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Elliptic flow (v2) fluctuations in central heavy-ion collisions are direct probes of the fluctuating geometry of
the quark-gluon plasma and, as such, are strongly sensitive to any deviation from spherical symmetry in the shape
of the colliding nuclei. I investigate the consequences of nuclear deformation for v2 fluctuations, and I assess
whether current models of medium geometry are able to predict and capture such effects. Assuming linear
hydrodynamic response between v2 and the eccentricity of the medium, ε2, I perform accurate comparisons
between model calculations of ε2 fluctuations and STAR data on cumulants of elliptic flow in central Au+Au
and U+U collisions. From these comparisons, I evince that the most distinct signatures of nuclear deformation
appear in the non-Gaussianities of v2 fluctuation, and I show, in particular, that the non-Gaussian v2 fluctuations
currently observed in central Au+Au collisions are incompatible with model calculations that implement a
quadrupole coefficient of order 12% in the 197Au nuclei. Finally, I make robust predictions for the behavior of
higher order cumulants of v2 in collisions of nonspherical nuclei.

DOI: 10.1103/PhysRevC.99.024910

I. INTRODUCTION

Elliptic flow is the dynamical response of a fluid to an el-
liptic deformation of its geometry. It is a salient feature of the
hydrodynamic expansion of the quark-gluon plasma created
in relativistic heavy-ion collisions, where elliptic anisotropy is
generated, on the one hand, by the fact that the area of overlap
of two nuclei at finite impact parameter looks like an ellipse
[1], which explains why elliptic flow grows quickly with the
impact parameter of the collision, and on the other hand, by
density fluctuations in the fluid [2,3], that explain the striking
emergence of elliptic flow in collisions at small impact param-
eter [4]. Following Teaney and Yan [5], the elliptic anisotropy
of the medium, dubbed ε2, can be defined rigorously for a
generic heavy-ion collision, and hydrodynamic simulations
show that elliptic flow (v2) is essentially a linear response to
ε2, i.e., v2 = κε2, where κ is a constant [6–8]. This simple
relation implies that v2 and its event-by-event fluctuations can
be used as direct probes of the fluctuating geometry of the
quark-gluon plasma at the beginning of the hydrodynamic
phase.

In central collisions, where linear hydrodynamic response
is exhibited at its best [9,10], an important source of fluctua-
tions that contributes to ε2 is given by the random orientation
of the colliding nuclei, if they are nonspherical. This explains
the large magnitude of the rms elliptic flow measured in
central collisions of nuclei that have a pronounced deforma-
tion, i.e., U+U collisions at the BNL Relativistic Heavy Ion
Collider (RHIC) [11] and Xe+Xe collisions at the CERN
Large Hadron Collider (LHC) [12]. In the current model-
ing of initial conditions for hydrodynamics, the nonspheri-
cal shape of the nuclei is obtained by adding a quadrupole
deformation in the wave functions of the colliding bodies,
the implementation of which is performed with the guid-

ance of tabulated data on nuclear ground-state deformations
[13,14]. This kind of modeling allows hydrodynamic simu-
lations to reproduce quantitatively the aforementioned large
rms elliptic flow observed in U+U [15] and Xe+Xe [16,17]
collisions.

In this paper, I argue that more interesting and nontrivial
signatures of nuclear deformation can be observed in the
non-Gaussian fluctuations of v2, and that such effects are
currently visible in the experimental data, in particular, in
the fourth-order cumulant of elliptic flow v2{4}, accurately
measured by the STAR Collaboration [11] in central colli-
sions of nonspherical nuclei, i.e., 197Au + 197Au collisions
and 238U + 238U collisions. Note that the present study fills an
important gap in the literature: Theoretical studies devoted to
the consequences of the prolate shape of 238U nuclei for rel-
evant observables are numerous in the literature [15,18–28],
but a careful assessment of the impact of nuclear deformation
on the non-Gaussianities of v2 fluctuations, which are central
to the phenomenology of flow in heavy-ion collisions [29–32],
is still missing.

I first investigate how nuclear deformation affects the
fluctuations of eccentricity in Monte Carlo simulations and
whether these effects help explain the experimental data. To
achieve this, I use state-of-the-art Monte Carlo models of
initial conditions (described in Sec. II) to perform extensive
calculations of ε2 fluctuations, that I rescale and compare
(Sec. III) to STAR data on cumulants of elliptic flow fluc-
tuations, v2{2} and v2{4}, in central Au+Au and U+U col-
lisions. The outcome of these comparisons is eventually used
(Sec. IV) to explain the prominent consequences of nuclear
deformation for the non-Gaussian fluctuations of elliptic flow,
and I predict how these effects can be observed in the higher
order cumulants of v2.
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II. MODELS OF INITIAL GEOMETRY

In this section, I aim at exhibiting models of initial condi-
tions that are viable for hydrodynamic simulations of Au+Au
and U+U collisions at

√
s = 200 GeV. A model of initial

conditions is a prescription that provides, event by event,
the energy or entropy density, say S(x, y), deposited in the
transverse plane (for simplicity, at midrapidity) by a given
collision. This is by far the most crucial ingredient in the
hydrodynamic framework, because it provides the medium
with its spatial anisotropies,1 that get eventually converted
into momentum anisotropies (i.e., the Fourier coefficients vn)
through the hydrodynamic evolution.

