ν = (π/2 -α) 2 we find, in the α → π 2 limit,

ds 2 = H -1/2 ds 2 (R 1,3 ) + H 1/2 dr 2 + r 2 dθ 2 + r 2 4ν dν 2 + α 2 Hr 4 dρ 2 + ν 2 (dχ 2 + sin 2 χdξ 2 ) e 2φ = 64α r 2 √ Hρ 2 ν ; H 3 = α 4 sin χdρ ∧ dχ ∧ dξ . (14) 
The harmonic function in the space transverse to the NS5 is proportional to ν -1 , indicating the presence of NS5 branes at ν = 0. However this is not a point in the transverse space. Since ρ is still unconstrained, this is consistent with a distribution of charge along ρ.

In order to determine the configuration of the remaining branes we follow the same strategy. Recall that in solutions with nonzero B 2 , the quantized charges are the Page charges, defined as integrals of the Page forms,

Fp = F p e -B 2 . ( 15 
)
As can be seen from this definition, the Page charges depend on the cohomology class of B 2 , i.e. they are not invariant under large gauge transformations of B 2 .

Integrating the Page forms in the D3 brane solution gives,

Q D6 = 1 2κ 2 10 T D6 L 4 2α 3/2 π 2 0 cos 3 α sin αdα 2π 0 dθ = N D6 (16) 
Q D4 = 0 , (17) 
which leads to L 4 = 8α 2 N D6 . If we denote by ∆Q D4 the change of D4 brane charge under a large gauge transformation of B 2 ,

∆B 2 = -nπα sin χdξ ∧ dχ , (18) 
we find,

∆Q D4 = 1 2κ 2 10 T D4 -∆B 2 ∧ F 2 = 1 2κ 2 10 T D4 nπL 4 8 √ α π 2 0 cos 3 α sin αdα π 0 dθ π 0 sin χdχ 2π 0 dξ = ∆N D4 , (19) 
which leads to L 4 = 1 n 8α 2 ∆N D4 . From this we readily see that

∆Q D4 = nN D6 . (20) 
This is nothing other than the creation of D4 branes via a Hanany-Witten effect [START_REF] Hanany | Type IIB superstrings, BPS monopoles, and threedimensional gauge dynamics[END_REF], as will be reviewed in the following in section 2.2.3. In order to get a probe interpretation of these brane charges we would need to know in which background the branes are inserted, but the situation is not entirely clear here.

The expression for the fluxes suggests that the D6 is transverse to r, α, θ and that the D4 is transverse to r, α, θ, χ, ξ. This would lead to the following brane configuration:

0 1 2 3 r α θ ρ χ ξ N S5 × × × × × × D6 × × × × × × × D4 × × × × ×

Spatial infinity limit

The spatial infinity limit gives the following background:

ds 2 = ds 2 (R 1,3 ) + dr 2 + r 2 (dα 2 + sin 2 αdθ 2 ) + 1 4 α 2 Ξ dρ 2 + Ξ 2 64α ∆ ρ 2 (dχ 2 + sin 2 χdξ 2 ) B 2 = - ρ 3 Ξ 256∆ sin χdχ ∧ dξ e -2φ = ∆, ∆ = Ξ 64α 3 (α 2 ρ 2 + Ξ 2 ), Ξ = r 2 cos 2 α . (21) 
Here there are no RR fluxes anymore so all the D-brane charges vanish. The configuration is thus much simpler. In fact it will now be possible to understand the exact brane configuration, as is done for the D3. Moreover this background is the NATD of the spatial infinity limit of the D3 brane solution: the NATD ( 21) is simply the NATD of flat space along an S 3 ⊂ R 4 factor. This decomposition is thus better suited for the spatial infinity limit than the S 5 ⊂ R 6 decomposition of the D3 brane solution.

Accordingly the seed metric before NATD reads,

ds 2 = ds 2 (R 1,5 ) + du 2 + u 2 ds 2 (S 3 ) , (22) 
which is simply the spatial infinity limit of the metric (1) written in the coordinates of [START_REF] Lozano | New AdS 3 × S 2 T-duals with N = (0, 4) supersymmetry[END_REF]. In these coordinates the NATD metric ( 21) is given by,

ds 2 = ds 2 (R 1,5 ) + du 2 + α 2 4u 2 dρ 2 + α 2 ρ 2 u 2 4(α 2 ρ 2 + u 4 ) (dχ 2 + sin 2 χdξ 2 ) . (23) 
Let us now make a further change of variable,

u = R 1/4 sin θ 2 (24) 
α ρ = R 1/2 cos θ 2 ,
upon which the metric becomes,

ds 2 = ds 2 (R 1,5 ) + 1 16R 3/2 sin θ 2 dR 2 + R 2 dθ 2 + R 2 sin 2 θ(dχ 2 + sin 2 χdξ 2 ) (25) = ds 2 (R 1,5 ) + f (R, θ)ds 2 (R 4 ) , (26) 
where in order to obtain a complete metric on R 4 we must have θ ∈ [0, π]. In the second line above we have introduced the function,

f (R, θ) = 1 16R 3/2 sin θ 2 , (27) 
which is harmonic in R 4 except for θ = 0. The NS-NS two-form and dilaton are given by,

B 2 = - R 1/2 4 cos 3 θ 2 sin χdχ ∧ dξ H 3 = - cos 3 θ 2 8R 1/2 dR ∧ sin χdχ ∧ dξ + 3 8 R 1/2 cos 2 θ 2 sin θ 2 dθ ∧ sin χdχ ∧ dξ (28) 
e 2φ = 1024α 3 f . ( 29 
)
This clearly shows the presence of NS5 branes along the R 1,5 directions, located at θ = 0 (or alternatively at u = 0), in accordance with the harmonic superposition rule [START_REF] Youm | Black holes and solitons in string theory[END_REF]. However this is not enough to determine the exact position of the branes since they could be anywhere on this half line. Integrating H 3 on a spherical shell of radius R gives,

H 3 = π θ=0 π χ=0 2π ξ=0 dB 2 = π √ R . (30) 
The branes are thus smeared along the θ = 0 direction, leading to a linear distribution of charge in the transverse space, whose charge density is proportional to

1 √ R or constant in ρ (recall that at θ = 0, √ R = ρ).
More explicitly the NS5 distribution can be read off of the harmonic function f in [START_REF] Martelli | Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals[END_REF] as follows. First it will be convenient to parameterize the R 4 transverse to the NS5 by introducing the cylindrical coordinates r ∈ R 3 , w := R cos θ, so that R 2 = r 2 + w 2 and,

ds 2 (R 4 ) = d r • d r + dw 2 . ( 31 
)
The new coordinates (R, w) are related to (u, ρ) by,

u 4 = 1 2 (R -w) ; α 2 ρ 2 = 1 2 (R + w) . (32) 
Moreover it can easily be verified that the function f can be represented as an integral over the Green's function for the Laplacian on R 4 ,

f = √ 2 16R √ R -w = 1 8π ∞ 0 dw σ(w ) r 2 + (w -w ) 2 , ( 33 
)
with linear charge density σ(w) = w -1 2 along the half line w ≥ 0. This is depicted schematically in diagram (d) of fig. 1.

An alternative way to find the charge distribution is to compute the source for the H 3 Bianchi identity,

dH 3 = j . (34) 
However H 3 = dB 2 is closed as a form, and we thus need to consider this equation on currents. Indeed H 3 is not defined for θ = 0, which is precisely the locus where we expect to find the brane. As a current, dH 3 acts as a linear form (distribution) on six-forms. Consider a test six-form Ω,

Ω = ωv 6 , (35) 
where v 6 is the volume form of R (1,5) . After integration against H 3 , the only components of dΩ we need consider are,

dΩ = ∂ R ωdR ∧ v 6 + ∂ θ ωdθ ∧ v 6 + • • • , (36) 
so that,

dH 3 (Ω) = H 3 (dΩ) = H 3 ∧ dΩ = - 1 8 cos 3 θ 2 R 1/2 ∂ θ ωdR ∧ sin χdχ ∧ dξ ∧ dθ ∧ v 6 + 3 8 R 1/2 cos 2 θ 2 sin θ 2 ∂ R ωdθ ∧ sin χdχ ∧ dξ ∧ dR ∧ v 6 . (37) 
Integrating each term by parts (respectively in θ and R), the derivatives cancel out since H 3 is closed as a form. The charge can then be seen in the boundary terms. R 1/2 vanishes at R = 0, ω vanishes at R → ∞ because it is a test function, and cos 3 θ 2 vanishes at θ = π. Note also that at θ = 0, ω cannot depend on χ, ξ. We thus obtain,

dH 3 (Ω) = 1 8 ω(θ = 0) R 1/2 dR ∧ sin χdχ ∧ dξ ∧ v 6 = π 2 dR R 1/2 ∧ Ω(θ = 0) . (38) 
From this we can read off the current,

j = 1 16 δ(θ) R 1/2 dR ∧ dθ ∧ sin χdχ ∧ dξ , (39) 
which gives the exact distribution of NS5 charge. This distribution is remarkable since it is entirely created by NATD from an empty flat space. It will be characteristic of the behavior of NATD near a fixed point of the SU (2) isometry. For instance we found the same kind of distribution when looking close to the α = π/2 singularity in the full dual solution (14).

The near-horizon limit

The NATD of the near horizon solution is [START_REF] Sfetsos | On non-abelian T-dual geometries with Ramond fluxes[END_REF],

ds 2 = ds 2 (AdS 5 ) + L 2 (dα 2 + sin 2 αdθ 2 ) + 1 4 
α 2 Ξ dρ 2 + Ξ 2 64α ∆ ρ 2 (dχ 2 + sin 2 χdξ 2 ) B 2 = - ρ 3 Ξ 256∆ sin χdχ ∧ dξ e -2 Φ = ∆, ∆ = Ξ 64α 3 (α 2 ρ 2 + Ξ 2 ), Ξ = L 2 cos 2 α , (40) 
and the nonzero RR fluxes are given by,

F 2 = Ξ 2α 3/2 L 2 cos α sin αdα ∧ dθ F 4 = - Ξ 2 512α 3/2 ∆ L 2 ρ 3 cos α sin α sin χdα ∧ dθ ∧ dχ ∧ dξ . (41) 

Field Theory interpretation of near horizon NATD

In [START_REF] Lozano | Field theory aspects of non-Abelian T-duality and N = 2 linear quivers[END_REF] a holographic interpretation of the background (40)-(41) was proposed. It was pointed out that the background belongs to a class of Gaiotto-Maldacena geometries [START_REF] Gaiotto | The Gravity duals of N=2 superconformal field theories[END_REF] dual to N = 2 superconformal linear quivers with gauge groups of increasing rank. Their argument crucially involved constraining the range of the dual coordinate ρ in quantizing the NS5 brane charge. Let us briefly summarize the main points of the arguments originally presented in [START_REF] Lozano | Field theory aspects of non-Abelian T-duality and N = 2 linear quivers[END_REF] and extended to further examples in [START_REF] Lozano | Three-dimensional N = 4 linear quivers and non-Abelian T-duals[END_REF][START_REF] Itsios | The AdS 5 non-Abelian T-dual of Klebanov-Witten as a N = 1 linear quiver from M5-branes[END_REF]. Related examples with flavor branes include [START_REF] Lozano | Supersymmetric AdS 6 via T Duality[END_REF][START_REF] Lozano | Hints of 5d Fixed Point Theories from Non-Abelian T-duality[END_REF] and [START_REF] Lozano | A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow[END_REF][START_REF] Lozano | A N = 2 supersymmetric AdS 4 solution in M-theory with purely magnetic flux[END_REF].

