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We discuss the cosmological phenomenology of biscalar-tensor models displaying a maximally
symmetric Einstein-frame kinetic sector and constructed on the basis of scale symmetry and volume-
preserving diffeomorphisms. These theories contain a single dimensionful parameter Λ0—associated with
the invariance under the aforementioned restricted coordinate transformations—and a massless dilaton
field. At large field values these scenarios lead to inflation with no generation of isocurvature perturbations.
The corresponding predictions depend only on two dimensionless parameters, which characterize the
curvature of the field manifold and the leading-order behavior of the inflationary potential. For Λ0 ¼ 0 the
scale symmetry is unbroken and the dilaton admits only derivative couplings to matter, evading all fifth-
force constraints. For Λ0 ≠ 0 the field acquires a runaway potential that can support a dark-energy-
dominated era at late times. We confront a minimalistic realization of this appealing framework with
observations using a Markov chain Monte Carlo approach, with likelihoods from present baryon acoustic
oscillation, type Ia supernova, and cosmic microwave background data. A Bayesian model comparison
indicates a preference for the considered model over ΛCDM, under certain assumptions for the priors. The
impact of possible consistency relations among the early and late Universe dynamics that can appear within
this setting is discussed with the use of correlation matrices. The results indicate that a precise
determination of the inflationary observables and the dark energy equation of state could significantly
constrain the model parameters.

DOI: 10.1103/PhysRevD.99.063512

I. INTRODUCTION

We have entered an era of precision cosmology.
Cosmological parameters are measured with unprecedented
accuracy [1] and, in addition to electromagnetic probes,
gravitational-wave observations [2–5] tightly constrain a
plethora of modified gravity scenarios [6–10].
In spite of the undeniable success of modern cosmo-

logy, the origin of the present accelerated expansion
of the Universe remains unknown. The next decade of
observations—with an upcoming generation of galaxy
redshift surveys such as Euclid [11,12] or LSST [13]—
will be of crucial importance for determining whether this
phase arises due to an inert cosmological constant or rather
a dynamical dark energy (DE) component. The combination

of these surveys with stage-4 cosmic microwave back-
ground (CMB) observations [14] will also pin down the
inflationary parameters, setting the stage for more
fundamental questions on the relation between the early
and late Universe. Indeed, although inflation and dark
energy are usually treated as two independent epochs,
they might be closely related as happens, for instance,
in quintessential inflationary models [15–21] or in
certain theories invariant under dilatations [22–24]. A
potential confirmation of this appealing hypothesis
might completely change our understanding of modern
cosmology.
In the last few years there has been renewed interest in the

implications of scale and conformal symmetries, and many
of their aspects—both formal and phenomenological—have
been thoroughly investigated [19,22–72]. In this paper,
we focus on the cosmological consequences of a general
class of biscalar-tensor models first introduced in
Ref. [33] which are invariant under volume-preserving
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diffeomorphisms1 and display spontaneous breaking of
scale symmetry. We restrict ourselves to theories that
contain at most two derivatives of the fields, such that
the particle spectrum comprises only healthy degrees of
freedom (d.o.f.). In addition, we are interested only in
models whose Einstein-frame target manifold is maximally
symmetric during inflation and, more precisely, globally
hyperbolic [50,73].2 Moreover, we require the equations of
motion governing the dynamics of the theories under
consideration to admit Minkowski, de Sitter, and anti–de
Sitter vacuum solutions, since these might be essential for
the eventual quantization of the theory. Finally, when
needed, we assume the existence of a hierarchy between
the inflationary and particle-physics scales, similar to that
between the Planck and electroweak scales.
Even though we will go into further details in what

follows, let us spell out some of the most intriguing features
of these specific models. On general grounds, these theories
contain a single dimensionful parameter Λ0 associated
with the invariance of the action under volume-preserving
coordinate transformations. For Λ0 ¼ 0, one of the scalar
fields—which we will call the dilaton—becomes the
Goldstone boson of the spontaneously broken scale sym-
metry. The combination of gravity and dilatation invariance
forces this field to have only derivative couplings to matter.
Consequently, the fifth-force effects associated with the
dilaton are highly suppressed in this particular context
[22,31,53,67]. Additionally, scale invariance forbids the
generation of isocurvature perturbations during the infla-
tionary stage due to the presence of a conserved (scale)
current that effectively reduces the biscalar theory to a
single-field scenario. Interestingly, these theories also
admit an “α-attractor” solution [74–76] for the spectral tilt
and tensor-to-scalar ratio [50]. For Λ0 ≠ 0, the dilatation
symmetry is explicitly broken. The combination of this
specific symmetry-breaking term with the omnipresent
nonminimal coupling to gravity of scalar-tensor theories
leads to a unique quintessential potential for the dilaton
field [31]. For sufficiently small values of Λ0, all the
inflationary properties mentioned previously are approx-
imately realized and the dilaton remains an almost massless
d.o.f. potentially responsible for the current accelerated
expansion of the Universe. This, in turn, can lead to a set
of nontrivial consistency conditions between the infla-
tionary observables and the dark energy equation-of-state
parameter, which could be tested with future cosmological
observations.
The paper is organized as follows. In Sec. II, we

introduce the notion of transverse diffeomorphisms and,
closely following Ref. [33], we construct the most general

class of scale-invariant biscalar models invariant under this
type of transformations. In Sec. III, we recast the obtained
set of models in the Einstein frame, where the gravitational
part of the action takes the usual Einstein-Hilbert form.
After discussing the general features above, we focus on
models involving a maximally symmetric field manifold in
the Einstein frame. The cosmological consequences of this
broad class of theories are considered in Sec. IV, while in
Sec. V we make use of a Markov chain Monte Carlo
approach to confront a particular realization of our scenario
with present data sets and discuss the chances of differ-
entiating it from other cosmological scenarios such as
ΛCDM. Finally, our conclusions are presented in Sec. VI.

II. SCALE-INVARIANT BISCALAR MODELS

Our current understanding of the gravitational interaction
is based on a massless spin-2 field: the graviton. In general
relativity, this d.o.f. is associated with general coordinate
transformations or diffeomorphisms (Diffs). At the infini-
tesimal level, these transformations take the form

xμ → xμðxÞ þ δxμðxÞ; ð1Þ

where δxμ is arbitrary. In spite of this “traditional”
association, the minimal group leading to graviton excita-
tions is not the group of general coordinate transformations,
but rather the subgroup spanned by the transverse vectors

δxμ ¼ ξμ; with ∂μξ
μ ¼ 0: ð2Þ

In what follows we will refer to these transformations as
volume-preserving, restricted, or transverse diffeomor-
phisms (TDiff) interchangeably. It should be clearly stated
that, in general, theories invariant under Eq. (2) propagate
an extra scalar d.o.f. related to the metric determinant on
top of the two graviton polarizations.
Contrary to what happens in diffeomorphism-invariant

theories, the requirement of invariance under TDiffs (2)
does not completely determine the form of the action.
In particular, it is always possible to include arbitrary
functions of the metric determinant g≡ − detðgμνÞ in the
Lagrangian density, since this quantity transforms as a
scalar under volume-preserving diffeomorphisms. As
shown in Ref. [33], the most general TDiff action that
is also invariant under the scale transformations [gμνðxÞ is
the metric and ϕðxÞ is a scalar field with scaling dimension
one]

gμνðxÞ↦ gμνðλxÞ; ϕðxÞ↦ λϕðλxÞ; λ¼ const; ð3Þ

takes the form

1The precise definition of these transformations can be found
in the next section.