In this paper, I shall employ two models of initial con-
ditions that correspond to two parametrizations of TRENTo
[28], a model for the profile of entropy density deposited at
midrapidity in heavy-ion collisions. Let me provide a detailed
explanation of these models.

A. TRENTo initial conditions

The starting point is the modeling of the colliding bodies,
which one performs through a random sampling of nucleons.
For a generic nonspherical nucleus, the sampling is done using
the following Fermi distribution [33],

ρ(x, y, z) = ρ0

1 + exp
{ − 1

a r(−R[1 + β2Y20 + β4Y40])
} , (1)

where r =
√

x2 + y2 + z2, a and R are the skin depth and
radius of the nucleus, respectively, and the coefficients β2 and
β4 multiplying the spherical harmonics, Y20 =

√
5

16π
(3 cos2 θ

− 1) and Y40 = 3
16

√
π

(35 cos4 θ − 30 cos2 θ + 3), are the co-
efficients of quadrupole and hexadecapole deformation of the
nucleus, respectively. Once the transverse coordinates of the
nucleons, (x, y), are sampled, the nuclei are overlapped at
a random impact parameter, and nucleon-nucleon collisions
take place. One simply assumes that a participant nucleon
deposits entropy, s, according to a Gaussian distribution,

si(x, y) = ωi

2πσ 2
exp

[
− (x − xi )2 + (y − yi )2

2σ 2

]
, (2)

where I take σ = 0.5 fm for the width of each participant,
and the index i refers to the ith participant nucleon. The
normalization, ωi, is randomly distributed according to the
following gamma distribution,

P(ω) = kkωk−1e−k


(k)
, (3)

which has mean value equal to unity and variance proportional
to k−1. Hence, the total entropy profile of a given nucleus, say
A, is given by

SA(x, y) =
∑

i

si. (4)

1Note that for the definition of the eccentricity of the medium, ε2,
it does not matter whether one considers anisotropy in the energy
density or in the entropy density of the fluid [6].

Eventually, for two colliding nuclei, A and B, the total entropy
profile of the system is given by a generalized mean, i.e.,

S(x, y) =
(

Sp
A + Sp

B

2

)1/p

, (5)

where p is any real number.
In this paper, I shall use S(x, y) from two different TRENTo

parametrizations. I take a geometric mean,

S =
(

Sp
A + Sp

B

2

)1/p∣∣∣∣
p=0

= √
SASB, (6)

and an arithmetic mean,

S =
(

Sp
A + Sp

B

2

)1/p∣∣∣∣
p=1

= SA + SB

2
. (7)

Let me provide a bit of motivation for these choices.
The case p = 0 is very successful in phenomenological

applications and is the favored value of p resulting from
the extensive Bayesian analyses of Refs. [34,35]. The rea-
son for this success is likely the fact that S in this model
is proportional to the product SASB. This is reminiscent of
a class of models inspired by high-energy QCD [9,36,37].
Taking S(x, y) as a product leads typically to systems whose
eccentricity follows closely the almond shape of the nuclear
overlap [38], leading eventually to a very good description of
elliptic flow data [28,39].

The case with p = 1 corresponds instead to a wounded
nucleon model with participant nucleon scaling [40]. This
class of models are variations of the original Monte Carlo
Glauber [33] model and are typically the models employed
in experimental analyses.2 Taking S(x, y) as the sum of two
components leads to systems that are more scattered in the
transverse plane and that have less enhanced eccentricity
[38]. The p = 1 model is essentially ruled out by elliptic
flow fluctuations data in Pb+Pb collisions at the LHC [39].
Nevertheless, such a model has never been compared to RHIC
data, and RHIC data was not used in the Bayesian analyses of
Refs. [34,35]. I deem, then, that one can not a priori state that
the p = 1 model is ruled out as well at RHIC energies.

The bottom line, and I shall come back to this point later, is
that these two parametrizations of TRENTo capture, arguably,
all the basic features of the widest classes of initial condition
models for nucleus-nucleus collisions that are on the market.