In the NATD a new set of dual coordinates arise, which we have labeled (ρ, χ, ξ). The coordinates (χ, ξ) are naturally interpreted as compact angles on an S 2 , i.e. χ ∈ [0, π], ξ ∈ [0, 2π]. The question remains how to interpret the ρ coordinate, as NATD currently lacks the global information needed to constrain the dual coordinates. Using insight from string theory the authors of [START_REF] Lozano | Field theory aspects of non-Abelian T-duality and N = 2 linear quivers[END_REF] were led to impose the boundedness of the following quantity,

b 0 = 1 4π 2 α Σ 2 B 2 ∈ [0, 1] , (42) 
where in the case of (40

) b 0 is maximal along Σ 2 = [χ, ξ], α = π 2 .
This leads to the coordinate ρ varying in nπ intervals, i.e. ρ ∈ [nπ, (n + 1)π]. To keep the relation (42) satisfied, a large gauge transformation must be performed on B 2 at each nπ interval, i.e.

B 2 → B 2 -nπα sin χdχ ∧ dξ . ( 43 
)
As reviewed in section 2.2.1, this has the effect of changing the Page charges: quantizing Q D6 and Q D4 by integrating the RR fluxes in (41) above leads to Q D6 = N D6 and Q D4 = 0. However under a large gauge transformation of B 2 , we find ∆Q D6 = 0 and ∆Q D4 = nN D6 , where

Q N S5 = N N S5 = n.
Putting all this together suggests that there are parallel NS5 branes, each located at a π interval in ρ. Between each π interval n horizontal D4 branes are suspended between them. That is, as we move towards larger ρ, an increasing number of D4 branes appear. In the field theory interpretation this corresponds to an infinite linear quiver with increasing gauge group ranks. Interestingly, the field theory analysis of [START_REF] Lozano | Field theory aspects of non-Abelian T-duality and N = 2 linear quivers[END_REF] suggested that there should be a cutoff to the ρ coordinate in order to terminate the quiver with a flavor brane. The intuitive way to see this is to start with parallel NS5 branes and a D6 flavor brane on one of the ends of the array. When one moves this flavor brane across the NS branes, D4 branes are created across the NS branes via the Hanany-Witten effect [START_REF] Hanany | Type IIB superstrings, BPS monopoles, and threedimensional gauge dynamics[END_REF]. This completion of the quiver corresponds to giving ρ a finite range and it was shown that this is necessary to make sense of the dual field theory as a 4d CFT. 3Thus the "stringy" picture is consistent with the spatial infinity limit of section 2.2.2, provided we replace the supergravity approximation of a continuous linear distribution of NS5 branes along a half line, by a grid of localized NS5's so that there is one unit of NS5 charge per ρ ∈ [nπ, (n + 1)π] interval.

M2 branes

The M2 brane solutions of eleven-dimensional supergravity can be reduced in various ways in order to obtain ten-dimensional IIA D2 brane solutions. Let us start from the M2-brane solution in flat space,

ds 2 = H -2/3 ds 2 (R 1,2 ) + H 1/3 (dr 2 + r 2 dΩ 2 7 ) G = -dH -1 ∧ vol 3 H = 1 + Q r 6 , ( 44 
)
where Q is a constant related to the number of parallel M2-branes, dΩ 2 7 is the metric of the round seven-sphere, and vol 3 is the volume element of R 1,2 . We will adopt the parameterization of the metric on S 7 given by,

dΩ 2 7 = 1 4 dµ 2 + 1 4 sin 2 µω 2 i + λ 2 (ν i + cos µω i ) 2 , ν i = σ i + Σ i , ω i = σ i -Σ i , (45) 
where µ ∈ [0, π], σ i are the left-invariant SU (2) Maurer Cartan one-forms given in (3), while the Σ i have exactly the same form but with coordinates (θ 2 , φ 2 , ψ 2 ). We will only treat the round S 7 case, i.e. λ = 1. In the near-horizon limit, we have H = Q r 6 and the space becomes AdS 4 × S 7 . This solution preserves 16 real supercharges (enhanced to 32 in the near-horizon limit), i.e. N = 4 in four dimensions. In (44) we have written the flat metric on the space R 8 transverse to the M2 as an eight-dimensional cone over the seven-sphere. We may replace the base of the cone by any Sasaki-Einstein seven-manifold 4 , and still obtain a solution of eleven-dimensional supergravity. The amount of preserved supersymmetry depends on the number of Killing spinors of the Sasaki-Einstein.

Replacing the round sphere metric dΩ 2 7 by the Y p,q (B 4 ) metric of [START_REF] Gauntlett | A New infinite class of Sasaki-Einstein manifolds[END_REF][START_REF] Martelli | Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals[END_REF], reduces supersymmetry to N = 1 in four dimensions, enhanced to N = 2 in the near-horizon limit. After a change of coordinates to bring us to the conventions of [START_REF] Pando Zayas | Supersymmetric IIB background with AdS 4 vacua from massive IIA supergravity[END_REF], the metric reads,

ds 2 (Y 7 ) = 1 4 ds 2 (M 6 ) + w(θ) [dα + f (θ)(dψ + A)] 2 , (46) 
for some functions w, f of θ that will be specified below, where ds 2 (M 6 ) is the metric of the S 2 (B 4 ) bundle,

ds 2 (M 6 ) = ds 2 (B 4 ) + 1 (1 + cos 2 θ) 2 dθ 2 + sin 2 θ(dψ + A) 2 , ( 47 
)
with θ ∈ [0, π], ψ ∈ [0, π] the coordinates of the S 2 fiber; the connection A is a one-form on the base

B 4 obeying, dA = J , (48) 
with J the Kähler form of B 4 . Later we will consider the special case B 4 = CP 2 for concreteness and in order to perform an SU(2) NATD.

The corresponding eleven-dimensional solution reads,

ds 2 = H -2/3 ds 2 (R 1,2 ) + H 1/3 dr 2 + 1 4 r 2 ds 2 (M 6 ) + r 2 H 1/3 w(θ)(dα + A ) 2 G = -dH -1 ∧ vol 3 H = 1 + Q r 6 , (49) 
where we have set A := f (θ)(dψ + A).

Brane configuration and charges

We expect the M2 branes to lie along the R 1,2 directions. The transverse space would then be R 8 or the cone over Y p,q depending on the choice of 7-dimensionnal space. In both cases we find:

G = -6 Qv 7 (50) 
However since the 7-dimensional cycle collapses in the transverse space when r = 0, G is not closed and:

d G = -6 Qδ(r)dr ∧ v 7 (51) 
We can also compute the M2 brane charge, which is defined by:

Q M 2 = 1 2κ 2 11 T M 2 G = N M 2 , (52) 
with the M2 brane tension given by T M 2 = 2π (2πlp) 3 and 2κ 2 11 = (2π) 8 l 9 p , where the Planck length is given by l p = g 1/3 s √ α . For example, in the Y p,q case, we compute:

Q M 2 = - 1 2κ 2 11 T M 2 27 Q 256 2π 0 dα π 0 dθ sin θ a(θ) 3/2 S 3 dΩ 3 π 0 dψ π 2 0 dµ sin 3 µ, = - 27 Q 4096π 2 l 6 p = N M 2 . ( 53 
)
This relates the constant in the harmonic function to the number of M2 branes,

Q = 4096 27 π 2 l 6 p N M 2 . ( 54 
)
We will now proceed to track the M2, first through dimensional reduction, then through NATD.

4 Supersymmetric D2 from reduction on Y p,q

Here and in the following section we will need to make the choice B 4 = CP 2 so that a non-abelian SU(2) isometry is manifest in the metric acting on the σ i ,

ds 2 (CP 2 ) = 3 dµ 2 + 1 4 sin 2 µ(σ 2 1 + σ 2 2 + cos 2 µσ 2 3 ) , (55) 
where µ ∈ [0, π 2 ], and the σ i are given in (3). Reducing the M2 brane solution (49) to IIA on the circle parameterized by α preserves supersymmetry, as will be explicitly verified in section 7.1. Let us set,

e -2φ/3 ds 2 A = H -2/3 ds 2 (R 1,2 ) + H 1/3 dr 2 + 1 4 r 2 ds 2 (M 6 ) e 4φ/3 = r 2 l 2 p H 1/3 w(θ) , (56) 
so that upon reduction to ten dimensions ds 2 A and the function φ(r, θ) are identified with the IIA string-frame metric and dilaton respectively. Moreover the nonvanishing fluxes of the solution are given by,

F 2 = l p dA ; F 4 = -dH -1 ∧ vol 3 , (57) 
where A was given below (49). F 2 carries a magnetic charge, but we will not interpret it as coming from a brane. Since this charge is not related to the M2 charge, but rather to the dimensional reduction, we will say that the flux is only geometric, and it will not be of interest here. The flux F 4 on the other hand carries an electric charge and is sourced by a stack of parallel D2 branes filling R 1,2 and placed at r = 0 in the transverse space. Note that the H function is inherited from the M2 solution, so that it does not need to be harmonic in the new transverse space. We also inherit the usual parameters for a brane solution, which allow us to define the near-horizon and spatial infinity limit.