2The reasons for this choice will become apparent later, but the
essence is that under this assumption the arbitrariness in the
construction of the corresponding action is greatly reduced.
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S¼
Z

d4x
ffiffiffi
g

p �
ϕ2fðgÞ

2
R−

ϕ2

2
½G1ðgÞð∂gÞ2

−2G2ðgÞð∂gÞðϕ−1∂ϕÞþG3ðgÞðϕ−1∂ϕÞ2�−ϕ4vðgÞ
�
;

ð4Þ

where f, G1, G2, G3, and v are arbitrary functions of the
metric determinant. For general choices of these theory-
defining functions, the action (4) contains three propagating
d.o.f. on top of the scalar field ϕ: the two graviton polar-
izations and a new scalar associated with the metric deter-
minant.3 The existence of this additional d.o.f. can be made
explicit by rewriting the above action in aDiff-invariant form.
To this end, we first transform Eq. (4) to an arbitrary
coordinate frame [i.e., we perform a general coordinate
transformation with Jacobian JðxÞ ≠ 1] to obtain [33]

S ¼
Z

d4x
ffiffiffi
g

p �
ϕ2fðgaÞ

2
R −

ϕ2

2

�
G1

�
g
a

�
ð∂g=aÞ2

− 2G2

�
g
a

�
ð∂g=aÞðϕ−1∂ϕÞ þ G3

�
g
a

�
ðϕ−1∂ϕÞ2

�

− ϕ4v

�
g
a

�
−

Λ0ffiffiffiffiffiffiffiffi
g=a

p �
; ð5Þ

where aðxÞ≡ JðxÞ−2 and Λ0 is a unique scale symmetry-
breaking term that arises as an integration constant in the
original TDiff formulation.4 PromotingaðxÞ to a (dynamical)
compensator field transforming under Diffs as

δξa ¼ ξμ∂μaþ 2a∂μξ
μ; ð6Þ

the Lagrangian density in Eq. (5) can equivalently be
written as

Lffiffiffi
g

p ¼ ϕ2fðθ̃Þ
2

R −
ϕ2

2
½G1ðθ̃Þð∂θ̃Þ2 þ 2G2ðθ̃Þð∂θ̃Þðϕ−1∂ϕÞ

þG3ðθ̃Þðϕ−1∂ϕÞ2� − ϕ4vðθ̃Þ − Λ0ffiffiffĩ
θ

p ; ð7Þ

with θ̃≡ g=a > 0 [33,47]. This expression is, by construc-
tion, invariant under general coordinate transformations and
reduces to the TDiff form (4) in the a ¼ 1 gauge. Given the
(classical) equivalence of the TDiff- and Diff-invariant
formulations [31,33], we will work in what follows with

the more familiar diffeomorphism-invariant form. Note also
that small choices ofΛ0 are technically natural [86] (see also
Refs. [84,85]). Indeed, forΛ0 ¼ 0, the action associatedwith
Eq. (7) is invariant under scale transformations, which are
now internal. This means that the coordinates are kept fixed,
while the various fields change as5

gμνðxÞ↦ λ2gμνðxÞ; ϕðxÞ↦ λϕðxÞ; θ̃ðxÞ↦ θ̃ðxÞ: ð8Þ

III. EINSTEIN-FRAME FORMULATION

The phenomenological consequences of the theories
under consideration are most easily studied in the Einstein
frame, in which the gravitational part of the action takes a
“canonical form.” Requiring the existence of a well-defined
graviton propagator at all field values, i.e., ϕ2fðθ̃Þ > 0, we
can perform the Weyl rescaling gμν → M2

P=ðϕ2fðθ̃ÞÞgμν, to
rewrite Eq. (7) as

Lffiffiffi
g

p ¼ M2
P

2
R −

1

2
½M2

PK1ðθ̃Þð∂θ̃Þ2 þ 2MPK2ðθ̃Þð∂θ̃Þð∂Φ̃Þ

þ K3ðθ̃Þð∂Φ̃Þ2� −Uðθ̃Þ − Λ0

f2ðθ̃Þ
ffiffiffĩ
θ

p e−4Φ̃=MP; ð9Þ

where MP ¼ 2.48 × 1018 GeV is the reduced Planck mass.
In the above expression, we introduced the following θ̃-
dependent functions:

K1ðθ̃Þ≡G1ðθ̃Þ
fðθ̃Þ þ3

2

�
f0ðθ̃Þ
fðθ̃Þ

�
2

; K2ðθ̃Þ≡G2ðθ̃Þ
fðθ̃Þ þ3

f0ðθ̃Þ
fðθ̃Þ ;

ð10Þ

K3ðθ̃Þ≡ 6þG3ðθ̃Þ
fðθ̃Þ ; Uðθ̃Þ ¼ M4

Pvðθ̃Þ
f2ðθ̃Þ ; ð11Þ

and used primes to denote derivatives with respect to θ̃. Note
that the rescaled field

Φ̃≡MP ln

�
ϕ

MP

�
ð12Þ

is defined in such a way that the scale transformations (8) act
on it as a shift.
The nondiagonal kinetic terms in Eq. (9) can be

diagonalized by considering an additional field redefinition
[33,50],

Φ̃ → Φ ¼ Φ̃ −MP

Z
θ̃
dθ̃0

K2ðθ̃0Þ
K3ðθ̃0Þ

: ð13Þ

3The additional d.o.f. is only absent for very particular choices
of the theory-defining functions, leading either to general
relativity or to unimodular gravity [77–83]. Interestingly, these
two limiting cases are completely equivalent at the classical level
but not necessarily when quantum corrections are taken into
account [84,85].

4For more details on this point, the interested reader is referred
to Ref. [33]. 5This should be compared with the transformation (3).
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Once this is performed, we obtain the Lagrangian density

Lffiffiffi
g

p ¼ M2
P

2
R −

1

2
½M2

PKðθ̃Þð∂θ̃Þ2 þ K3ðθ̃Þð∂ΦÞ2�

−Uðθ̃Þ −UΛ0
ðθ̃;ΦÞ; ð14Þ

with

UΛ0
ðθ̃;ΦÞ ¼ Λ0KΛðθ̃Þe−4Φ=MP; ð15Þ

and

Kðθ̃Þ ¼ K1ðθ̃ÞK3ðθ̃Þ − K2
2ðθ̃Þ

K3ðθ̃Þ
;

KΛ ¼ 1

f2ðθ̃Þ
ffiffiffĩ
θ

p exp

�
4

Z
K2ðθ̃0Þ
K3ðθ̃0Þ

dθ̃0
�
: ð16Þ

In order to ensure the absence of ghost-like excitations
and to prevent the potential appearance of anti–de Sitter
regimes, we will require the θ̃-dependent functions in these
expressions to be positive at all field values, namely,6