B. Multiplicity

I discuss now the implementation of the parameter k that
regulates the fluctuations of the entropy produced by each
participant nucleon. This feature is important for a correct

2For instance, the model calculations shown by the STAR Col-
laboration in Ref. [11], i.e., a Glauber–Monte Carlo model with
binary collision scaling, and a constituent quark Glaber model, are
essentially mild variations of the p = 1 model for what concerns
the medium geometry and should lead to the same kind of ε2

fluctuations. This will be confirmed in Sec. III.
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FIG. 1. Symbols: Distribution of multiplicity measured by the STAR Collaboration [11] in Au+Au collisions at
√

s = 200 GeV (a) and
U+U collisions at

√
s = 193 GeV (b). Lines are model calculations: IP-Glasma simulations [26] (dotted line) and TRENTo with p = 1 (solid

line) and p = 0 (dashed line). The vertical lines indicate the knees of the histograms.

definition of collision centrality in the models. In experi-
ments, centrality classes are defined from the histogram of
the multiplicity of particles (or hits, or energy measured in
a calorimeter). In hydrodynamics, one typically assumes that
the total entropy at the initial condition is, in each event,
proportional to multiplicity of particles in the final state.
Therefore, in numerical simulations one uses the histogram
of total entropy to define the classes of collision centrality.
In order to exhibit meaningful model-to-data comparisons, I
need to obtain in the models a distribution of total entropy
which is in agreement with the distribution of dNch/dη used
by the STAR Collaboration [11] to sort their events into
centrality bins. In particular, since I shall deal with central
collisions, I want the high-multiplicity tails of the measured
multiplicity distributions to be captured by the models. This
can be achieved by a proper choice of the fluctuation parame-
ter, k.

In Fig. 1, I display as circles the distributions of dNch/dη in
Au+Au and U+U collisions measured by the STAR Collab-
oration.3 Note that multiplicity distributions collected in the
STAR detector present a high-multiplicity tail that is twice as
broad as that measured in detectors at the LHC [41]. This is
consistent with the fact that detectors at RHIC have a much
smaller acceptance, and therefore they are more sensitive
to statistical fluctuations. Since in TRENTo the variance of
fluctuations scales essentially as 1/k, I expect that one needs
to implement a lower value for the parameter k at RHIC than

3These distributions can be obtained from the parametriza-
tions of dNch/dη vs centrality (c) provided at the beginning of
Ref. [11]. Knowing dN/dη(c), and using the fact that centrality
is defined as the cumulative of the multiplicity, i.e., c(dN/dη) =∫ ∞

dN/dη
P(dN/dη), the plots of P(dN/dη) shown in Fig. 1 can be

simply obtained by plotting ( d (dN/dη)
dc )−1|c vs dN/dη|c, with c ∈

[0, 1].

at LHC. The choice of this parameter is, essentially, detector
dependent.

Let me first discuss the case of the TRENTo model with
p = 0. In Ref. [16], this model is found to provide an excellent
description of ALICE data when k = 2.0. To describe RHIC
data, i.e., a large-multiplicity tail which is twice as broad, I
use k = 0.5, which is smaller by a factor of 4, consistent with
the fact that the width of the 
 distribution is proportional to
k−1/2. The probability distribution of the total entropy in this
model is reported as a dashed line, for both Au+Au and U+U
collisions, in Fig. 1. To show a meaningful comparison be-
tween the distribution of entropy provided by TRENTo and the
measured multiplicities, I rescale the entropy in TRENTo in
order to have the knee of the histogram at the same coordinate
as the knee of the histogram of experimental data.4 Agreement
with the data is reasonable,5 especially in the high-multiplicity
tail, although the comparison is not as excellent as the one
observed with LHC data.6

Moving to TRENTo with p = 1, I find that also in this case
an excellent description of data is achieved using k = 0.5. The
rescaled distributions of entropy in this model are shown as
solid lines in Fig. 1. Note that, for most of the histograms, the
description provided by this model is better than that observed
with p = 0.

4The knee is defined as the mean value of multiplicity at zero
impact parameter, and for the experimental data I calculate it through
the fitting procedure of Ref. [41]. From the STAR parametrizations,
I find dNch/dη|knee= 663 in Au+Au collisions, and dNch/dη|knee=
821 in U+U collisions.

5I have also checked that the model presents the same centrality of
the knee, cknee, of data, i.e., the area of the histogram on the right of
the knee. From the STAR parametrizations, I find cknee = 0.81% in
Au+Au collisions, and cknee = 0.75% in U+U collisions.