We can then obtain the explicit form of the functions w(θ), f (θ) by taking the near-horizon limit (H = Q r 6 ) of ( 56), (57) and comparing with [START_REF] Pando Zayas | Supersymmetric IIB background with AdS 4 vacua from massive IIA supergravity[END_REF]:

ds 2 A = 1 4 Q1/2 w(θ) ds 2 (AdS 4 ) + ds 2 (M 6 ) e 4φ/3 = Q1/3 w(θ) ; F 2 = l p d [f (θ)(dψ + A)] , (58) 
where ds 2 (AdS 4 ) is the metric of an AdS 4 space of unit radius, so that its scalar curvature is normalized to R = -12. Comparing with (2.22), (2.23), (2.24) of [START_REF] Pando Zayas | Supersymmetric IIB background with AdS 4 vacua from massive IIA supergravity[END_REF] we read off,

w(θ) = g 2 s e 4A 0 8(1 + cos 2 θ) ; f (θ) = cos θ 2 w(θ) ; Q = 64 g 2 s . (59) 
To summarize, the ten-dimensional D2-brane solution is given by ( 56), (57), where ds 2 (M 6 ) is given in (47), H is given in (49) and f , w are given in (59). In the near-horizon limit the metric becomes a warped AdS 4 × M 6 product, cf. (58).

At spatial infinity (H = 1) the metric becomes a warped product R 1,2 × C(M 6 ),

ds 2 A = r l p w(θ) ds 2 (R 1,2 ) + dr 2 + 1 4 r 2 ds 2 (M 6 ) , (60) 
where C(M 6 ) is the metric cone over M 6 , while the remaining fields are given by,

e 4φ/3 = r 2 l 2 p w(θ) F 2 = l p d [f (θ)(dψ + A)] F 4 = 0 . (61) 
It can be verified that this is an exact supergravity solution in its own right. Contrary to the case of the D3 brane, here spacetime is neither flat nor empty at spatial infinity.

The solution (56), (57) describes D2 branes with worldvolume along the R 1,2 , as inherited from the M2 solution. Looking at F 4 , we find:

F 4 = - 3 Q 32l p w(θ)v 6 (62) 
However, contrary to the standard brane configurations (such as the D3 and M2 presented previously), the probe interpretation is not straightforward. In order to understand this configuration we take the transverse space to be the cone over M 6 . There the 6-cycle collapses at r = 0, so that:

d F 4 = - 3 Q 32l p w(θ)δ(r)dr ∧ v 6 (63) 
Here again this equation must be considered on the transverse space. The D2 background is a genuine solution of IIA supergravity, in which the 6-cycle does not collapse anymore. Then F 4 is closed, as required by the equations of motion, and the brane is not visible. We can however compute the brane charge, which requires the D-brane tension

T -1 Dp = ((2π) p α (p+1) 2
) and 2κ 2 10 = (2π) 7 α 4 . We obtain,

Q D2 = 27 Q 8192π 5 l p α 5/2 π 0 dψ π 0 dθ sin θ a(θ) 3/2 S 3 dΩ 3 π 2 0 dµ sin 3 µ cos µ,
The flux quantization condition

Q D2 = N D2 then leads to Q = 4096 27 π 2 l p α 5/2 N D2 . (64) 
Note that there are no D6 branes associated with the F 2 flux. Indeed in the present case spacetime is smooth 5 and the metric singularity expected in the vicinity of a D6 is absent. As we will see in section 6, this is in contrast to the case of the D2 brane coming from the reduction of M-theory on S 7 . Similarly one sees that there are no D4 branes sourced by the F 4 flux.

The NATD

The NATD of the supersymmetric D2 brane is obtained by an SU(2) action on the σ i , cf. (55). The NS-NS sector reads,

ds 2 = r l p w(θ)H -1/2 ds 2 (R 1,2 ) + Λ 2 4 r 2 dr 2 + 3dµ 2 + 1 (1 + cos 2 θ) 2 dθ 2 + 4 Q sin 2 θ cos 2 µdψ 2 + 3α 2 Ξ 4M [d(ρ sin χ)] 2 + 81 4096α ∆ Ξ 2 ρ 2 sin 2 χ Q (dξψ) 2 + 1 M α 2 ρ 2 cos χdρ + 4Ξ 2 d(ρ cos χ) 2 B2 = 81ρ 2 Ξ sin χ 8192Q∆ dξψ ∧ dρχ + 3α sin 2 θ 2Q d(ρ cos χ) ∧ dψ e -2 φ = e -2φ ∆, ∆ = 27Ξ 1024α 3 4Ξ 2 Q + α 2 ρ 2 K , Ξ = sin 2 µΛ 2 , Λ = 1 2
e φ/3 rH 1/6 , (65) 5 The geometry and topology of the M-theory reduction along the α-cycle is discussed in detail in [START_REF] Martelli | Notes on toric Sasaki-Einstein seven-manifolds and AdS(4)/CFT(3)[END_REF].

where we have defined the following one-forms,

dξψ = Qdξ -4 sin 2 θdψ dρχ = ρKdχ + cos χ sin χ(Q -4)dρ dθµ = f (θ) sin µdθ + 2 cos µf (θ)dµ , (66) 
and included the following definitions,

Q = 4 cos 2 µ + 3 sin 2 µ sin 2 θ K = Q cos 2 χ + 4 sin 2 χ M = α 2 ρ 2 cos 2 χ + 4Ξ 2 . ( 67 
)
The RR sector is given by

F1 = 9l p 32 √ α sin µ f (θ) sin µd(ρ cos χ) -ρ cos χdθµ F3 = - 9l p √ α ρ cos 2 µf (θ) 16Q dρ + 9l 2 p Λ 6 H cos µ sin 3 µ sin θ 4r 2 α 3/2 H 3/2 w(θ)a(θ) dµ ∧ dθ ∧ dψ + 729l p ρ 3 sin 3 µΛ 2 262144 √ α Q∆ -cos χ sin χ sin µQdρ ∧ dχ ∧ dξψ +2 cos µf (θ)Q(sin 2 χdξ -cos 2 χ sin 2 µdψ) ∧ dµ -sin µ sin 2 χf (θ)dθ ∧ dξψ ∧ dρ + 729l p ρ sin 7 µΛ 6 65536α 5/2 ∆ sin χdθµ ∧ d(ρ sin χ) ∧ dξψ -8 cos µ sin 2 θf (θ)dµ ∧ dρ ∧ dψ F5 = 9l 2 p √ α H ρ 64r 2 H 3/2 w(θ) v 4 ∧ dρ + 9l p Λ 2 sin 3 µ 16α 3/2 sin θa(θ) v 4 ∧ 2f (θ) sin 2 θ sin µdθ + a(θ) 2 cos µf (θ)dµ + 729l p Λ 6 ρ 2 cos µ sin 5 µ sin χ 65536α 3/2 r 2 H 3/2 w(θ)a(θ)∆ 2l p Λ 2 H sin θdθ ∧ dµ ∧ dρχ -r 2 H 3/2 w(θ)a(θ) sin µ 3f (θ) sin 2 θ sin µdµ -2 cos µf (θ)dθ ∧ dρ ∧ dχ ∧ dξ ∧ dψ , (68) 
where a(θ) = 2(1 + cos 2 θ) and v 4 = -r 2 w(θ)

l 2 p √ H dr ∧ dx 0 ∧ dx 1 ∧ dx 2 .

Brane configuration and charges

The D-brane background before the NATD was a D2 brane solution, therefore we expect to see the presence of D3, D5, and NS5 branes from the general lore Dp→D(p+1)-D(p+3)-NS5. We will follow the same strategy as in section 2.2.1 to better understand the brane configuration.

We first compute the NS5 charge. In the same spirit as in the D3 brane example, cf. ( 12), we integrate H 3 along the cycle (Σ 3 [ρ, χ, ξ], µ = 0), on which H 3 simplifies as,

H 3 = 3 8 α sin χdξ ∧ dχ ∧ dρ . ( 69 
)
We get,

Q N S5 = 1 2κ 2 10 T N S5 H 3 = 3 8π ρ 0 , (70) 
where we cut off the integration at ρ = ρ 0 . For the charge to be correctly quantized, we need ρ 0 = 8nπ 3 . This is compatible with the condition of boundedness of b 0 given in (42). Modulo a large gauge transformation on B 2 , this condition is satisfied if the range of ρ is taken to be [ 8(n-1)π 3 , 8nπ 3 ]. Once again we can see that there is, at least from the supergravity point of view, a continuous distribution of charge at the singularity created by NATD (here µ = 0). This distribution is smeared along the ρ direction and is constant in ρ. As was the case in section 2.2.1, this can be seen directly in the metric by zooming in at the singularity. Close to µ = 0 and after making the substitution ν = µ 2 , the metric becomes,

ds 2 µ→0 = r 2l p H(r) a(θ) ds 2 (R 1,2 ) + H(r) dr 2 + r 2 1 a(θ) 2 dθ 2 + 1 4 sin 2 θdψ 2 + 1 ν 3 32l p r 3 H(r) a(θ) 16l 2 p α 2 a(θ) 2 dρ 2 + r 6 H(r) dν 2 + ν 2 dχ 2 + sin 2 χdξ(dξ -2 sin 2 θdψ) , (71) 
where ν -1 is the harmonic function in the transverse space for NS5 branes along the (R 1,2 , r, θ, ψ) directions.

For the D-branes we need to consider the Page forms, given by,

F3 = 9l p √ α ρ 256 4f (θ)dθ ∧ dρ ∧ dψ -3 sin χ sin µdθµ ∧ d(ρ sin χ) ∧ dξ - 27 Q w(θ) 128l p α 3/2 a(θ) cos µ sin 3 µ sin θdθ ∧ dµ ∧ dψ F5 = - 27 Ql 2 p √ α 32r 9 H 3/2 w(θ) ρdρ ∧ v 4 + 9r 3 √ H w(θ) 64α 3/2 a(θ) sin θ sin 3 µ(2f (θ) sin 2 θ sin µdθ +a(θ) 2 cos µf (θ)dµ) ∧ v 4 + 27l p α 3/2 512 ρ 2 sin χf (θ)dθ ∧ dρ ∧ dχ ∧ dξ ∧ dψ , (72) 
where F1 = F1 given in (68) is unchanged.

We can readily see that the Page forms have two contributions: one coming from the geometric flux F 2 and the other one from F 4 . 6 Since we want to trace the fate of the M2 branes we will consider the first part as geometric fluxes and focus on the second. The relevant components are thus those proportional to Q (i.e. those that vanish when there is no M2).