Kðθ̃Þ>0; K3ðθ̃Þ>0; Uðθ̃Þ≥0; Λ0KΛðθ̃Þ≥0: ð17Þ

Note that these conditions do not restrict the derivatives of
the corresponding functions, which could be negative for
particular field ranges, allowing for instance for limited
tachyonic instabilities.
For Λ0 ¼ 0, the Lagrangian density (14) acquires an

emergent shift symmetry Φ → ΦþMPC, where C is a
constant. This symmetry is nothing else than a manifesta-
tion of the nonlinear realization of the original scale
symmetry (3) [or equivalently Eq. (8)] that the theory
exhibits in the scaling frame (7). The field Φ is therefore
identified as the Goldstone boson or dilaton associated with
the spontaneous breaking of scale invariance. For
Λ0KΛðθ̃Þ > 0, the symmetry is explicitly broken and the
dilaton acquires the runaway potential (15).
Given the Lagrangian density in the form (14), it is still

possible to perform additional field redefinitions to modify
the precise structure of the theory-defining functions Kðθ̃Þ,
K3ðθ̃Þ, etc. For instance, if Kðθ̃Þ ≠ 0, we can introduce a
variable7

θ ¼
Z

θ̃

θ̃0

dθ̃0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				K1ðθ̃0ÞK3ðθ̃0Þ − K2

2ðθ̃0Þ
K3ðθ̃0Þ

				
s

; ð18Þ

in terms of which the kinetic term of θ̃ becomes canonical.8

In this case, we get the following Lagrangian density:

Lffiffiffi
g

p ¼ M2
P

2
R −

1

2
½M2

Pð∂θÞ2 þ K3ðθÞð∂ΦÞ2�

−UðθÞ −UΛ0
ðθ;ΦÞ: ð19Þ

This freedom to perform field redefinitions can be trivially
understood once the scalars are viewed as the coordinates
of the two-dimensional field manifold. In fact, this inter-
pretation allows to rewrite the Einstein-frame Lagrangian in
the explicitly covariant form

Lffiffiffi
g

p ¼ M2
P

2
R −

1

2
γabgμν∂μφ

a∂νφ
b − VðφÞ: ð20Þ

Here, the latin indices a; b;… ¼ 1, 2 denote the two real
scalars present in the model, γab is the metric in this field
space, and

VðφÞ ¼ UðφÞ þ UΛ0
ðφÞ: ð21Þ

The variation of the action associated with the Lagrangian
density (20) leads to the Einstein and Klein-Gordon
equations, respectively,

M2
PGμν¼−γab

�
∂μφ

a∂νφ
b−

1

2
gμνgρσ∂ρφ

a∂σφ
b

�
þVgμν;

ð22Þ

□φc þ gμνGc
ab∂μφ

a∂νφ
b ¼ γcdV;d; ð23Þ

where Gμν is the Einstein tensor computed from the
Einstein-frame spacetime metric gμν and Gc

ab is the (sym-
metric) affine connection computed from the Einstein-
frame field-space metric γab, i.e.,

9

Gc
ab ¼

1

2
γcdðγda;b þ γdb;a − γab;dÞ: ð24Þ

A. Scale current and single-field dynamics

In the absence of the dimensionful parameter Λ0, the
scale invariance of the theories under consideration leads to
the existence of a (covariantly) conserved current, which
can be obtained from Noether’s theorem. In the Einstein
frame, it reads

Jμ ¼ −γab∂μφaΔφb; ð25Þ
6The shift (13) excludes the K3ðθ̃Þ ¼ 0 case. The choice

Kðθ̃Þ ¼ 0 is also excluded, since in such a case the target
manifold would be one dimensional. This means that one of
the two propagating d.o.f. becomes nondynamical.

7Here, θ̃0 is an arbitrary integration constant ensuring that
θðθ̃0Þ ¼ 0.

8In general, the kinetic sector can always be diagonalized.
However, the kinetic mixing among the fields cannot be removed,
unless the target manifold is flat.

9As customary, commas denotes partial derivatives.
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with Δφa denoting the infinitesimal action of dilatations
on the fields. Note that both the explicit form of Δφa and
the current depend on the variables under consideration.
For instance, for the variables in Eq. (9) we have
Δφa ≡ ðΔθ̃;ΔΦ̃Þ ¼ ð0;MPÞ, and

Jμ ¼ −MPðK3ðθ̃Þ∂μΦ̃þMPK2ðθ̃Þ∂μθ̃Þ: ð26Þ

For the ones in Eq. (14), we see that the infinitesimal
transformation corresponds to Δφa¼ðΔθ;ΔΦÞ¼ ð0;MPÞ,
and the current is given by

Jμ ¼ −MPK3ðθÞ∂μΦ: ð27Þ

From either Eq. (26) or Eq. (27), we find that the (covariant)
divergence of the scale current takes the form

1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
JμÞ ¼ 4UΛ0

; ð28Þ

clearly showing that the above indeed vanishes only for
Λ0¼0. For homogeneous fields in the cosmologically rel-
evant Friedmann-Lemaître-Robertson-Walker background,
this equation takes the very simple form

1

a3
d
dt

ða3γab _φaΔφbÞ ¼ 4UΛ0
; ð29Þ

where a ¼ aðtÞ is the scale factor and the dots stand for
derivatives with respect to the coordinate time t. For smallΛ0

(and/or sufficiently large dilaton expectation values), the
contribution of the symmetry breaking term on the right-
hand side of this equation can be safely neglected. In this limit,
the quantity a3γab _φaΔφb becomes approximately conserved,
such that γab _φaΔφb approaches zero as theUniverse expands.
For the particular set of variables in Eq. (14), this statement
takes the intuitive form

dΦ
dN

∝
1

HK3ðθÞ
e−3N; ð30Þ

where H is the Hubble parameter and N is the number of
e-folds. An immediate consequence of this equation is that
dΦ=dN ¼ 0 is actually an attractor solution, leading to an
effective constraint in the fh; χg plane [22]. The existence of
this attractor is of course a physical statement independent of
the frame inwhich the scale current is computed. In particular,
one could perform the same computation in the scaling frame
(7). In this case, it is simpler to obtain the precise expression
for the current from Noether’s theorem,

Jμ ¼ δL
δð∂μgνλÞ

Δgνλ þ
δL

δð∂μϕÞ
Δϕi: ð31Þ

Taking into account the infinitesimal form of Eq. (8), namely,
Δgμν ¼ −2gμν and Δϕ ¼ ϕ, we get

Jμ ¼ −
1

2
½ðG3ðθ̃Þ þ 6fðθ̃ÞÞ∂μϕ2

þ 2ϕ2ðG2ðθ̃Þ þ 3f0ðθ̃ÞÞ∂μθ̃�: ð32Þ

This expression is nothing else than the conformally trans-
formed version of the Einstein-frame current (26), as can be
easily verified by taking into account theWeyl rescaling of the
metric together with Eqs. (10)–(13).