6I have actually tried several values of k, and agreement does not
get better.
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I would like to expand a bit further on this point, which
is very striking. The model with p = 0 allows one to ac-
curately reproduce LHC multiplicity data [16], but here it
yields a poor description of RHIC data at multiplicities that
are smaller than the location of the knee of the histogram.
At such multiplicities, one cannot simply improve agreement
with data via a change in k: The model is simply unable to
reproduce the data. Another model that is able to reproduce
with great accuracy the distributions of multiplicity measured
at LHC is the IP-Glasma model [36], which was employed
in calculations of Au+Au and U+U collisions in Ref. [26].
Rescaled multiplicity distributions in this model are shown as
dotted lines in Fig. 1. Note that they are essentially compatible
with the curves of TRENTo p = 0, and consequently, this
model provides a rather bad description of Au+Au data before
the knee of the histogram.7 Therefore, either the difference
between multiplicity distributions at RHIC and at LHC is
due to some unknown issue due to the different detectors
used or there might actually be some physical motivation
for which entropy production within IP-Glasma-like models
(e.g., TRENTo p = 0) provides a better description of data at
the TeV energy scale. Moreover, let me emphasize that the
same issue might jeopardize future Bayesian analyses that,
using the TRENTo model, are aimed at a determination of the
parameters k and p via a simultaneous fit of RHIC and LHC
data. My results here indicate that it is very unlikely that, using
the same values of k and p, one may be able to obtain a good
description of both RHIC and LHC data.

That being said: I have exhibited two TRENTo
parametrizations whose distributions of total entropy in
Au+Au and U+U collisions provide a good description
of the multiplicity distributions measured by the STAR
Collaboration. Therefore, these are viable models of initial
conditions for hydrodynamic calculations, and I use them
to compute the eccentricity of the medium in each event, as
discussed below.

C. Eccentricity fluctuations

The elliptic anisotropy of a smooth profile in two dimen-
sions, for instance, the entropy density S(x, y) given in each
collision by the TRENTo model, can be computed as indicated
by Teaney and Yan [5] (in polar coordinates)8:

E2 = ε2e2i�2 = −
∫

r2ei2φS(r, φ)rdrdφ∫
r2S(r, φ)rdrdφ

. (8)

This complex quantity fluctuates in both magnitude (ε2) and
orientation (�2) in each event. Linear hydrodynamic response
implies that E2 is linearly correlated with the complex elliptic

7Note that the IP-Glasma results shown in Fig. 1 present as well
a large-multiplicity tail which is twice as steep as the STAR data,
suggesting that they miss the detector-dependent part of the fluctua-
tions of multiplicity. In the IP-Glasma formalism, this issue could be
solved via the inclusion of fluctuations of the saturation scale at the
level of the colliding nucleons [42].

8The expression for the anisotropy of order 3 (triangularity) is
completely analogous [5].

flow coefficient, V2 = v2e2i�2 , that also fluctuates in magni-
tude (v2) and orientation (�2) event to event. If this is the case,
the probability distribution of V2 coincides then with that of E2

up to a factor, and the statistical properties of V2 fluctuations
provide direct information about the fluctuations of the initial
E2 [43]. Let me recall the formulas of the first two cumulants
of the v2 distribution,

v2{2} =
√〈

v2
2

〉
, v2{4} = 4

√
2
〈
v2

2

〉2 − 〈
v4

2

〉
, (9)

where brackets indicate an average over events in a centrality
bin. Now, if v2 = κε2, then,

v2{2} = κε2{2}, v2{4} = κε2{4}. (10)

The ratio v2{4}/v2{2} has been used in many studies to
observe, in hydrodynamic simulations, the transition between
the linear regime, where v2{4}/v2{2} = ε2{4}/ε2{2}, and the
nonlinear regime where this equality breaks down [39,43–45].
In Ref. [39], in particular, the ratio ε2{4}/ε2{2} was computed
in extensive Monte Carlo calculations of ε2 in very central col-
lisions, and directly compared to LHC Pb+Pb data, in order
to test the validity of different TRENTo parametrizations.

In what follows, I repeat this game, although without tak-
ing any ratio: I compute ε2{2} and ε2{4} in the TRENTo mod-
els, and then rescale them by an appropriate factor κ , in order
to find the best possible agreement with experimental data
on v2{2} and v2{4} in central Au+Au and U+U collisions.
As anticipated, eccentricity fluctuations in central collisions
are strongly sensitive to the event-by-event fluctuations of
the spatial orientation of the colliding 197Au and 238U nuclei,
i.e., to the choice of the deformation parameters that enter
in Eq. (1). The goal of performing Monte Carlo calculations
and model-to-data comparisons is essentially twofold. First,
I want to understand how ε2 fluctuations are affected by the
presence of deformed nuclei in the models. Second, I want
to check whether these effects predicted by the models are
in agreement with the features of v2 fluctuations observed in
the data.