Ignoring the geometric fluxes, the only non-vanishing Page charge is Q D5 , which can be found by integrating F3 . Namely, we keep only the (θ, µ, ψ) term,

Q D5 = 1 2κ 2 10 T D5 27 Q 128l p α 3/2 4π 0 dψ π 0 sin θ w(θ) a(θ) dθ π 2 0 cos µ sin 3 µdµ = N D5 . ( 73 
)
The quantization condition of Q D5 then leads to a relation between the constant in the harmonic function and the number of D5 branes,

Q = 2048 27 πl p α 5/2 N D5 . (74) 
However as it was pointed out in the D3 example, the page charges depend on the choice of B 2 , and may change under a large gauge transformation. Here under a large gauge transformation given by, Evaluating this and comparing to (74), we then find,

∆B 2 = -nπα sin χdχ ∧ dξ , (75) 
Q D3 receives a new contribution, ∆Q D3 = -∆B 2 ∧ F 3 (76) = 1 2T D3 κ 2 27nπ Q 128l p √ α
∆Q D3 = nN D5 . (77) 
This is analogous to the relation found in [START_REF] Lozano | Field theory aspects of non-Abelian T-duality and N = 2 linear quivers[END_REF] above.

Assuming that the r coordinate still describes the radius of the cycles wrapped by the RR-fluxes in the transverse space of the D-branes, the brane configuration is given by the table below.

0 1 2 r µ θ ψ ρ χ ξ N S5 × × × × × × D5 × × × × × × D3 × × × × 6
Recall that NATD acts linearly on the RR fluxes so we can isolate each contribution.
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As we will find in additional examples throughout this paper, this relationship seems to be universal for D-brane backgrounds generated by SU(2) non-Abelian T-duality. When a Dp-brane background is transformed, the D(p+3) brane charges are easily found from integrating the appropriate term in the Page form. The D(p+1) brane charges then are found from restricting B 2 to a cycle containing (χ, ξ) cycle, performing a large gauge transformation, computing the change in the Page form under this transformation, and finally integrating to obtain ∆Q D(p+1) . This results in the general relation ∆Q D(p+1) = nQ D(p+3) . The new D2 brane examples presented in this paper are not only distinct from the original D3 brane example where this relation was proposed, but also highly nontrivial.

The spatial infinity limit

The spatial infinity limit of the supersymmetric D2 brane NATD solution (65)-( 68) is given by,

ds 2 = r l p w(θ) (R 1,2 ) + dr 2 + r 2 4 3dµ 2 + 1 (1 + cos 2 θ) 2 dθ 2 + 4 Q sin 2 θ cos 2 µdψ 2 + 3l p α 2 w(θ)Ξ 4M [d(ρ sin χ)] 2 + 81 16384l 2 p α ∆ w(θ)Ξ 2 ρ 2 sin 2 χ 4Q (dξψ) 2 + 1 M 4l 2 p α 2 ρ 2 cos χdρ + w(θ)Ξ 2 d(ρ cos χ) 2 , B2 = 81 w(θ)Ξρ 2 sin χ 32768l p Q∆ dξψ ∧ dρχ + 3α sin 2 θ 2Q d(ρ cos χ) ∧ dψ, e -2 φ = e -2φ ∆, ∆ = 27 w(θ)Ξ 16384l 3 p α 3 4l 2 p α 2 ρ 2 K + w(θ)QΞ 2 , Ξ = r 3 sin 2 µ, (78) 
where we have defined the following one-forms,

dξψ = Qdξ -4 sin 2 θdψ , dρχ = ρKdχ + cos χ sin χ(Q -4)dρ , dθµ = f (θ) sin µdθ -2 cos µf (θ)dµ , (79) 
with Q, K defined in (67) and M = 4l 2 p α 2 ρ 2 cos 2 χ + w(θ)Ξ 2 . The RR sector is given by

F1 = 9l p 32r 3 √ α f (θ)Ξd(ρ cos χ) -ρ cos χdθµ , F3 = 9l p √ α 16Q ρ cos 2 µf (θ)dθ ∧ dρ ∧ dψ + 729r 3 w(θ)ρ 3 sin 3 µ 1048576 √ α Q∆ -cos χ sin χ sin µQdρ ∧ dχ ∧ dξψ +2 cos µf (θ)Q(sin 2 χdξ -cos 2 χ sin 2 µdψ) ∧ dµ -sin µ sin 2 χf (θ)dθ ∧ dξψ ∧ dρ + 729r 9 w(θ) 3/2 ρ sin 7 µ 4194304l 2 p α 5/2 ∆ sin χdθµ ∧ d(ρ sin χ) ∧ dξψ -8 cos µ sin 2 θf (θ)dµ ∧ dρ ∧ dψ F5 = 9r 3 w(θ) sin 3 µ 64α 3/2 sin θa(θ) v 4 ∧ 2f (θ) sin 2 θ sin µdθ + a(θ) 2 cos µf (θ)dµ 729r 9 w(θ) 3/2 ρ 2 cos µ sin 6 µ sin χ 4194304l 2 p α 3/2 ∆ 3f (θ) sin 2 θ sin µdµ +2 cos µf (θ)dθ ∧ dρ ∧ dχ ∧ dξ ∧ dψ . (80) 
As was already the case for the D2 solution, the spatial infinity is neither flat nor empty. In a probe interpretation, this configuration could be interpreted as the space in which the branes are inserted.

As can be seen from ( 78), it is a foliation over the "radial" coordinate r with leaves of the form of a warped product R 1,2 × M6 . At fixed r, the space M6 can be thought of as a fibration of the space Ñ3 parameterized by (ρ, χ, ξ) fibered over the base M3 parameterized by (µ, θ, ψ). The topology of M3 can be deduced from the line element,

ds 2 ( M3 ) := 3dµ 2 + 1 (1 + cos 2 θ) 2 dθ 2 + 4 cos 2 µ Q sin 2 θdψ 2 , ( 81 
)
and it is that of an S 2 parameterized by (θ, ψ), fibered over the interval parameterized by µ. Indeed at fixed µ, ds 2 ( M3 ) is of the form g(θ)dθ 2 + h(θ)dψ 2 , for some positive functions g, h of θ. This has the topology of a circle parameterized by ψ, fibered over the interval parameterized by θ. Moreover at the endpoints of the θ-interval, Q is equal to 4 cos 2 µ and the metric becomes 1 4 dθ 2 + sin 2 θdψ 2 in the vicinity of θ = 0, π. This is smooth given that the period of ψ is equal to π. In other words the ψ-circle degenerates to a point at the endpoints of the θ-interval so that the total space remains smooth. We thus obtain the topology of an S 2 , as advertised.

The range of the coordinate ρ was constrained by flux quantization to be the interval specified in section 4.1.1. Moreover over a fixed base point (µ, θ, ψ) ∈ M3 , the coordinates (χ, ξ) parameterize a smooth S 2 provided we take ξ ∈ [0, 2π], χ ∈ [0, π]. This can already be seen from the geometry near the location of the NS5 branes, cf. (71). More generally the geometry of the Ñ3 fiber over a fixed point in M3 is rather complicated, as can be seen from ( 78). Topologically it is an S 2 parameterized by (χ, ξ) fibered over the interval parameterized by ρ. Indeed at constant ρ the line element of Ñ3 is proportional to,

3l p α 2 w(θ)Ξ 4M cos 2 χ + 27 w(θ)Ξ 2 12 l 3 p α 3 ∆ sin 2 χ dχ 2 + 81w(θ)Ξ 2 sin 2 χ 2 16 l 2 p α ∆Q dξ 2 , (82) 
which is a circle parameterized by ξ fibered over the interval parameterized by χ. Moreover it can be seen that near the endpoints of the interval χ = 0, π the line element above reduces to,

3l p α 2 w(θ)Ξ 4(α 2 ρ 2 cos 2 χ + 4Ξ 2 ) dχ 2 + sin 2 χdξ 2 , (83) 
so that the S 2 parameterized by (ξ, χ) is smooth for the ranges given above.

We have thus been able to specify the ranges of all coordinates parameterizing the NATD space. Once this result has been established for the leaf of the r-foliation at spatial infinity, it remains valid for finite r and applies also to the full interpolating solution (65). In particular the smoothness of the S 2 parameterized by (θ, ψ) is shown by the same argument following (81). The smoothness of the S 2 parameterized by (ξ, χ) also follows as above, upon modifying (82), (83) to account for the interpolating metric (65).

The near-horizon limit is obtained by substituting H → Q r 6 in (65). As is clear from the previous analysis, the general structure of the leaves of the r-foliation described above remains unchanged. Moreover the R 1,2 space combines with the radial coordinate to form an AdS 4 factor exactly as before the NATD.

5 Non-supersymmetric D2 from reduction on Y p,q

We will now reduce along the "obvious" Sasaki-Einstein S 1 cycle, thereby completely breaking supersymmetry. Let us rewrite the Y p,q (B 4 ) metric (46) as follows,

ds 2 (Y 7 ) = 1 4 ds 2 ( M6 ) + (dψ + Ã) 2 , ( 84 
)
where the base M6 is topologically an CP 2 × S 2 with metric given by,

ds 2 ( M6 ) = ds 2 (B 4 ) + 1 (1 + cos 2 θ) 2 dθ 2 + 4w(θ) sin 2 θ dα 2 , ( 85 
)
and we have defined,

à := A + 2 w(θ) cos θdα . ( 86 
)
Note that, as follows from (59), for the S 2 parameterized by (θ, α) to be smooth α must have period 2π/(g s e 2A 0 ). Alternatively we may redefine α → g s e 2A 0 α, so that α ∈ [0, 2π]. In terms of the redefined coordinate,

ds 2 ( M6 ) = ds 2 (B 4 ) + 1 (1 + cos 2 θ) 2 dθ 2 + sin 2 θ 2(1 + cos 2 θ) dα 2 . ( 87 
)
The corresponding eleven-dimensional solution reads,

ds 2 = H -2/3 ds 2 (R 1,2 ) + H 1/3 dr 2 + 1 4 r 2 ds 2 ( M6 ) + 1 4 r 2 H 1/3 (dψ + Ã) 2 G = -dH -1 ∧ vol 3 H = 1 + Q r 6 . ( 88 
)
Reducing along the S 1 cycle parameterized by ψ results in a non-supersymmetric ten-dimensional D2-brane solution given by,

ds 2 A = e 2φ/3 H -2/3 ds 2 (R 1,2 ) + H 1/3 dr 2 + 1 4 H 1/3 r 2 ds 2 ( M6 )
e 4φ/3 = r 2 4l 2 p H 1/3 F 2 = l p d à F 4 = -dH -1 ∧ vol 3 .
(89)

In the spatial infinity limit, H = 1, the metric reduces to,

ds 2 A = r 2l p ds 2 (R 1,2 ) + dr 2 + 1 4 r 2 ds 2 ( M6 ) , (90) 
while the remaining fields reduce to,

e 4φ/3 = r 2 4l 2 p F 2 = l p d à F 4 = 0 . ( 91 
)
Once again we see that, contrary to the D3 case, the spacetime is neither flat nor empty in the spatial infinity limit: rather it is conformal to R 1,2 × C( M6 ), where the latter factor is the metric cone over M6 .