IV. INFLATION AND DARK ENERGY
IN A SINGLE SHOT

The kinetic sector of Eq. (14) constitutes a nonlinear
sigma model. The associated (Gauss) curvature of the
Einstein-frame target manifold in Planck units is given by

κðθ̃Þ ¼ K0
3ðθ̃ÞF0ðθ̃Þ − 2Fðθ̃ÞK00

3ðθ̃Þ
4F2ðθ̃Þ ; ð33Þ

with Fðθ̃Þ≡ Kðθ̃ÞK3ðθ̃Þ. It should be obvious at this
point that without specifying the various theory-defining
functions, it is not possible to extract any detailed informa-
tion about the dynamics of the theory. However, for infla-
tionary models in which κðθ̃Þ is constant—corresponding to
a maximally symmetric target manifold—the situation
simplifies considerably. The reason is that in that case
the above equation can be straightforwardly integrated to
obtain [50]

Kðθ̃Þ ¼ −
K02

3 ðθ̃Þ
4K3ðθ̃ÞðκK3ðθ̃Þ þ cÞ ; ð34Þ

where c is an arbitrary constant. Assuming that both U and
KΛ are analytic functions of θ̃ (such that they can be
expressed in term of K3), we can rewrite Eq. (14) as

Lffiffiffi
g

p ¼ M2
P

2
R −

1

2

�
−

M2
Pð∂ΘÞ2

4ΘðκΘþ cÞ þ Θð∂ΦÞ2
�

−UðΘÞ − Λ0KΛðΘÞe−4Φ=MP; ð35Þ

where we have defined the variable Θ≡ K3ðθÞ to stress the
fact that the function K3 itself plays the role of a dynamical
d.o.f.. The requirement that both fields have healthy kinetic
terms imposes the restrictions

κΘþ c < 0; Θ > 0: ð36Þ

Maximally symmetric scale-invariant models can naturally
support inflation, while providing a unique dark-energy-
dominated era. To understand this, let us focus on the pole
structure of Eq. (35). The kinetic term for the Θ field
in this expression contains two poles, located at Θ ¼ 0

and Θ ¼ −c=κ, respectively. The presence of these poles
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translates into an effective stretching of the canonically
normalized field θ, namely,10

θ ¼
Z

θ dΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4ΘðκΘþ cÞp

→ Θ ¼
(
exp ð−2 ffiffiffiffiffiffi

−κ
p

θÞ; for c ¼ 0;
c
−κ coshð

ffiffiffiffiffiffi
−κ

p
θÞ; for c ≠ 0:

ð37Þ

For c ¼ 0, the two poles coincide and the stretching in θ is
exponential, with Θ ¼ 0 corresponding to θ ¼ ∞. For
c ≠ 0, the stretching of θ is restricted to a compact field
range around θ ¼ 0.
This flattening of the potential for the canonically

normalized field θ allows for inflation with the usual
slow-roll conditions [50,76,87], cf. Fig. 1. For sufficiently
small values of Λ0 (and/or sufficiently large values of the
dilaton fieldΦ), the contribution of theUΛ0

term in Eq. (35)
is subdominant and can be safely neglected. In the absence
of this symmetry-breaking term, the conservation of the
dilatation current (25) leads to the attractor behavior (30)
and forces the dilaton to freeze at a given value, say Φ0,
during the whole inflationary evolution. As first proved in
Ref. [22], this reduces the number of dynamical variables
by one and avoids the generation of dangerous isocurvature
fluctuations (see also Ref. [63]).
For potentials allowing a graceful inflationary exit, the

inflaton field Θ will undergo damped oscillations after the
end of inflation and will eventually relax to the ground state
of UðΘÞ via particle production. Although the shape of the
potential in this transition phase is a priori arbitrary, its
precise low-energy form can be restricted on phenomeno-
logical grounds. To see this, let us neglect for the time being
the term proportional to Λ0 in Eq. (35) and consider the
existence of stable solutions involving constant field values
Φ ¼ Φ0 and Θ ¼ Θ0. Demanding U0ðΘ0Þ ¼ 0, we obtain
[cf. Eq. (11)]

fðΘ0Þv0ðΘ0Þ − 2f0ðΘ0ÞvðΘ0Þ ¼ 0: ð38Þ

The Ricci scalar associated with this field configuration can
be easily determined by tracing the Einstein equation (22)
over spacetime indices. Taking into account that the
contributions from the field derivatives in this expression
vanish for constant field values together with the second
relation in Eq. (11), we obtain

R ¼ −4M2
P
vðΘ0Þ
f2ðΘ0Þ

: ð39Þ

This expression allows us to distinguish three cases depend-
ing on the value of vðΘ0Þ. For vðΘ0Þ ¼ 0, the background is
obviouslyMinkowski, while for vðΘ0Þ < 0 or vðΘ0Þ > 0, it
becomes de Sitter (dS) or anti–de Sitter (AdS), respectively.
While an AdS scenario can be excluded on purely phenom-
enological grounds, the dS case could potentially lead to a
late-time acceleration of the Universe in agreement with the
observations. Note, however, that a scale-invariant theory
with spontaneous symmetry breaking always contains a
massless Goldstone mode, which is known to generate
instabilities as far as dS is concerned [89,90]; see also
Refs. [91–101]. We are therefore left with a unique scenario
that might be phenomenologically viable, namely, the one in
which the induced cosmological constant following from
the potentialUðΘ0Þ is appropriately fine-tuned to be zero by
requiring

vðΘ0Þ ¼ v0ðΘ0Þ ¼ 0: ð40Þ

Note that, althoughwe setΛ0 ¼ 0 in the above derivation for
the sake of simplicity, this is not a necessary condition.
Indeed, even if Λ0 ≠ 0, the late-time evolution of the
Universe will be eventually dominated by a constant
component if the condition (40) is not satisfied, giving rise
to an eternal de Sitter expansion and to the resurgence of
instabilities.
Reinserting the Λ0 contribution, the Lagrangian (35) at

the minimum (40) boils down to

FIG. 1. The effect of the Einstein-frame kinetic pole structure in Eq. (35) for a generic potential UðΘÞ. The presence of a pole at the
value Θpole translates into an effective stretching of the canonically normalized field θ in Eq. (37) and the associated flattening of the
potential around θðΘpoleÞ. This allows for inflation with the usual slow-roll conditions even if the original potential was not
sufficiently flat.

10For a detailed discussion on the connection between this
approach and the existence of stationary points along the infla-
tionary trajectory, see Refs. [87,88].
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Lffiffiffi
g

p ≃
M2

P

2
R −

1

2
Θ0ð∂ΦÞ2 − Λ0KΛðΘ0Þe−4Φ=MP; ð41Þ

which must be supplemented with that of the particles
produced during the heating stage. If Λ0KΛðΘ0Þ > 0, the
potential term in this expression is of a runaway type. In
order to not overclose the Universe, the energy density in
the dilaton field should be rather small, namely,

1

2
Θ0ð∂0ΦÞ2 þ Λ0KΛðΘ0Þe−4Φ=MP ≲ 10−120M4

P; ð42Þ

with the right-hand side of the above inequality standing for
the present critical energy density. Given this restriction,
the expansion rate of the Universe will be initially domi-
nated by the radiation and matter components generated
during the heating stage. The field Φ behaves essentially as
a thawing quintessence field [26,102–104]. In particular, it
stays frozen at the value Φ0 inherited from inflation until
the moment in which the decreasing energy density of the
heating products becomes comparable to its approximately
constant energy density. When that happens, the dilaton
starts rolling towards Φ → ∞, while driving the present-
day accelerated expansion.

A. A worked-out example

To illustrate the cosmological consequences of the
general Lagrangian density (35), we will restrict ourselves
to a simple scenario involving a maximally symmetric
hyperbolic field manifold (κ < 0) and the following set of
potentials:

UðΘÞ ¼ U0

�
1 −

Θ
Θ0

�
2

; KΛðΘÞ ¼ Θ2: ð43Þ

This choice is done for illustrative purposes only. Indeed, as
should be clear from Fig. 1, the field stretching in the
vicinity of the kinetic poles makes the observables almost
insensitive to the details of the potentials as long as
inflation is concerned [50]. Interestingly, the constant Θ0

denoting the position of the Θ minimum in this example
can be reabsorbed into the definition of the dilaton Φ.
Indeed, by performing the transformations

Φ → γΦ; Θ → γ−2Θ; c → γ−2c; ð44Þ

with γ ≡ Θ−1=2
0 , we obtain

Lffiffiffi
g

p ¼ M2
P

2
R −

1

2

�
−

M2
Pð∂ΘÞ2

4ΘðκΘþ cÞ þ Θð∂ΦÞ2
�

−UðΘÞ −UΛ0
ðΘ;ΦÞ; ð45Þ

with

UðΘÞ¼U0ð1−ΘÞ2; UΛ0
ðΘ;ΦÞ≡Λ0

γ4
Θ2e−4γΦ=MP: ð46Þ

Written in this form, the dilaton field Φ becomes canoni-
cally normalized at late times (i.e., when Θ → 1).