III. COMPARISON WITH STAR DATA

A. Setup

Using the TRENTo parametrizations with p = 0, k = 0.5,
and p = 1, k = 0.5, I simulate Au+Au and U+U collisions
at

√
s = 200 GeV. The nuclear shape parameters that enter

in Eq. (1) are implemented as follows: I take 238U nuclei
with R = 6.80 fm, a = 0.60 fm, β2 = 0.236, and β4 = 0.098.
Concerning 197Au nuclei, I use R = 6.40 fm and a = 0.53
fm, and I shall run calculations for both spherical nuclei,
i.e., β2 = β4 = 0, and deformed nuclei with β2 = −0.125,
β4 = −0.017,

A couple of comments are in order. The chosen values
of radii and skin depths are rather standard. I do not follow
the suggestion of Ref. [27] and do not set a ∼ 0.4 in both
238U and 197Au nuclei. As suggested by the results shown
in that same reference, this choice has essentially no impact
on eccentricity fluctuations in central collisions. Moving on
to the deformation parameters, for 238U nuclei I implement
a value of β2 that is smaller than in previous studies, as I
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take it from the most recent table of nuclear deformations
[14]. Moving to the deformation of 197Au nuclei, I cautiously
stress that the parameter β2 for this nucleus is not a measured
quantity. The data tables resulting from the model calculations
of Refs. [13,14] yield |β2| ∼ 0.13, whereas, in Ref. [46], a
value of 0.15 is guessed from the measured deformations of
neighbor nuclei. My choice β2 = −0.125 is taken again from
Ref. [14].

For these TRENTo setups (p = 0 and p = 1), and using
both spherical and deformed 197Au nuclei, I simulate O(107)
U+U and Au+Au collisions, and I compute the fluctuations
of ε2 as function of collision multiplicity that I compare to
experimental data.

When rescaling the results for ε2 fluctuations, I shall take
the same value of κ [Eq. (10)] for both Au+Au and U+U
systems: This is a good approximation, as the value of κ is
reduced solely by viscous corrections. Dimensional analysis
indicates that viscous corrections scale like 1/R, where R
is the radius of the system. A good approximation for R
is given by A−1/3. Therefore, moving from U+U collisions
to (smaller) Au+Au collisions, I expect a reduction of κ

of order 3
√

238/197, which is a negligible 5% correction.
Let me also stress that, in view of this argument concerning
the system size, the value of κ is expected to decrease as I
move from central to peripheral collisions. This effect should
be very small in the centrality range I am interested in, as
also indicated by hydrodynamic calculations [10]; therefore,
I simply assume that κ is a constant.

B. Model vs data

I show STAR data [11] on cumulants of elliptic flow
fluctuations as empty symbols in Fig. 2. Figures 2(a) and 2(b)
show STAR data in Au+Au collisions, whereas Figs. 2(c)
and 2(d) show U+U collisions. In each panel, the minimum
multiplicity corresponds to roughly 20% centrality, whereas
the maximum multiplicity is around 0.1% centrality.

1. Spherical 197Au nuclei

I start by showing results from the TRENTo calculations
implementing spherical 197Au nuclei. These results are re-
ported as full symbols in Fig. 2.

p = 0: The calculations using TRENTo with p = 0 are
shown as red symbols in Figs. 2(a) and 2(c). The
value of the constant κ = 0.165 is chosen in order
to provide the most accurate possible description
of the cumulant v2{4} in Au+Au collisions [Fig.
2(a)]. I choose to tune the model to v2{4} be-
cause 4-particle cumulants are not affected by non-
flow contributions [32]. The agreement between
the model and the data in Au+Au collisions in
Fig. 2(a) is excellent. The description of v2{4} pro-
vided by this TRENTo parametrization is perfect.
It captures the trend of the data all the way up
to 20% centrality, and it correctly reproduces the
change of sign of the cumulant v2{4}4 observed
around 2.5% centrality in experiment. Agreement
is equally impressive for v2{2}, all the way up

to 20%. The slight shift of the experimental data
toward larger values with respect to the model is
easily understandable as due to nonflow. Indeed,
the nonflow subtraction performed by the STAR
Collaboration is not perfect, as two-particle corre-
lations were calculated implementing a small gap
of 0.1 units of pseudorapidity in the analysis [11].
Moving to the red symbols shown in Fig. 2(c), the
description of U+U data provided by this model
is overall good, but less satisfactory. I see that,
although the comparison with data is not as quanti-
tatively as good as in Au+Au collisions, the model
captures nicely the qualitative features due to the
deformation of 238U nuclei: v2{2} is larger in U+U
than in Au+Au and, for reasons that I shall discuss
in detail in Sec. IV, v2{4} is observed to be nonzero
all the way to the highest multiplicities.

p = 1: I look now at the red symbols shown in Figs. 2(b)
and 2(d), where I show results for TRENTo with
p = 1. Again, the value of κ = 0.27 is chosen such
to yield the best description of v2{4} in Au+Au
collisions.9 Starting with Au+Au collisions in
Fig. 2(b), I see that the description of experimental
data provided by this TRENTo parametrization is
much worse than for the p = 0 case: v2{2} is
overestimated and v2{4} reaches zero at too large
centrality with respect to the experimental data.
This is consistent with the comparisons between
this model and LHC data shown in Ref. [39].
Agreement with data is also bad if I look at U+U
collisions in Fig. 2(d), where a much smaller value
of κ would be needed to match the experimental
data. The qualitative features of U+U collisions
are, on the other hand, reasonably captured, in par-
ticular, the fact that the cumulant v2{4} is nonzero
all the way to the highest multiplicity.