Upon dimensional reduction on ψ the M2 branes become D2 along R 1,2 , whose transverse space would be the cone over M6 . As in section 4 we find,

F 4 = - 3 Q 32l p w(θ)v 6 . ( 92 
)
Since the cycle M6 collapses in the transverse space at r = 0,

d F 4 = - 3 Q 32l p w(θ)δ(r)dr ∧ v 6 . ( 93 
)
We compute the quantized D2 charge and obtain a similar result to the supersymmetric case, up to a factor of 2 difference arising from the different ranges of α and ψ,

Q D2 = 27 Q 8192π 5 l p α 5/2 2π 0 dα π 0 dθ sin θ a(θ) 3/2 S 3 dΩ 3 π 2 0 dµ sin 3 µ cos µ,
leading to a relation between the constant in the harmonic function and the number of D2 branes,

Q = 2048 27 π 2 l p α 5/2 N D2 . ( 94 
)
Since F 2 is not related to the D2 brane charge, we will only consider it as a geometric flux. For the same reasons as in the supersymmetric case, cf. section 4, there are no D4/D6 branes.

The NATD

We can now take the NAT dual of the background (89). The NS-NS sector of the resulting background is given by,

ds 2 = r 2l p H -1/2 ds 2 (R 1,2 ) + Λ 2 4 r 2 dr 2 + 3dµ 2 + 1 (1 + cos 2 θ) 2 dθ 2 +4w(θ) sin 2 θdα 2 + 3α 2 Ξ 4M [d(ρ sin χ)] 2 + 81 256α ∆ ρ 2 Ξ 2 cos 2 µ sin 2 χ(dξ) 2 + 1 M α 2 ρ 2 cos χdρ + Ξ 2 d(ρ cos χ) 2 B2 = 81ρ 2 sin χΞ 256∆ dξ ∧ dρχ e -2 φ = e -2φ ∆, ∆ = 27Ξ 64α 3 cos 2 µΞ 2 + α 2 ρ 2 K , Ξ = sin 2 µΛ 2 , Λ = 1 2 e φ/3 rH 1/6 , ( 95 
)
where we have defined the following one-form,

dρχ = ρKdχ -cos χ sin χ sin 2 µdρ , (96) 
and included the following definitions,

K = cos 2 µ cos 2 χ + sin 2 χ, M = α 2 ρ 2 cos 2 χ + Ξ 2 . ( 97 
)
The RR sector is given by

F1 = - 9l p √ Ξ 16 √ α Λ 2 √ Ξd(ρ cos χ) + 2ρ cos µ cos χΛdµ , F3 = 9l p √ α ρ sin θ 16a(θ) 2 w(θ) dρ + 18l 2 p w(θ)Λ 3 Ξ 3/2 H α 3/2 r 2 a(θ)H 3/2 cos µ sin θdµ ∧ dθ ∧ dα + 729l p ρΞ 3/2 cos µ sin χ 4096α 5/2 Λ 2 ∆ -2 cos 2 µΛΞ 2 dµ ∧ d(ρ sin χ) +α 2 ρ 2 2Λ sin χdµ + cos µ cos χ √ Ξdχ ∧ dρ ∧ dξ, F5 = 9 32α 3/2 v 4 ∧ 8 l 2 p α 2 ρH r 2 H 3/2 dρ + l p cos µ sin θΞ 3/2 a(θ)w(θ)Λ sin θ dµ - 729l p ρ 2 cos µ sin χΞ 5/2 4096r 2 α 3/2 a(θ) 2 w(θ)H 3/2 ∆ dα ∧ dθ ∧ dξ ∧ r 2 cos µ sin θ √ ΞH 3/2 dρ ∧ dχ + 32l p a(θ)w(θ) sin θH Λ 3 dµ ∧ dρχ , ( 98 
)
where

a(θ) = 2(1 + cos 2 θ) and v 4 = -r 2 4l 2 p √ H dr ∧ dx 0 ∧ dx 1 ∧ dx 2 .

Brane configuration and charges

As in the supersymmetric reduction, spacetime is singular at µ = 0, which corresponds to the fixed locus of the SU (2) isometry before duality. We thus first compute the NS5 charge by integrating H 3 on the cycle (Σ 3 [ρ, χ, ξ], µ = 0), on which H 3 simplifies to,

H 3 = 3 4 α sin χdξ ∧ dχ ∧ dρ , (99) 
so that,

Q N S5 = 1 2κ 2 10 T N S5 3α 4 ρ 0 0 dρ π 0 sin χdχ 2π 0 dξ = 3ρ 0 4π = N N S5 . ( 100 
)
For the charge to be quantized we need ρ 0 = 4nπ 3 . This is compatible with the condition (42) which leads to ρ ∈ [ 4(n-1)π 3 , 4nπ 3 ] and a large gauge transformation on B 2 . We can now examine the metric close to µ = 0, with ν = µ 2 ,

ds 2 µ→0 = r 2l p H(r) ds 2 (R 1,2 ) + H(r) dr 2 + r 2 1 a(θ) 2 dθ 2 + 1 4a(θ) sin 2 θdα 2 + 1 ν 3 32l p r 3 H(r) 16l 2 p α 2 dρ 2 + r 6 H(r) dν 2 + ν 2 dχ 2 + sin 2 χdξ 2 , ( 101 
)
where ν -1 is the harmonic function for NS5 branes along the (R 1,2 , r, θ, α) directions. As in the previous example, the NS5 branes are located at the singularity µ = 0 and are smeared along the ρ direction.

The Page forms are given by

F3 = 9l p √ α ρ 64a(θ) 2 w(θ) -4 sin θdα ∧ dθ ∧ dρ +6a(θ) 2 w(θ) cos µ sin µ sin χdµ ∧ d(ρ sin χ) - 27 Q 256l p α 3/2 a(θ) cos µ sin 2 µ sin θdα ∧ dθ ∧ dµ F5 = - 27l 2 p √ α Q 2r 9 H 3/2 ρdρ ∧ v 4 + 9r 3 √ H 64α 3/2 cos µ sin 3 µdµ ∧ v 4 - 27l p α 3/2 64a(θ) 2 w(θ) ρ 2 sin θ sin χdα ∧ dθ ∧ dξ ∧ dρ ∧ dχ , (102) 
with F1 = F1 given in (98). We will focus on the components that are proportional to Q, whereas the remaining term will only be considered as geometric flux. Integrating the (α, θ, µ) term in F3 we obtain,

Q D5 = 1 2κ 2 10 T D5 27 Q 256l p α 3/2 2π 0 dα π 0 sin θ a(θ) 2 dθ π 2 0 cos µ sin 3 µdµ = N D5 , (103) 
leading to a relation between the constant in the harmonic function and the number of D5 branes,

Q = 4096 27 πl p α 5/2 N D5 . (104) 
If we further consider the change in the Page forms under a large gauge transformation in B 27 , it is the D3 charge which is created and we find ∆Q D3 = nN D5 .

In the same spirit as before, we would then have the following brane configuration:

0 1 2 r µ θ α ρ χ ξ N S5 × × × × × × D5 × × × × × × D3 × × × ×

The spatial infinity limit

The NS-NS sector of the spatial infinity limit of the non-supersymmetric D2-brane NATD solution is obtained by setting H(r) = 1 in (95)-(98),

ds 2 = r 2l p ds 2 (R 1,2 ) + dr 2 + r 2 3dµ 2 + 1 (1 + cos 2 θ) 2 dθ 2 + 4w(θ) sin 2 θdα 2 + 6l p α 2 Ξ M [d(ρ sin χ)] 2 + 81 16384l 2 p α ∆ ρ 2 Ξ 2 cos 2 µ sin 2 χ(dξ) 2 + 1 M 64l 2 p α 2 ρ 2 cos χdρ + Ξ 2 d(ρ cos χ) 2 B2 = 81ρ 2 sin χΞ 2048l p ∆ dξ ∧ dρχ e -2 φ = e -2φ ∆, ∆ = 27Ξ 32768l 3 p α 3 cos 2 µΞ 2 + 64l 2 p α 2 ρ 2 K , Ξ = r 3 sin 2 µ , (105) 
where we have defined the following one-form,

dρχ = ρKdχ -cos χ sin χ sin 2 µdρ , (106) 
and included the following definitions,

K = cos 2 µ cos 2 χ + sin 2 χ, M = 64l 2 p α 2 ρ 2 cos 2 χ + Ξ 2 . ( 107 
)
The RR sector is given by,

F1 = - 9l p √ Ξ 16r 3 √ α √ Ξd(ρ cos χ) + 2r 3/2 ρ cos µ cos χdµ , F3 = 9l p √ α ρ sin θ 16a(θ) 2 w(θ) dθ ∧ dα ∧ dρ + 729ρΞ 3/2 cos µ sin χ 1048576r 3 l 2 p α 5/2 ∆ r 3/2 cos 2 µΞ 2 dµ ∧ dξ ∧ d(ρ sin χ) +32l 2 p α 2 ρ 2 2r 3/2 sin χdµ + cos µ cos χ √ Ξdχ ∧ dµ ∧ dξ , (108) 
F5 = 9 cos µ sin θΞ 3/2 256r 3/2 α 3/2 a(θ)w(θ) sin θ v 4 ∧ dµ + 729ρ 2 cos 2 µ sin χ sin θΞ 3 2097152l 2 p α 3/2 a(θ) 2 w(θ)∆ dθ ∧ dα ∧ dξ ∧ dρ ∧ dχ, with v 4 = -r 2 4l 2 p dr ∧ dx 0 ∧ dx 1 ∧ dx 2 .
The ten-dimensional spacetime is a foliation over the r-coordinate with leaves of the form of a warped product R 1,2 × M6 . The general structure of the leaves is very similar to that of section 4.1.2, and can be analyzed in the same way: at fixed r, the space M6 can be thought of as a fibration of the space Ñ3 parameterized by (ρ, χ, ξ) fibered over the base M3 parameterized by (µ, θ, α). The topology of M3 is that of an S 2 parameterized by (θ, α) times the interval parameterized by µ.

The range of the coordinate ρ was constrained by flux quantization to be the interval specified in section 5.1.1. Moreover, over a fixed base point (µ, θ, α) ∈ M3 , the coordinates (χ, ξ) parameterize a smooth S 2 provided we take ξ ∈ [0, 2π], χ ∈ [0, π]. This can already be seen from the geometry near the location of the NS5 branes, cf. (101). More generally the geometry of the Ñ3 fiber over a fixed point in M3 is a smooth S 2 parameterized by (χ, ξ) fibered over the interval parameterized by ρ.