1. Inflation

As argued in the previous section, for a phenomeno-
logically viable choice of Λ0, both the symmetry-breaking
term UΛ0

and the dilaton field Φ can be safely neglected
during the inflationary stage. Therefore, we are left with a
single Θ component, whose scalar and tensor perturbations
can be computed using the standard techniques. To this
end, we parametrize the spectra of these fluctuations in the
almost scale-invariant form [105]

Ps ¼ As

�
k
k�

�
ns−1þ1

2
αs lnð k

k�Þ
; Pt ¼ At

�
k
k�

�
nt
; ð47Þ

and compute the inflationary observables

As ¼
1

24π2M4
P

U
ϵ
; ns ¼ 1þ 2η − 6ϵ; ð48Þ

αs ¼ 8ϵð2η−3ϵÞ−2δ2; r≡At

As
¼−8nt ¼ 16ϵ: ð49Þ

In the above we have introduced the standard slow-roll
parameters, but appropriately adapted to the noncanonical
scalar field Θ,

ϵ≡M2
P

2K

�
U;Θ

U

�
2

; η≡ M2
Pffiffiffiffi

K
p

U

�
U;Θffiffiffiffi
K

p
�

;Θ
;

δ2 ≡M4
PU;Θ

KU2

�
1ffiffiffiffi
K

p
�
U;Θffiffiffiffi
K

p
�

;Θ

�
;Θ
; ð50Þ

where K ≡ KðΘÞ can be read from Eq. (34) or equivalently
from the Lagrangian densities (35) and (45). The quantities
As, ns, αs, and r in Eqs. (48) and (49) should be understood
as evaluated on the field value Θ� ≡ ΘðN�Þ, at which the
reference pivot scale k� in Eq. (47) exits the horizon, or in
other words at k� ¼ a�H�. Here,

N� ¼
1

MP

Z
Θ�

ΘE

ffiffiffiffi
K

p
dΘffiffiffiffiffi
2ϵ

p ¼ 1

8c
ln

�
Θ�
ΘE

�
κΘE þ c
κΘ� þ c

�
1þc

κ

�
ð51Þ

stands for the corresponding number of inflationary
e-folds, and

ΘE ¼ 1 − 4c − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 − 2c − 2κ

p

1þ 8κ
ð52Þ

denotes the value of the Θ field at the end of inflation. As
usual, this is defined by the condition ϵðΘEÞ≡ 1. By
inverting Eq. (51), we can express the inflationary
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observables as functions of the model parameters and N�.
For general values of c and κ, this inversion cannot be
analytically performed and one must rely on numerical
methods. The values of the spectral tilt ns and the tensor-to-
scalar ratio r, following from a numerical treatment of the
potential (37), are presented in Fig. 2.
The qualitative behavior of these observables can be

understood by considering two limiting cases in param-
eter space.
(1) Quadratic pole limit: For c ¼ 0, the kinetic pole in

Eq. (45) becomes quadratic. In this limit, Eq. (51)
yields

N� ¼ N � −
1

8jκj
�

1

ΘE
þ lnΘE

�
; ð53Þ

with

N � ¼
1

8jκj
�

1

Θ�
þ lnΘ�

�
; and ΘE ¼

1

1þ ffiffiffiffiffiffiffiffi
8jκjp :

ð54Þ

Using the above, it is straightforward to see that [87]

Θ� ¼ −
1

W−1½−e−8jκjN � � ; ð55Þ

where W−1 is the lower branch of the Lambert W
function. Inserting Eq. (55) into Eq. (50) and taking
into account Eqs. (48) and (49), we obtain analytic
expressions for the amplitude of the primordial
spectrum of scalar perturbations,

As ¼
U0

192jκjπ2M4
P

ð1þW−1Þ4
W2

−1
; ð56Þ

for the spectral tilt and its running,

ns ¼ 1 − 16jκj 1 −W−1

ð1þW−1Þ2
;

αs ¼ −128jκj2 W
2
−1 − 3W−1

ð1þW−1Þ4
; ð57Þ

and, finally, for the tensor-to-scalar ratio

r ¼ 128jκj
ð1þW−1Þ2

: ð58Þ

Note that the above quantities are nontrivially
related as

r ¼ ð1 − nsÞ2
2jκjY2

1

; αs ¼ −
1

2
ð1 − nsÞ2Y2; ð59Þ

with Y1 and Y2 given by

Y1≡1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffi
1þy

p
Þ; Y2≡ ðyþ2Y1Þðyþ8Y1Þ

ð2Y1Þ4
;

ð60Þ

and

y≡ 1 − ns
2jκj : ð61Þ

The inflationary observables (57) and (58) display
an interesting attractor behavior at large jκjN�, very
similar to that appearing in the α-attractor scenarios
[74–76]. Indeed, by taking into account the Lambert
function bound [107],

W−1½−e−8jκjN � � > −8jκjN � −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð8jκjN � − 1Þ

q
;

ð62Þ

we obtain

ns≃1−
2

N �
; r≃

2

jκjN 2�
; αs¼−jκjr; ð63Þ

at 8jκjN�≫1. In this limit—namely, for 1−ns≪
2jκj, or equivalently y ≪ 1—the functions Y1

FIG. 2. The (ns, r) plane for a biscalar model with a maximally
symmetric hyperbolic kinetic sector and the theory-defining
functions in Eq. (43). The red line follows from the exact analytic
expressions in Eqs. (57) and (58), corresponding to the c ¼ 0 case.
This line interpolates between the chaotic m2ϕ2 inflationary
predictions (65) at small jκj, and the Higgs/Starobinsky inflation
predictions (63) at large jκj. The shaded regions mark the Planck
2018 constraints at 68% and 95% C.L. obtained for a ΛCDM
model [106]. As evident from the plot, the bounds on the tensor-to-
scalar ratio constrain the field-space curvature κ.
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and Y2 approach their minimal value Y1 ¼ Y2 ¼ 1,
as can be immediately verified from Eq. (60).
Consequently, we have

r ¼ ð1 − nsÞ2
2jκj ; αs ¼ −

1

2
ð1 − nsÞ2: ð64Þ

Interestingly, the tensor-to-scalar ratio approaches
zero at jκj → ∞.
In the opposite limit, i.e., for jκj → 0 (which

should of course be taken with care when c → 0),
the predictions coincide with those of the m2ϕ2

chaotic inflationary scenario,11

ns ≃ 1 −
4

1þ 2N�
≃ 1 −

2

N�
;

r ≃
16

1þ 2N�
≃

8

N�
; αs ¼ −jκjr; ð65Þ

and the relations in Eq. (59) become

r ¼ 4ð1 − nsÞ; αs ¼ −ð1 − nsÞ2: ð66Þ

The comparison of the approximate expressions (63)
and (65) for the spectral tilt and tensor-to-scalar ratio
with the most general ones given in Eqs. (57) and
(58) is shown in Fig. 3.