2. Deformed 197Au nuclei

I discuss now the results obtained in TRENTo with
deformed 197Au nuclei presenting β2 = −0.125 and β4 =
−0.017 [14]. These results are reported as lines in Fig. 2.

p = 0: The results for TRENTo with p = 0 are the green
lines in Figs. 2(a) and 2(c). The constant κ that
I need to tune the model to v2{4} in Au+Au
collisions turns out to be smaller than previously
with spherical 197Au nuclei, since both cumulants
increase if I implement β2 > 0. Now, in Fig. 2(a)
I see that the description of v2{2} is still very
good all the way up to 20% centrality, and so is
the description of v2{4} essentially above 5% cen-
trality. But switching on the nuclear deformation
has a dramatic effect of the fourth-order cumulant:
It prevents v2{4}4 from going negative, and one

9Note that the coefficient κ varies a lot moving from p = 0 to
p = 1. This is due to the fact that that the eccentricity grows much
faster with centrality for p = 0 than for p = 1.
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FIG. 2. Empty symbols: Cumulants of flow fluctuations measured by the STAR Collaboration in central Au+Au collisions at
√

s = 200
GeV [panels (a) and (b)] and central U+U collisions at

√
s = 193 GeV [panel (c) and (d)], as function of collision multiplicity. Full symbols:

Cumulants of initial eccentricity fluctuations in the TRENTo setup that implements spherical 197Au nuclei, with p = 0 [panels (a) and (c)] and
p = 1 [panels (b) and (d)]. Lines: Cumulants of initial eccentricity fluctuations in the TRENTo setup that implements deformed 197Au nuclei,
with p = 0 [panels (a) and (c)] and p = 1 [panels (b) and (d)]. The arrows indicate the correspondence between multiplicity and collision
centrality.

observes a nonzero v2{4} all the way to the highest
multiplicity, much as in the case of U+U colli-
sions. Nothing notable occurs for U+U collisions
in Fig. 2(c).

p = 1: As for the results with p = 1 with deformed 197Au
nuclei, i.e., the lines shown in Figs. 2(b) and 2(d),
I would simply like to point out is that I find the
same striking result observed in Fig. 2(a): v2{4} is
always nonzero in Au+Au collisions.

C. Discussion

Let me draw my conclusions from the comparisons shown
in Fig. 2.

First, I confirm that the p = 1 model is ruled out by elliptic
flow fluctuations data at RHIC. This is not a surprise: First,
this model is currently ruled out by LHC data [39]; Second,
as anticipated, this model is similar to the models used by
the STAR Collaboration in their analysis, and those models
provide a bad description of data, in the sense that they present
a κ that varies with centrality even at the highest multiplicities.

Second, my results imply that a value β2 ∼ −0.12
in 197Au nuclei is essentially ruled out by experimental
data. The description of data achieved with the TRENTo
p = 0 parametrization implementing spherical 197Au nuclei
is remarkably good and is spoiled by the inclusion of the
quadrupole parameter reported in the literature. Note that this
is not a small effect, but on the contrary, it is a very visible
change in the fourth-order cumulant that does not reach zero
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even in the most central collisions, as clearly observed in
STAR data. This occurs for both p = 0 and p = 1. I would
like to stress, once more, that the analysis reported here is
exhaustive, in the sense that one cannot easily argue that
negative values of v2{4}4 can be obtained with β2 ∼ −0.12
in a different model setup. As an example, a slightly different
class of models are those models that can be fitted by a
negative p in TRENTo, for instance, the Monte Carlo KLN
model [47] or the Monte Carlo rcBK [48] model. But there the
problem would remain, as these models present both a larger
eccentricity [28] and a larger ε2{4} [39] than the p = 0 case.

The bottom line of this section is that the most notable
effects of nuclear deformation are visible in v2{4} rather than
in v2{2}. The typical statement is that nuclear deformation
yields larger fluctuations of v2 and thus a larger v2{2}. My
analysis clearly indicates that experimental data are now pre-
cise enough to show distinct signatures of nuclear deformation
in the details of the flow fluctuations: v2{4}4 in positive
U+U collisions and negative in Au+Au collisions. Note that
LHC data seems to point at the same phenomenon. Indeed,
preliminary ATLAS data show that v2{4} in Xe+Xe collisions
is positive, all the way down to the most central events [49].
This is in contrast with Pb+Pb data, where a change of sign of
the fourth-order cumulant of elliptic flow is currently observed
[50], and 208Pb nuclei are perfectly spherical.10

How is it, then, that v2{4} is so sensitive to the deformed
nuclear shapes?