As in the supersymmetric D2 case, we have thus been able to specify the ranges of all coordinates parameterizing the NATD space. Once this result has been established for the leaf of the r-foliation at spatial infinity, it remains valid for finite r and applies also to the full interpolating solution (95). The near-horizon limit is obtained by substituting H → Q r 6 in (95), and results in an AdS 4 factor exactly as is the supersymmetric case.

D2 from reduction on S 7

Here we consider the reduction of the M2 brane background of (44), to IIA along ψ 1 ,

ds 2 10 = r 2l p cos µ 2 H(r) -1/2 ds 2 (R 1,2 ) + H(r) 1/2 (dr 2 + 1 4 r 2 (sin 2 µ 2 Σ 2 i + cos 2 µ 2 ds 2 (Ω 2 ) + dµ 2 )) B 2 = 0, e 2Φ = r 3 8l 3 p H(r) cos 3 µ 2 F 2 = -l p dΩ 2 , F 4 = -dH -1 ∧ dvol 3 , (109) 
with Ω 2 representing an S 2 with coordinates (θ 1 , φ 1 ) leftover from the σ i in (44). The near horizon limit of this solution and its NATD were given explicitly in [START_REF] Zayas | Supergravity solutions with AdS 4 from non-Abelian T-dualities[END_REF].

We can see the presence of D2 branes from F 4 ,

F 4 = - 3 Q 64l p cos µ 2 v 6 , (110) 
where v 6 is the volume form of the 6-dimensional space M 6 (along µ, dΩ 2 and dΩ 3 ). If we take the transverse space to be the cone over M 6 , this cycle collapses at r = 0, where we can see the D2 brane,

d F 4 = - 3 Q 64l p cos µ 2 δ(r)dr ∧ v 6 . (111) 
Upon quantizing the flux, we obtain

Q D2 = 1 2κ 2 10 T D2 M 6 F 4 = - 3 Q 2048π 5 l p α 5/2 S 2 dΩ 2 S 3 dΩ 3 π 2 0 dµ sin 3 µ 2 cos 3 µ 2 , leading to, Q = 128π 2 l p α 5/2 N D2 . (112) 
On the other hand, as is the case for the near-horizon limit, F 2 is sourced by a D6 brane along R (1,2) , r, Ω 3 and located at µ = π, where the 2-sphere Ω 2 collapses. As shown in [START_REF] Zayas | Supergravity solutions with AdS 4 from non-Abelian T-dualities[END_REF], the metric in the vicinity of µ = π is singular and takes the precise form of the metric near a D6 brane source. The charge is given by:

Q D6 = 1 2κ 2 10 T D6 F 2 = - 2l p √ α . (113) 
The brane configuration is thus the following:

0 1 2 r µ θ 1 φ 1 θ 2 φ 2 ψ 2 D2 × × × D6 × × × × × × ×
Note that the 3-sphere Ω 3 , on which we will now dualize, is transverse to the D2 but parallel to the D6. We will now see how both will behave under NATD.

The NATD

The background resulting from the application of NATD on the Σ i reads,

ds 2 = r cos µ 2 2l p H(r) -1/2 ds 2 (R 1,2 ) + H(r) 1/2 dr 2 + r 2 dµ 2 + cos 2 µ 2 ds 2 (Ω 2 ) + 9r 3 H(r)ρ 2 cos µ 2 sin 4 µ 2 4096l 2 p α ∆ ds 2 (dχ 2 + sin 2 χdξ 2 ) + 9l p α 2 8r 3 H(r) cos µ 2 sin 2 µ 2 dρ 2 , B2 = 27r 3 ρ 3 cos µ 2 sin 2 µ 2 4096l p ∆ sin χdξ ∧ dχ, e -2 Φ = 8l 3 p ∆ r 3 H(r) cos 3 µ 2 , ∆ = r 3 H(r) cos µ 2 sin 2 µ 2 512l 3 p α 3 (9l 2 p α 2 ρ 2 + r 6 H(r) cos 2 µ 2 sin 2 µ 2 ) , (114) 
and,

F3 = - 9 64 l p √ α ρdΩ 2 ∧ dρ + 3 Q 64l p α 3/2 cos 3 µ 2 sin 3 µ 2 dΩ 2 ∧ dµ F5 = - 27 Ql 2 p √ α 8r 9 H(r) 3/2 cos 2 µ 2 ρdρ ∧ v 4 + r 3 √ H sin 3 µ 2 8α 3/2 cos µ 2 dµ ∧ v 4 (115) 
+ 27r 3 √ Hρ 2 cos 3 µ 2 sin 5 µ 2 524288l 2 p α 3/2 ∆ 2r 6 H sin µ 2 dρ -6 Qρ cos µ 2 dµ ∧ dΩ 2 ∧ sin χdχ ∧ dξ , with v 4 = - r 2 cos 2 µ 2 4l 2 p √ H dr ∧ dx 0 ∧ dx 1 ∧ dx 2 .
The Page five-form is given by,

F5 = - 27 Ql 2 p √ α 8r 9 cos 2 µ 2 H 3/2 ρv 4 ∧ dρ + r 3 √ H sin 3 µ 2 8α 3/2 v 4 ∧ dµ - 27 512 l p α 3/2 ρ 2 sin χdΩ 2 ∧ dρ ∧ dχ ∧ dξ .
(116)

Brane configuration and charges

We first compute the NS5 charge by integrating H 3 on the cycle ([ρ, χ, ξ], µ = 0), The NS5 branes are also seen by zooming in on the singularity generated by the NATD at µ = 0,

H 3 = - 3 8 α sin χdρ ∧ dχ ∧ dξ (117) 
Q N S5 = 1 2κ 2 10 T N S5 H 3 = 3ρ 0 8π . ( 118 
)
Q N S5 is quantized if ρ 0 = L n ,
ds 2 µ→0 = r 2l p H(r) ds 2 (R 1,2 ) + H(r) dr 2 + r 2 4 dΩ 2 2 + 1 ν 9l p α 2 2r 3 H(r) dρ 2 + r 3 H(r) 32l p dν 2 + ν 2 d Ω . (119) 
This is indeed consistent with the harmonic superposition rule, with harmonic function proportional to ν -1 . This gives the characteristic NS5 brane configuration: along the (R 1,2 , r, Ω 2 ) directions, located at µ = 0 and smeared along ρ.

Next we compute the quantized Page charges. We start with the dual of F 4 to track the D2. This corresponds to the terms proportional to Q. Here only the F3 = F3 gives a non zero charge and we integrate the (Ω 2 , µ) term to find,

Q D5 = Q 256l p πα 5/2 = 1 2 πN D2 , (120) 
where we took (112) into account. We see that, as already noted in the near-horizon limit [START_REF] Zayas | Supergravity solutions with AdS 4 from non-Abelian T-dualities[END_REF], N D5 and N D2 differ by a factor of π 2 and thus cannot both be integers. Indeed it is known that NATD generically maps integer charges to non-integer ones [START_REF] Lozano | A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow[END_REF]. In the dual theory we are thus led to impose a different quantization condition: 1 2 πN D2 ∈ Z, so that (120) is satisfied with Q D5 ∈ Z. Moreover, we may perform a large gauge transformation on B 2 and find the resulting change in the Page charge for F 5 , ∆Q D3 ,

∆Q D3 = n Q 256πl p α 5/2 = nQ D5 . (121) 
We can also track the D6 by looking at the dual of F 2 , i.e. the remaining components of the Page forms. These are found by integrating the terms not proportional to Q in (115) and ( 116), which we label F3 and F5 . We find,

Q D5 = 1 2κ 2 10 T D5 F3 = - 9l p (L 2 n+1 -L 2 n ) 128π √ α = 1 4 π(2n + 1)Q D6 (122) Q D3 = 1 2κ 2 10 T D3 F5 = - 9l p (L 3 n+1 -L 3 n ) 512π 2 √ α = 1 6 π(3n 2 + 3n + 1)Q D6 , (123) 
where in the last equalities on the right hand sides above we have taken (113) into account and the quantization of ρ 0 given below (118). Similar to the case of Q D5 above, we see that Q D5 , Q D3 cannot be integers if Q D6 is integer. In the dual theory we are thus led to impose a different quantization condition: 1 12 πQ D6 ∈ Z. The brane configuration is summarized in the following table.

0 1 2 r µ θ 1 φ 1 ρ χ ξ N S5 × × × × × × D3 × × × × D5 × × × × × × D3 × × × × D5 × × × × × ×

The spatial infinity limit

The supergravity background corresponding to the NATD of the spatial infinity limit of (109) is presented here,

ds 2 = r cos µ 2 2l p ds 2 (R 1,2 ) + dr 2 + r 2 dµ 2 + cos 2 µ 2 ds 2 (Ω 2 ) + 9r 3 ρ 2 cos µ 2 sin 4 µ 2 4096l 2 p α ∆ ds 2 (dχ 2 + sin 2 χdξ 2 ) + 9l p α 2 8r 3 cos µ 2 sin 2 µ 2 dρ 2 , B2 = 27r 3 ρ 3 cos µ 2 sin 2 µ 2 4096l p ∆ sin χdξ ∧ dχ, e -2 Φ = 8l 3 p ∆ r 3 cos 3 µ 2 , ∆ = r 3 cos µ 2 sin 2 µ 2 512l 3 p α 3 (9l 2 p α 2 ρ 2 + r 6 cos 2 µ 2 sin 2 µ 2 ) , (124) 
and,

F 3 = - 9 64 l p √ α ρdΩ 2 ∧ dρ F 5 = r 3 sin 3 µ 2 8α 3/2 cos µ 2 dµ ∧ v 4 + 27r 9 ρ 2 cos 3 µ 2 sin 6 µ 2 262144l 2 p α 3/2 ∆ dρ ∧ dΩ 2 ∧ sin χdχ ∧ dξ , with v 4 = - r 2 cos 2 µ 2 4l 2 p dr∧dx 0 ∧dx 1 ∧dx 2 .
The surviving RR flux terms in the asymptotic limit ultimately arise from the charge created in the reduction of the parent M-theory background to Type IIA, and thus from the D6. The NS5 also survives since it comes from the singularity in the NATD.

Domain wall supersymmetry equations

As already mentioned, (60) is a supersymmetric domain wall (DW) solution in four-dimensional space, where the latter is viewed as a foliation, parameterized by r, with R 1,2 leaves. The supersymmetry conditions for N = 1 domain walls were written in [START_REF] Haack | Domain walls from ten dimensions[END_REF] in generalized G 2 × G 2 form in eqs. (2.5), (2.6) therein. For our purposes it would be more useful to recast these equations in terms of generalized pure spinors on M 6 . Such a rewriting is indeed given in [START_REF] Haack | Domain walls from ten dimensions[END_REF], cf. (2.7) therein. We will now review their results adapting them to our case.