(2) The quadratic-to-linear pole transition: For c ≠ 0,
the inflationary pole at Θ ¼ 0 is no longer reachable
and we are left with a linear pole at Θ ¼ c=jκj. To
understand the consequences of this pole, let us
consider the inversion of Eq. (51) in the limit
c=jκj ≪ 1 and 4jκjN� ≫ 1. We obtain

N �≃
1

8c
ln

Θ�
Θ�−c=jκj→Θ�ðN �Þ≃

c
jκj

e8cN �

e8cN � −1
;

ð67Þ

with

N � ≡ N� −
1

8c
ln

�
1 −

c
jκjΘE

�
: ð68Þ

To the lowest order in c=jκj, the inflationary ob-
servables become

As¼
λsinh2ð4cN �Þ
1152π2ξ2effc

2
; ns¼1−8ccothð4cN �Þ;

ð69Þ

αs¼−32c2sinh−2ð4cN �Þ; r¼32c2

jκj sinh−2ð4cN �Þ;

ð70Þ

where we introduced the effective coupling

ξeff ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi
6a2jκj

p ð71Þ

and defined

a ¼ −
1 − 6jκj

jκj : ð72Þ

For 4cN � > 1, the spectral tilt decays linearly and
the tensor-to-scalar ratio approaches zero asymp-
totically, i.e.,

ns ≃ 1 − 8c; r ≃ 0: ð73Þ

10–12 10–8 10–4 1 104

0.967

0.968

0.969

0.970
n s

10–12 10–8 10–4 1 104
10–10

10–7

10–4

10–1

r

FIG. 3. Comparison between the approximate expressions (63) (red dashed line) and (65) (black dashed line) for the spectral tilt ns and
tensor-to-scalar ratio r and the most general expressions in Eqs. (57) and (58) (blue solid line).

11Note that now the expressions contain N� rather than N �.
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2. Dark energy

After the end of inflation, the field Θ will perform
oscillations around the minimum of its effective potential,
heating the Universe and eventually relaxing to Θ ¼ 1.
When that happens, the Lagrangian boils down to

Lffiffiffi
g

p ≃
M2

P

2
R −

1

2
ð∂ΦÞ2 − Λ0

γ4
e−4γΦ=MP: ð74Þ

It is therefore clear that the dilaton can drive an accelerated
expansion of the Universe for suitable values of Λ0 and γ.
At early times, the potential of Φ is small compared to the
Hubble rate. This prevents the motion of the field and
forces it to stay frozen at the value that it inherited from
inflation. At late times, the dilaton starts evolving and the
system approaches an effective equation-of-state parameter
[26,108,109]

1þ w ¼ 16γ2

3
FðΩDEÞ; with

FðΩDEÞ ¼
�

1ffiffiffiffiffiffiffiffiffi
ΩDE

p − Δtanh−1
ffiffiffiffiffiffiffiffiffi
ΩDE

p �
2

; ð75Þ

which leads to acceleration (w < −1=3) if γ < 1=ð2 ffiffiffi
2

p Þ.
Here,

ΩDE ≡ 1

1þ Δ0a−3
ð76Þ

stands for the dark energy abundance associated with the
dilaton component and

Δ≡ 1 −ΩDE

ΩDE
; Δ0 ≡ 1 −ΩDE;0

ΩDE;0
; ð77Þ

where the subscript 0 refers to quantities evaluated today.

3. Connecting inflation and dark energy

Until this point, we have assumed that the parameters κ,
c, and γ in our example are independent. If these quantities
were related, the set of scale-invariant maximally symmet-
ric TDiff theories will also lead to nontrivial connections
between the inflationary and DE observables. This is what
happens, for instance, in the simplest scale-invariant model
that can be constructed out of two scalar fields ϕ1 and ϕ2,
namely [31],

Lffiffiffi
g

p ¼ ξ1ϕ
2
1 þ ξ2ϕ

2
2

2
R −

1

2
ð∂ϕ1Þ2 −

1

2
ð∂ϕ2Þ2

−
λ

4
ðϕ2

1 − αϕ2
2Þ2 þ Λ0; ð78Þ

where ξ1, ξ2, λ, and α are positive dimensionless couplings
and Λ0 is constant. This Diff-equivalent Lagrangian density
follows from the TDiff-invariant one in Eq. (4) after
restoring the full symmetry with the Stückelberg trick of

Sec. II and with the following choice of theory-defining
functions (see also Ref. [33] for more examples):

G1ðgÞ¼ β2g2ðβ−1Þ; G2ðgÞ¼ βg2β−1; G3ðgÞ¼ 1þg2β;

fðgÞ¼ ξ1þξ2gβ; vðgÞ¼ λ

4
ð1−αg2βÞ2: ð79Þ

Here, β is an arbitrary constant, and to obtain Eq. (78) we
have identified ϕ ¼ ϕ1 and introduced ϕ2 ¼ ϕ1gβ. When
transformed to the Einstein frame and rewritten in terms of
variables

γ−2Θ≡ ð1þ 6ξ1Þϕ2
1 þ ð1þ 6ξ2Þϕ2

2

ξ1ϕ
2
1 þ ξ2ϕ

2
2

;

exp

�
2γΦ
MP

�
≡ κc

κ

ð1þ 6ξ1Þϕ2
1 þ ð1þ 6ξ2Þϕ2

2

M2
P

; ð80Þ

with

γ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2
1þ 6ξ2

s
; ð81Þ

the Lagrangian density (7) approximately12 reduces to the
form (45) [24], with UðΘÞ and KΛðΘÞ given by Eq. (43)
and

U0 ≡ λM4
P

4

�
1þ 6κ

κ

�
2

; κ ≡ κc

�
1 −

ξ2
ξ1

�
;

κc ≡ −
ξ1

1þ 6ξ1
; c≡ κ

κc
γ2: ð82Þ

A simple inspection of these expressions reveals that the
parameters κ, c, and γ in this particular scenario are not
independent. This allows us to obtain a set of consistency
relations among the inflationary and dark energy observ-
ables. An analytic form for these consistency relations can be
obtained in the limit jκj ≈ jκcj, corresponding to an infla-
tionary dynamics essentially dominated by the ϕ1 compo-
nent, i.e., with ξ1 ≫ ξ2. Indeed, combining the expression
(75)with those for the spectral tilt, its running, and the tensor-
to-scalar ratio in Eqs. (69) and (70), we obtain [24]

ns ¼ 1 −
2

N �
X cothX; r ¼ 2

jκcjN 2�
X2sinh−2X;

αs ¼ −jκcjr; ð83Þ

with

12The main difference is associated to an additional pole Θ ¼ 1
in the Einstein-frame kinetic sector of Eq. (78). This “Minkowski”
pole is, however, irrelevant for the cosmological phenomenology
discussed in this paper; for details, cf. Refs. [24,50,87].
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X ≡ 4cN � ¼
3N �ð1þ wÞ
4FðΩDEÞ

: ð84Þ

Given the value of λ at the inflationary scale, the constant jκj
can be determined from the amplitude of the primordial
power spectrum (69). For not too small values of λ, the
effective coupling is typically rather large, ξeff ≃ ξ1 ≫ 1,
leading to values of jκj very close to 1=6. In this limit, the
expressions in Eq. (83) reduce to those first found in the
context of the Higgs-dilaton model [22].