IV. NON-GAUSSIAN FLUCTUATIONS

Flow fluctuations are to a good approximation Gaussian,
in the sense that the elliptic flow vector (vx, vy) has a two-
dimensional Gaussian distribution in a given centrality bin.
The breakdown of Gaussian behavior leaves observable con-
sequences in the higher order cumulants of elliptic flow. I refer
to Refs. [52–54] for exhaustive calculations explaining how
the non-Gaussian nature of fluctuations manifests in higher
order cumulants and to the detailed analyses of Refs. [29–32]
for experimental confirmations of such results.

In this section, I show that nuclear deformation can yield
pronounced non-Gaussianity in the event-by-event distribu-
tion of elliptic flow, and I discuss the observable consequences
of such an effect.

A. Deformation as a source of non-Gaussianity

Let me start by looking at the sensitivity of the cumulants
ε2{2}2 and ε2{4}4 under variations of the parameter β2, using
the TRENTo model with p = 0 and k = 0.5. I simulate U+U
collisions at zero impact parameter, b = 0, and I systemati-
cally vary the quadrupole deformation of the nuclei. Note that
colliding at b = 0 implies that ε2{2}2 is equal to the variance
of the distribution of eccentricity, whereas ε2{4}4 measures the

10I should stress that the precise mechanism that leads to the change
of sign of this cumulant in Pb+Pb collisions is not understood yet. It
seems to be a generic feature of systems presenting small eccentricity
driven by impact parameter fluctuations [51].

FIG. 3. Cumulants of eccentricity fluctuations in U+U collisions
at zero impact parameter. The cumulants are plotted as function
of the quadrupole coefficient, β2. I simulate collisions using the
TRENTo model with p = 0 and k = 0.5. (a) Variance of eccentric-
ity fluctuations. (b) Kurtosis of eccentricity fluctuations. Lines are
polynomial fits.

kurtosis, i.e., whether the distribution has heavier or lighter
tails than a Gaussian. In particular, at b = 0 one expects
ε2{4}4 = 0 if the distribution of the eccentricity vector is a
two-dimensional Gaussian.

In Fig. 3(a), I display ε2{2}2 as function of β2 for collisions
at zero impact parameter. By the symmetry properties of the
spherical harmonic multiplying β2 in Eq. (1), any effect that
is linear in β2 should cancel when averages over events are
taken. Therefore, the value of 〈ε2

2〉 is expected to grow with the
square of β2. To check this, I perform a parabolic fit of ε2{2}2,
reported as a dashed line in Fig. 3(a). The fit is of excellent
quality, and it shows how the variance of the distribution
varies with the quadrupole coefficient.

Figure 3(b) shows instead ε2{4}4 as function of β2. I note
a great enhancement of this quantity with increasing β2. This
implies that nuclear deformation does not simply make the
distribution of eccentricity broader, but also less Gaussian, as
it makes the kurtosis grow by essentially orders of magnitude.
The dashed line is a quartic fit, which again confirms the
symmetry argument.

The previous result is very intuitive. The kurtosis enters in
ε2{4}4 with a negative sign [54], which means that nuclear de-
formation makes the kurtosis of ε2 fluctuations less negative.
Negative kurtosis for an azimuthally symmetric eccentricity
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distribution can be simply understood as a consequence of the
fact that the eccentricity is bounded by unity [55]. Nuclear de-
formation, then, causes eccentricity fluctuations to get closer
to their bound, and thus to present more negative kurtosis.

I conclude that nuclear deformation yields a slight increase
in the variance of elliptic flow fluctuations and a dramatic
increase in their kurtosis. This explains intuitively why v2{4}4

is much larger in U+U collisions than in Au+Au collision,
provided, as experimental data seem to suggest, that 197Au
nuclei are much more spherical than 238U nuclei.

In the following, I argue that this phenomenon has robust,
observable consequences that go beyond the simple positive
value of v2{4} in central collisions.

B. Higher order cumulants

The bottom line of the previous discussion is that nuclear
deformation yields stronger non-Gaussianity in the distribu-
tion of v2. Here I discuss the implication of this phenomenon
for the splitting between higher order cumulants of elliptic
flow.

The third cumulant of elliptic flow is of order 6 and is equal
to

v2{6} = 6
√

1
4

(〈
v6

2

〉 − 9
〈
v2

2

〉〈
v4

2

〉 + 12
〈
v2

2

〉3)
. (11)

Again, in the regime of linear hydrodynamic response, one
can write

v2{6} = κε2{6}, (12)

that, using Eq. (10), leads to [39,56]

v2{6}
v2{4} = ε2{6}

ε2{4} . (13)

For collisions of spherical nuclei, e.g., 208Pb nuclei, the ratio
v2{6}/v2{4} is very close to unity (∼0.99) in noncentral
collisions [29,30]. This is because the probability distribution
of elliptic flow, and consequently of the initial eccentricity, is
well approximated by a two-dimensional Gaussian. Gaussian
fluctuations imply that all higher order cumulants of ε2 are
equal to the mean value of the eccentricity projected along the
reaction plane [57], which I dub, in a standard notation, εRP,11

ε2{4} ≈ ε2{6} ≈ εRP. (15)

This is the famous degeneracy of cumulants of the eccentric-
ity and of elliptic flow. Departure from Gaussian behavior
is expected starting from semicentral collisions, due to the
negative skewness of ε2 fluctuations in the reaction plane
[52], as recently confirmed by LHC data in Pb+Pb collisions
[30,31].