The ansatz for the splitting of the metric and the flux is given by:

ds 2 = e 2A ds 2 (R 1,2 ) + ds 2 (M 7 ) F t = F + v 3 ∧ λF , (125) 
where the warp factor A and the dilaton φ are not constrained at this point; λ is an involution reversing the order of wedge products. The NS-NS form H is assumed to be internal, i.e. to only have legs along M 7 , and likewise for the internal RR flux F . The total flux F t is then chosen to be self-dual: for F internal we get λF = v 3 ∧ 7 λF and in ten Lorentzian dimensions ( λ) 2 = 1. Unbroken supersymmetry of the solution implies on M 7 the existence of two Majorana spinors χ 1 , χ 2 normalized so that χ † a χ a = 1. This leads us to define a bispinor Ψ, which can also be viewed as a polyform via the Clifford map:

Ψ = 8χ 1 ⊗ χ † 2 = Ψ + + i Ψ -, (126) 
where Ψ + and Ψ -are respectively the real-even and imaginary-odd parts of Ψ. We should be careful however about how the identification is imposed: odd dimensional Fierzing does not provide an isomorphism between bispinors and polyforms because the Clifford representation is not faithful, as can be confirmed by a simple count of dimensions. We thus need to choose the range of our identification.

Here we take Ψ to be self-dual as a polyform: -i 7 λΨ = Ψ. This also means that the decomposition (126) is only valid in the polyform space and that Ψ + , Ψ -are not independent:

Ψ + = 7 λΨ -. (127) 
These choices lead to the normalization:

Ψ + , Ψ -= i 2 Ψ, Ψ = 8v 7 . (128) 
We now have all the necessary ingredients to write the supersymmetry for IIA in terms of generalized spinors:

d H (e 3A-φ Ψ + ) = -e 3A 7 λF d H (e 2A-φ Ψ -) = 0 Ψ -, F = 0 . (129) 
In order to match (56), (57) we need to further split M 7 to M 6 plus a transverse direction parameterized by the coordinate r. The metric and fluxes thus decompose as follows:

ds 2 = e 2Z (e 2a ds 2 (R 1,2 ) + dr 2 ) + ds 2 (M 6 ) F = F i + dr ∧ F r H = H i + dr ∧ H r , (130) 
where a depends only on r, and F i , F r , H i , H r only have legs on M 6 . Note also that the expression ds 2 (M 6 ) can depend on r, since it can include a warp factor for instance. The same split must then be performed for the spinors, by expressing 7D spinors in terms of 6D chiral spinors. Since we are splitting along r, γ r (in flat basis) becomes the chirality matrix for spinors of M 6 . Thus we take:

η 1 := √ 2 P + χ 1 , η 2 := √ 2 P -χ 2 χ 1 = 1 √ 2 (η 1 + η c 1 ) , χ 2 = 1 √ 2 (η 2 + η c 2 ) , (131) 
where P ± := 1 2 (1 ± γ r ). Introducing the following bispinors on M 6 (which can be viewed equivalently, via 6D Fierzing and the Clifford map, as polyforms or generalized spinors):

Φ 1 := 8e 3Z-φ η 1 ⊗ η † 2 , Φ 2 := 8e 3Z-φ η 1 ⊗ η2 , (132) 
we get:

Ψ + = e -3Z+φ ( Φ 2 + e Z dr ∧ Φ 1 ) , Ψ -= e -3Z+φ ( Φ 1 + e Z dr ∧ Φ 2 ) . (133) 
The factor e 3Z-φ is introduced here for future convenience; it is simply another choice of normalization:

i Φ 1 , Φ1 = i Φ 2 , Φ2 = 8e 6Z-2φ v 6 . (134) 
We then substitute (130) and ( 133) into (129), and decompose along dr. We look for an expression solely in terms of polyforms on the internal space M 6 , where r is now considered as an external parameter:

d H e Z Φ 1 = e 4Z λF i + e -3a ∂ H r e 3a Φ 2 d H Φ 2 = -e 2Z λF r d H e -Z Φ 1 = 0 d H Φ 2 = e -2a ∂ H r e 2a-Z Φ 1 Φ 1 , F r + e Z Φ 2 , F i = 0 , (135) 
where now d H = d + H i ∧, ∂ H r = ∂ r + H r ∧, and d acts only on the coordinates of M 6 . Note also that , now refers to the 6D Mukai pairing.

Supersymmetric D2

We now want to check explicitly that the solution in (56), (57) is compatible with the equations (135). This amounts to defining two polyforms Φ 1 , Φ 2 , whose SU (3) × SU (3)-structure carries the 6D part of the metric (56), and which is solution of (135). First we need to identify the various fields. Comparing (56) and (130) we find,

e a = 1 √ H and e Z = e φ/3 H 1/6 . (136) 
Since the fluxes are not given in the same formalism, we need to retrieve F 6 and F 8 from F 2 and F 4 by Hodge duality, in order to build the total flux polyform F t in the democratic formalism. If we write F nd = F 2 + F 4 , the total flux of the solution (57) we find,

F t = F nd + 10 λF nd .
This leads to,

F i = F 2 + 10 λF 4 = df (dψ + A) + H √ H e -4Z v 6 F r = 0 H i = 0 H r = 0 , (137) 
where v 6 is the volume form of M 6 taking into account the warp factor. We can now use the results from section A.3 to define our polyforms Φ 1 and Φ 2 . Our ansatz will introduce several functions of θ as supplementary degrees of freedom that should enable us to find a solution of the DW equations.

We begin with the local SU (2)-structure, given by the Kähler structure of B 4 . We denote by ĵ the Kähler form and ω a holomorphic 2-form normalized so that,

ĵ ∧ ω = ω ∧ ω = 0 ω ∧ ω * = 2 ĵ ∧ ĵ . ( 138 
)
Note that ĵ is global but ω can only be defined locally. Furthermore we define,

ω = e 2i(ψ+ζ) ω j = 1 4 r 2 e 2Z cos θ ĵ + sin θ ω ω = 1 4 r 2 e 2Z+2iα cos θ ω -sin θ ĵ + i ω K = 1 2 re Z+iβ 1 1+cos 2 θ dθ + i sin θ(dψ + A) . (139) 
Finally the polyforms (or, equivalently, the generalized spinors) defining the SU (3) × SU (3)-structure are given by,

Φ 1 = √ H K ∧ e iν cos ϕ ω -sin ϕ e i j Φ 2 = √ H e -1 2 K∧ K e -iν cos ϕ e i j + sin ϕ ω , (140) 
where the factor √ H has been added to match the normalization (134),

i Φ 1 , Φ1 = i Φ 2 , Φ2 = 8e 6Z-2φ v 6 = 8H v 6 . (141) 
We are thus left with five undetermined functions of θ (α, β, ζ, ν and ϕ) that should provide enough freedom for a solution of the DW supersymmetry equations: α and ζ act as rotation of the local SU (2) and, since the SU (2)-structures span a two-sphere, they can be respectively seen as the intrinsic rotation and precession; β is merely a modification of the phase of the vielbein one-form K; the meaning of ν and ϕ is explained in section A.3, recall in particular that ϕ must vanish at θ = 0, π. Note also that a global phase of Φ 2 can be absorbed in ν and α whereas a global phase of Φ 1 can be absorbed in β.

Solution

Note first that in the near horizon limit, the SU (3) × SU (3) is in fact pure SU (3), i.e. ϕ = 0. Thus if our ansatz is correct (ϕ is function of θ only), ϕ should remain constant to match the near horizon limit. Looking at the first equation of (135), the scalar term gives straightforwardly,

cos ϕ cos ν = 1 .
This is consistent with the ansatz, and also gives information about ν. We get ϕ = 0 , ν = 0 .

The structure is then pure SU (3) all along the r coordinate. Moreover α and β now play the same role: a global phase shift of the holomorphic 3-form. β can thus be absorbed by a redefinition of α, and be set to 0. At this point, the second and fifth equation of (135) are satisfied. Moreover the three-form part of the fourth equation of (135) leads to 2α = -π 2 . All the remaining terms are then proportional to ζ so that ζ has to be constant. Taking ζ = 0 then solves (135).

Mass Deformation

The only difference between the full interpolating brane solution and its AdS 4 near horizon limit is a modification of the function H(r). The background (56), (57) is a genuine solution under the sole condition that H(r) is harmonic in the transverse space R 7 . The interpolating solution corresponds to the most general choice of H(r), whereas the near horizon limit and the spatial infinity limit correspond respectively to the choices H(r) = Q/r 6 and H(r) = 1. We would then expect that finding a massive deformation of the interpolating solution would amount to adding the correct r-dependence in the different functions of the massive deformation.

Consequences of the massive deformation: For the massive deformation of the near horizon limit, the SU (3) × SU (3) structure is no longer pure SU (3) [START_REF] Petrini | N=2 solutions of massive type IIA and their Chern-Simons duals[END_REF][START_REF] Lüst | New supersymmetric AdS(4) type II vacua[END_REF], and this will obviously be the case for the interpolating solution. It will now be necessary to switch on the function ν, ϕ and ζ, leading to our first source of complication. It is also important to notice that the base and fiber of M 6 get a different warp factor, and our ansatz should take that into account. We also expect the massive deformation to switch on all fluxes. Switching on the three-form H also impacts equation (138) by twisting the derivative. Taking all the above into account, let us define the following ansatz for the SU (3) × SU (3) structure and the fluxes. We first define the local SU (2) and one-form similarly to (142), ω = e 2i(ψ+ζ) ω j = e 2B cos γ ĵ + sin γ ω ω = e 2B+2iα cos γ ω -sin γ ĵ + i ω K = e C+iβ (f (θ)dθ + i sin θ(dψ + A)) .

(142)

The SU (3) × SU (3) structure is now given by, Φ 1 = e 3Z-φ K ∧ e iν cos ϕ ω -sin ϕ e i j Φ 2 = e 3Z-φ e -1 2 K∧ K e -iν cos ϕ e i j + sin ϕ ω .

(
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This corresponds to the ansatz of (130). The internal metric of M 6 follows from the SU (3) × SU (3), ds 2 (M 6 ) = e 2B ds 2 (B 4 ) + e 2C f (θ) 2 dθ 2 + sin 2 θ(dψ + A) 2 .