V. COMPARISON WITH PRESENT DATA SETS

To interpret the existing data in light of scale-invariant
models, we perform a Markov chain Monte Carlo (MCMC)
analysis similar to those in Refs. [23,24]. In particular,
we sample the posterior probability distribution P ¼
pðθjx;MÞ of cosmological parameters θ given the data x
and a model M by means of Bayes’ theorem

P ¼ pðθjMÞ
E

L; ð85Þ

where pðθjMÞ is the prior distribution of parameters given
the model, and L ¼ pðxjθ;MÞ is the likelihood. The
evidence E ¼ pðxjMÞ ¼ R

dθpðxjθ;MÞpðθjMÞ follows
as a normalization factor. Once the likelihood and the
priors are given, the MCMC algorithm constructs a chain of
points whose density is proportional to the posterior
probability distribution pðθjx;MÞ. For the likelihood, we
include the following observational data sets:13

(i) The 2015 Planck high-multipole TT likelihood
[110].14

(ii) The 2015 Planck low-multipole polarization and
temperature likelihoods [110].

(iii) The 2015 Keck/Bicep2 likelihood data release [111].
(iv) The Joint Lightcurve Analysis data [112].
(v) The baryon acoustic oscillation data from 6dF, BOSS,

LOWZ, BOSS CMASS, and SDSS [113–115].
For the maximally symmetric scale-invariant models

under consideration we vary c and − lnðjκjÞ in the ranges
[0, 1] and ½− lnð1=6Þ; 8�, with the logarithmic parametriza-
tion chosen only for numerical convenience and the
intervals motivated by the particular example in Sec. IV
A 3. For each pair of values, we numerically solve the
inflationary trajectory and compute the spectral tilt ns and
the tensor-to-scalar ratio r.
While the details of the heating stage after inflation

remain to be specified, here we adopt a conventional
estimate that turns out to be reasonable in many heating
scenarios [116–118]. In particular, we restrict the number
of inflationary e-folds to a Gaussian distribution with mean

60 and standard deviation 2.5. Additionally, we vary the
customary cosmological parameters using flat and unre-
strictive priors. The prior ranges can be found in Table I
of Ref. [24].

A. Maximally symmetric model without
consistency conditions

To discuss how the model parameters can be constrained
by pure inflationary physics we first study a particular
realization of Eq. (45) with c and κ completely unrelated
to γ2. In other words, we assume that the inflationary and
dark-energy-dominated eras are completely independent.
The results of the MCMC analysis for this particular
scenario are presented in Fig. 4, both in terms of the
parameters c and κ and in terms of the observable quantities
ns and r. As is evident from this figure, the allowed values
for the spectral tilt and the tensor-to-scalar ratio mostly
correspond to a restricted version of ΛCDM, with the
curvature of the Einstein-frame kinetic sector closely
related to r and the parameter c constrained by the spectral
tilt ns for fixed κ. The mean values of these parameters are

ns ¼ 0.9686þ0.0026
−0.0015 ; r ¼ 0.040þ0.016

−0.025 ;

c ¼ 0.23þ0.06
−0.23 ; − lnðjκjÞ ¼ 5.5þ1.4

−1.1 ; ð86Þ

with the errors denoting the 68% C.L. We emphasize that
these constraints should be taken with a grain of salt for two
reasons. On the one hand, our parametrization in terms of c
and− lnðjκjÞ is not suitable for large jκj values. On the other
hand, given the present data sets, it turns out to be quite
challenging to numerically explore the jκj → 0 limit at
relatively large c values, or, correspondingly, the region of
large tensor-to-scalar ratios and small spectral tilts. As it
can be seen from the contours in Fig. 4, the viability of
relatively large tensor-to-scalar ratios still prevents us from
identifying the full 95% confidence regions for c and κ.
However, this is expected to improve significantly with the
eventual release of the Planck 2018 likelihood.
Both the Planck 2018 likelihood and other future CMB

experiments are expected to set tight bounds on the
Einstein-frame kinetic curvature. In particular, a decreasing
limit on the tensor-to-scalar ratio would directly translate
into an increasing lower bound on jκj. This becomes
apparent when one considers, for instance, the latest bound
on r, namely, r < 0.064 [106].15 This value translates into a
restriction − lnðjκjÞ < 6.5, therefore excluding a large part
of the Planck 2015 ðc; κÞ parameter space. Note, however,
that no upper bound on jκj follows from present data sets.
Indeed, only an eventual detection of primordial gravita-
tional waves could provide an upper limit on it.

13We assume that these data sets are independent and do not
model cross correlations among them.

14The 2018 Planck likelihood is not yet publicly available.

15Note that this bound was derived in a ΛCDM cosmology and
it should be reevaluated for scale-invariant models after the
eventual release of the Planck 2018 likelihood.

SCALE-INVARIANT ALTERNATIVES TO GENERAL RELATIVITY … PHYS. REV. D 99, 063512 (2019)

063512-11



B. Maximally symmetric model with
consistency conditions

To illustrate the impact of a potential connection between
the early and late Universe we now consider a realization of
Eq. (45) involving the consistency relation γ2ðcÞ ¼ c. This
choice is motivated by the simple biscalar scenario pre-
sented in Sec. IVA 3 and should be understood as just a
particular example of the different consistency relations
that could appear in this type of models. As shown in Fig. 5,
the existing constraints on the present equation-of-state

parameter effectively constrain the spectral tilt and signifi-
cantly reduce the 68% C.L. ranges of c and κ,16

ns ¼ 0.9695þ0.0019
−0.0013 ; r ¼ 0.026þ0.007

−0.024 ;

c ¼ 0.013þ0.003
−0.013 ; − lnðjκjÞ ¼ 4.28þ1.27

−1.56 : ð87Þ

FIG. 5. Left: MCMC samples for the spectral tilt ns and the equation-of-state parameter w0 in a scale-invariant model with the
consistency relation γ2ðcÞ ¼ c. The color coding indicates the number of e-folds N� to the end of inflation. Measurements of the
equation-of-state parameter strongly constrain the spectral tilt. Right: MCMC samples for the model parameters − lnðjκjÞ and c in
the same scenario. The color coding now indicates the tensor-to-scalar ratio r, while the orange dashed line marks the expected
95% C.L bound following from the Planck/BICEP 2018 data release. Note that if the early and late Universe observables are
related by a consistency relation, the constraints on c are much tighter than in the absence of it (note the different scale for
c in Fig. 4).

FIG. 4. Left: MCMC samples for the spectral tilt ns and tensor-to-scalar ratio r in a scale-invariant model without consistency
relations. The color coding indicates the number of e-folds N� to the end of inflation. The red dashed line corresponds to the limit c → 0
for N� ¼ 60. Right: MCMC samples for the model parameters − lnðjκjÞ and c in the same scenario. The color coding now indicates the
tensor-to-scalar ratio r. For a fixed value of κ, the parameter c is tightly constrained by the spectral tilt. Note that small values of − lnðjκjÞ
are permitted only for tiny values of c. This tail corresponds to the bottom-left corner in the r − ns plot, which is not properly explored in
our parametrization. Black lines mark the 68% and 95% C.L. regions. The orange dashed line corresponds to the expected 95% bound
following from the Planck/BICEP 2018 data release.