11Following Eq. (8), the mean eccentricity along the direction of
the reaction plane, which is customarily taken as the x axis, is given
by

εRP =
〈 ∫

r2 cos 2φ S(r, φ)rdrdφ∫
r2S(r, φ)rdrdφ

〉
, (14)

where the average is over events.

I test the validity of Eq. (15) in the TRENTo model with
p = 0. I show in Fig. 4(a) the values of ε2{4} and εRP in
central Au+Au and U+U collisions. I choose Au+Au col-
lisions implementing spherical nuclei, in order to highlight
how results change between collisions of spherical nuclei and
collisions of nonspherical nuclei. For Au+Au collisions, I see,
as expected, that ε2{4} is essentially equal to εRP already at 5%
centrality. This is the onset of Gaussian fluctuations. Moving
on to U+U collisions, I observe that the splitting between
ε2{4} and εRP is much larger than in Au+Au collisions. This
nicely illustrates how this cumulant, in the most central events,
becomes fully dominated by the enhancement of the kurtosis
of the distribution, which is due to the fluctuations of the
orientation of the colliding nuclei. In these collisions, then, I
do not observe any onset of Gaussian fluctuations, at least up
to 10% centrality. I conclude that nuclear deformation breaks
the degeneracy of cumulants, Eq. (15), in central events.

Therefore, the robust, model-independent prediction I can
easily draw is the following: In collisions of deformed nuclei,
I expect a large splitting between v2{4} and v2{6} between
∼5% centrality and semicentral collisions. In Fig. 4(b), I show
predictions for the ratio v2{6}/v2{4}, up to 20% centrality.
Note that for U+U collisions, Gaussian fluctuations, i.e.,
v2{6}/v2{4} ∼ 0.99, are not observed below 15% centrality.
This confirms my expectations: The ratio is significantly lower
in U+U collisions than in Au+Au collisions and the effect is
very visible. Experimental verification of this feature would
provide additional confirmation of the great robustness of the
hydrodynamic modeling.

Note that, from the inset in Fig. 4(b), I also predict that
v2{6}6, much as v2{4}4, is positive in U+U collisions all the
way to the ultracentral events.

V. CONCLUSIONS

I have shown that the largest effects of nuclear deformation
are hidden into the tails of the distribution of elliptic flow in
central collisions. Nuclear deformation yields broader distri-
bution of elliptic flow, and, for central collisions, it engenders
the mechanism of enhanced negative kurtosis presented in
Sec. IV, which allows me to predict and explain the behavior
of the higher order cumulants of v2. I have thus explained
in very simple terms the striking observation that v2{4}4 is
much larger in U+U collisions than in Au+Au collisions and
predicted that the splitting between v2{6} and v2{4} is larger
in collisions of deformed nuclei.

My results imply that there is no room in the experimental
data for a β2 of order 0.12 in the 197Au nuclei, as it would
lead to too large values of the cumulant v2{4}4 in a model-
independent way. Clearly, one would rather trust the numbers
provided in established nuclear physics literature, instead of
the crude models of initial conditions for heavy-ion collisions.
But, arguably, this would just amount to rejecting evidence.
Signatures of nuclear deformation are observed in elliptic flow
data in U+U collisions and, more remarkably, in collisions
of 129Xe nuclei that present a β2 of order 16%, which is
very close to the reported 12% of 197Au nuclei. As I have
shown in this paper, in the hydrodynamic framework one can
understand all these observations as simply due to generic and
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FIG. 4. (a) ε2{4} in central Au+Au (full symbols) and U+U (empty symbols) collisions in the TRENTo model with p = 0. Lines indicate
the mean eccentricity in the reaction plane, εRP, in both Au+Au (dashed line) and U+U (solid line) collisions. (b) Model predictions for the
ratio v2{6}/v2{4} as function of centrality percentile, in central Au+Au (empty symbols) and U+U (full symbols) collisions. The inset is an
enlargement below 5% centrality.

model-independent features of the fluctuations of the initial
geometry. Therefore, any such effects should show up as well
in Au+Au data.

This is an interesting puzzle, that, I think, nicely un-
derlines the close link between flow fluctuations in cen-
tral heavy-ion collisions, whose origin is purely geometric,
and the actual shape and structure of the colliding nuclei.
This may lead to interesting developments in the future,
aimed at matching these two very different areas of nuclear
physics. It would be useful, for instance, to collide nuclei

whose structure and deformation is precisely determined
experimentally.
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