(144)

For The Bianchi Identities to be automatically satisfied we will rather define the fluxes by their potentials: the two-form B and the odd polyform C,

B = h ĵ C 1 = f 2 A C 3 = f 4 A ∧ ĵ C 5 = f 6 A ∧ ĵ2 . (145) 
The fluxes are then, in the formulation of (130),

H i = dB H r = ∂ r B F i = d H C + me -B F r = ∂ H r B . (146) 
All the warp factors Z, B, C, the dilaton φ, the phases α, β, γ, ζ, ϕ, ν and the fluxes h, f 2 , f 4 , f 6 are allowed to depend on r, θ.

Despite its generality, we have checked that this ansatz does not solve the supersymmetry equations (except for the solutions we already know, which are special cases thereof). Unfortunately, without further input, relaxing the ansatz to allow for a dependence on more variables quickly becomes intractable.

Conclusions

We have seen that having full-fledged brane solutions, interpolating between the near-horizon and spatial infinity limit, may give a better handle on the brane configurations and the global properties of the NATD. In particular we have seen certain general features emerge. The NATD of the spatial infinity limit of standard intersecting brane solutions is universal: it is given by a continuous linear distribution of NS5 branes along a half line with specific charge density. We have also provided additional examples where a general relation, observed previously in the NATD literature, between the Page charges generated by the NATD and their behavior under a large gauge transformation of the NS flux is obeyed. Since this behavior results from the non-trivial dependence of the Page charge on the B 2 field, NATD naturally furnishes several examples where the choice of B 2 plays an important role.

More generally we have seen that in cases where the brane configuration before NATD is not flat at spatial infinity, the NATD contains highly nontrivial RR fluxes even at spatial infinity. If the charges before NATD are related to the presence of branes, the latter can be tracked throughout the NATD.

On the other hand, the precise NS5-D(p+1)-D(p+3) brane intersections underlying these solutions cannot be systematically identified with our approach. Indeed, we have not been able to describe these brane fluxes as resulting from backreaction (as dictated by the harmonic superposition rule) on some initial spacetime without branes. The exception to this statement is the case of the geometry near the locus of the NS5 branes. Let us also note that the spatial infinity limits of the NATD backgrounds presented here are highly nontrivial exact supergravity solutions in their own right, and they can be considered independently from the full interpolating intersecting brane solution.

In the case of the NATD of the D2 branes, proceeding by analogy to the NATD of the D3 brane, we have seen that cutting off the range of the ρ coordinate at a finite value, in order to impose NS5 charge quantization, provides a prescription for assigning well-defined ranges to all dual coordinates. On the other hand, from a purely geometrical point of view this procedure renders the space geometrically incomplete. Ultimately such a procedure should be justified through a physical interpretation. In the case of the NATD of the D3 brane, such an interpretation was provided by the field theory dual proposed in [START_REF] Lozano | Field theory aspects of non-Abelian T-duality and N = 2 linear quivers[END_REF], as reviewed in section 2.2.3. It would be interesting to provide a similar interpretation for the NATD of the D2 branes of the present paper.

We have cast the supersymmetric D2 brane solution, arising from the reduction of M2 branes on sevendimensional Sasaki-Einstein, in the language of generalized geometry pure spinor equations for domain walls. This framework allowed us to look for massive supersymmetric deformations of the D2 brane solutions, and we have been able to rule out a certain class of ansätze. It would be interesting to try to construct these massive deformations explicitly, at least in a perturbative expansion in Romans mass as in [START_REF] Gaiotto | Perturbing gauge/gravity duals by a Romans mass[END_REF]. If they exist, these would be full interpolating intersecting brane solutions whose near-horizon limit coincides with the class of massive IIA AdS 4 × M 6 solutions of [START_REF] Lüst | New supersymmetric AdS(4) type II vacua[END_REF]. 8It would also be interesting to cast the NATD of the supersymmetric solutions in the generalized geometry formalism for domain walls, thus refining the general results of [START_REF] Itsios | Non-Abelian Tduality and consistent truncations in type-II supergravity[END_REF][START_REF] Kelekci | Supersymmetry and non-Abelian T-duality in type II supergravity[END_REF]. Besides providing a check of supersymmetry, this might give insight into the global structure of the solutions. In certain cases the duals might fall within the class recently examined in [START_REF] Macpherson | Mink 3 × S 3 solutions of type II supergravity[END_REF]. We hope to return to these questions in the future.

Figure 1 :

 1 Figure 1: (a) D3 brane in flat space; (b) empty flat space; (c) configuration of intersecting D4-D6-NS5 branes;

  where we set L n := 8 3 πn. With ρ ∈ [L n , L n+1 ] and a suitable large gauge transformation on B 2 , the relation (42) is satisfied.

Nevertheless the harmonic superposition rule allows us to trace the original source (i.e. before backreaction) as a delta function defined in flat space.

Some early examples where this has been hinted at through specific examples are in[START_REF] Lozano | A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow[END_REF][START_REF] Lozano | New AdS 3 × S 2 T-duals with N = (0, 4) supersymmetry[END_REF], but it was proposed generally in[START_REF] Lozano | Three-dimensional N = 4 linear quivers and non-Abelian T-duals[END_REF].

It was suggested in[START_REF] Lozano | Field theory aspects of non-Abelian T-duality and N = 2 linear quivers[END_REF] and further considered in[START_REF] Itsios | Penrose limits of Abelian and non-Abelian T-duals of AdS 5 × S 5 and their field theory duals[END_REF] that the dual field theory could actually be higher dimensional through deconstruction.

The metric of the Sasaki-Einstein manifold must be normalized so that the cone over it is Ricci-flat.

The large gauge transformation has the same expression each time: see[START_REF] Youm | Black holes and solitons in string theory[END_REF] or (75)

This class includes the massive deformation of the IIA reduction of the eleven-dimensional AdS4 × M 1,1,1 solution previously constructed in[START_REF] Petrini | N=2 solutions of massive type IIA and their Chern-Simons duals[END_REF]. Until recently these solutions were only known up to a system of two first-order nonlinear ordinary differential equations for two unknown functions. The class of analytic solutions of[START_REF] Passias | A massive class of N = 2 AdS 4 IIA solutions[END_REF] should include these (and other related solutions such as[START_REF] Aharony | Massive type IIA string theory cannot be strongly coupled[END_REF][START_REF] Tomasiello | Parameter spaces of massive IIA solutions[END_REF][START_REF] Guarino | String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals[END_REF]) as special cases. It would be interesting to construct the explicit dictionary between the two.
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A Conventions for SU (3) and SU (3) × SU (3)-structures

In this section we review well-known results about SU (n)-structures and generalized geometry. We follow here the approach presented in [START_REF] Koerber | Lectures on Generalized Complex Geometry for Physicists[END_REF] and [START_REF] Tsimpis | Generalized geometry lectures on type II backgrounds[END_REF], but adapted to our conventions and notations.

A.1 SU (3)-structures

Let us first take an SU (n)-structure on a 2n-dimensional manifold M 2n , given by a two-form J and an n-form Ω. In order to define our convention we introduce locally a vielbein (e k ) and z k = e 2k-1 + i e 2k such that (J, Ω) can be written:

With this choice we find:

which gives for our case n = 3:

Note that (J, Ω) also define a metric g and a volume form v on M 2n (and thus an orientation):

Now we can make the complex structure I explicit, defined in such a way that Ω is (n, 0). For n = 3:

A.2 Pure Spinors

Consider now a six-dimensional Riemannian spin manifold M 6 , with metric g and volume form v 6 . Suppose that M 6 admits a chiral spinor γ 7 η = η, globally defined and nowhere-vanishing. η is also pure and can be normalized to η † η = 1. η thus leads to an SU (3)-structure (J, Ω) by contraction with gamma matrices:

The choices here are made to be compatible with ( 147) and ( 148). This can be checked by Fierzing, using:

where P ± is the projector to positive, negative chirality respectively.

A.3 SU (3) × SU (3)-structures

Suppose now that we have not only one but two spinors η 1 , η 2 of positive chirality on M 6 , normalized so that

Each defines its own SU (3)-and almost complex structure, according to (151). They both combine to form an SU (3) × SU (3)-structure on M 6 , given by two generalized spinors (i.e. spinors of Spin(3, 3)):

Note that, thanks to Fierz isomorphism, generalized spinors can be seen equivalently as bispinors or polyforms (in even dimension). We thus want to express Ψ 1 , Ψ 2 as polyforms. It is also important to notice that η 1 , η 2 are not necessarily independent. Since η 1 is pure, the space of spinors can be constructed from η 1 or η c 1 and (anti-)holomorphic gamma matrices. Note that we call a holomorphic gamma matrix the image of a holomorphic one-form in the Clifford algebra, with respect to the complex structure defined by η 1 . With this choice of conventions, the annihilators of η 1 are the anti-holomorphic gamma matrices, as can be seen by the following calculation. Consider a one-form K such that K • η 1 = Kj γ j η 1 = 0, then:

It follows that any normalized spinor of positive chirality, such as η 2 in particular, can be written as:

Here e iν cos ϕ = η † 1 η 2 and χ is a normalized spinor, orthogonal to η 1 , and defined from an antiholomorphic one-form K such that K • K = 2:
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In this definition K (and thus χ) does not need to be globally well-defined, provided sin ϕ vanishes whenever the definition of K fails. Moreover, χ (and K) defines locally another SU (3)-structure, "orthogonal" to η 1 's:

We can also define a local SU (2)-structure (j, ω):

The two orthogonal SU (3)-structures can be reconstructed back from the local SU (2) and K:

Now we can compute the generalized spinors using Fierz identities:

2 K∧ K e -iν cos ϕ e i j + sin ϕ ω Ψ 2 = K ∧ e iν cos ϕ ω -sin ϕ e i j (159)

Finally we introduce the Mukai pairing of polyforms:

where λ swaps the order of the wedge product. This leads to the following normalization of the generalized spinors:

Remarks on the conventions

The conventions adopted here respect the general relation of SU (n)-structures (147) as well as the orientation (148). However this implies that the annihilators of a pure spinor of positive chirality are anti-holomorphic. If we would rather have the annihilators to be holomorphic, we need to change the complex structure. This can be done by swapping Ω and Ω, and I should be modified accordingly (by a sign). This can be done in two ways:

1. Change the sign of J: this will keep the relations (147) intact but will change the orientation (148).

2. Take rather I j i = g jk J ki instead of (149): this will keep the orientation but add a sign in the relation (147).

The first change is the choice made in [START_REF] Tsimpis | Generalized geometry lectures on type II backgrounds[END_REF] while the second was chosen in [START_REF] Koerber | Lectures on Generalized Complex Geometry for Physicists[END_REF]. All cases are made to be consistent with the relation (150), which is also merely a convention. Fortunately, everyone seems to agree on this one.