16The cut on the left-hand side of the ðc; κÞ plot is due to our
prior restriction jκj < 1=6.
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This parameter-space reduction is expected to become
stronger in the near future. On the one hand, galaxy redshift
surveys such as Euclid or LSST will provide percent-
level measurements of the dark-energy equation-of-state
parameter. On the other hand, stage-4 CMB observers such
as LiteBIRD will determine the value of the tensor-to-scalar
ratio with an unprecedented 10−3–10−4 accuracy.

C. Bayesian evidence and correlation matrices

To quantify how the scale-invariant models above
compare to ΛCDM we calculate the Bayes factor, defined
as the evidence ratio for a model M and a ΛCDM scenario
given the data x, namely,17

BðMÞ ¼ pðMjxÞ
pðMΛCDMjxÞ

: ð88Þ

We compute this quantity from the obtained MCMC chains
using the method proposed in Refs. [119,120] and interpret
the result according to the Kass and Raftery scale [121],
where a value jΔ lnBj > 3 is understood as a strong
statistical preference. As shown in Table I, the scale-
invariant model without consistency relations appears to
be slightly disfavored with respect to ΛCDM. On the
contrary, the scale-invariant model with consistency rela-
tions seems to be preferred over the concordance model.
Although these quantitative results should not be taken at
face value,18 they illustrate two important points. First, the
strong preference for a scale-invariant model with consis-
tency relations over the one without them stresses the
importance of these conditions when dealing with existing
and future data sets. Second, the positive evidence [121]
for the model with consistency relations over ΛCDM
indicates that scale-invariant scenarios can be on equal

footing with—and in some cases superior to—the con-
cordance model.19

The impact of the consistency relations is also reflected
in the correlation among different cosmological parameters.
This interesting feature is shown in Fig. 6, where we
display the MCMC covariance matrices obtained from
current data sets, converted into correlation matrices. The
left and right panels correspond to a model without and
with consistency relations, respectively. In these plots we
have defined κ̂ ≡ − lnðjκjÞ for visualization purposes.
Without consistency relations, there exists a positive

correlation among c and κ̂, which matches very well with
the behavior displayed in Fig. 4 where, for a constant value
of the tensor-to-scalar ratio, an increase in c corresponds to
an increase in κ̂. In this case, the equation-of-state param-
eter w0 is an independent parameter, which—leaving aside
the fact that σ8 is a derived quantity depending on all
parameters affecting the growth of structures—is only
anticorrelated with the reduced Hubble rate h due to the
expansion of the Universe.
When including the consistency relations, w0 is no

longer an independent parameter, but rather a derived
one, totally correlated with c. This means that c has
now taken the role of a dark-energy equation-of-state
parameter and, consequently, is now anticorrelated with
the reduced Hubble rate h. Additionally, we observe strong
positive correlations between κ̂ and the standard infla-
tionary parameters ns and r. Moreover, c and κ̂ are basically
uncorrelated and independent of each other. Both of these
features are reflected in the right panel of Fig. 5, the former
by noting that for a constant value of c the tensor-to-scalar
ratio increases for increasing κ̂ and the latter by the
observation that the κ̂ − c contours are almost circular.
The above findings are summarized in the bottom panel

of Fig. 6, where we display the difference between the
absolute values of the correlation coefficients in the model
with and without consistency relations. Red (blue) elements
correspond to parameters that are more (less) correlated
with (without) consistency relations. In the presence of
consistency relations, we see three main features: (i) c and κ̂
become independent of each other, (ii) c takes the role of
w0, and (iii) the spectral index ns is more correlated with the
number of e-folds N�, the curvature κ̂, and the tensor-to-
scalar ratio r. This leads to the conclusion that future CMB
and galaxy redshift surveys measuring the parameters ns, r,
and w0 with precision should be able to test a scale-
invariant model with consistency conditions. The infla-
tionary observables alone would then fix the values of the
model parameters c and κ, while the measurement of w0

would provide an independent test of the consistency
relation.

TABLE I. The maximum likelihood estimate of the logarithm
of the Bayes factor lnBðMÞ with respect to a baseline ΛCDM
model. Although the comparison remains inconclusive, the scale-
invariant model without consistency relations appears to be
slightly disfavored with respect to ΛCDM. On the contrary, a
scale-invariant model with the consistency condition γ2ðcÞ ¼ c is
preferred over the concordance model.

ΛCDM
Without

consistency rel.
With

consistency rel.

No. of parameters 8 10 9
lnB 0 −1.73 2.44

17This implicitly assumes that all models are equally probable
a priori.

18In particular, the parameter basis is varied when comparing
the three models. Additionally, the prior on − lnðjκjÞ restricts the
available parameter volume. This renders the value of the Bayes
factor prior dependent [119,120]. A change of the prior volume
by a factor λ would induce a change ln λ in the Bayes ratio.

19Note that a Bayes factor lnB ¼ 2.44 corresponds to a relative
probability of approximately 11∶1 for the scale-invariant model
over ΛCDM.
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VI. CONCLUSIONS

Biscalar theories invariant under scale transformations
and volume-preserving diffeomorphisms can accommodate
an inflationary expansion of the Universe followed by
a standard hot big bang evolution and a dark-energy-
dominated era.
The scalar character of the metric determinant under

volume-preserving diffeomorphisms together with the
requirement of classical scale invariance leads to a very
specific particle spectrum containing two graviton polar-
izations and two scalar d.o.f. on top of the standard matter
content. A Lagrangian constructed within this framework
contains in general arbitrary functions of the ratio of these
two scalar fields.
In spite of their apparent arbitrariness, the resulting theories

turn out to be predictive. On the one hand, the existence of an
effectively conserved current related to dilatations makes

these models essentially indistinguishable from single-field
inflationary scenarios, from which they “inherit” all their
virtues. On the other hand, the symmetries of the Einstein-
frame kinetic sector significantly restrict the inflationary
observables. More specifically, if this target space is max-
imally symmetric, the arbitrary functions in the Lagrangian
become related in a rather nontrivial way. As a result, the
dynamics is governed by the pole structure of the Einstein-
frame kinetic sector, making the inflationary predictions
universal and almost insensitive to the details of the potential.
At low energies, the invariance under volume-preserving

diffeomorphisms gives rise to a unique runaway potential
for the dilaton, which can play the role of dynamical dark
energy. Interestingly, the early and late Universe dynamics
may become intertwined in some particular scenarios,
leading to nontrivial consistency relations among the
inflationary and dark-energy observables. The comparison
of particular realizations of our paradigm with present data
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FIG. 6. (Top) Correlation matrices obtained from the covariance matrices of the MCMC runs for a model without (left) and with (right)
consistency relations. Theþ1 and −1 limits stand for totally correlated and totally anticorrelated, respectively. (Bottom) Half difference
of the absolute values of the correlation coefficients with the þ1 and −1 limits now indicating whether the “correlation strength” has
increased or decreased, respectively. In this figure we define κ̂ ≡ − lnðjκjÞ for visualization purposes.
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reveals a strong preference for maximally symmetric
models with consistency relations over those without them.
Surprisingly, there is also positive evidence for the former
class of models over the concordance ΛCDM model given
the present data sets.
The results of this paper illustrate the strong impact that

our assumptions concerning the early and late Universe
dynamics could have on the interpretation of cosmological
data sets. This poses an interesting question for future CMB
observations and galaxy redshift surveys: are inflation and
dark energy independent processes in the expansion history
of the Universe, or rather two sides of a single underlying
principle?
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