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Abstract. The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could
spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of
experiments in search of neutron – mirror-neutron (n − n′) oscillations. They reported no evidence, thereby
setting stringent limits on the oscillation time τnn′ . Later, these data sets have been further analyzed by
Berezhiani et al.(2009–2017), and signals, compatible with n − n′ oscillations in the presence of mirror
magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul
Scherrer Institute performed a new series of experiments to further test these signals. In this paper, we
describe and motivate our choice of run configurations with an optimal filling time of 29 s, storage times
of 180 s and 380 s, and applied magnetic fields of 10µT and 20µT. The choice of these run configurations
ensures a reliable overlap in settings with the previous efforts and also improves the sensitivity to test the
signals. We also elaborate on the technique of normalizing the neutron counts, making such a counting
experiment at the ultra-cold neutron source at the Paul Scherrer Institute possible. Furthermore, the magnetic
field characterization to meet the requirements of this n − n′ oscillation search is demonstrated. Finally,
we show that this effort has a statistical sensitivity to n − n′ oscillations comparable to the current leading
constraints for B ′ = 0.

1. Introduction
In the paper in which Lee and Yang proposed parity
violation [1], they also noted that it may be resolved by the
introduction of a parity conjugated copy of standard model
(SM) particles – SM′. Kobzarev, Okun and Pomeranchuk
further developed this idea and formalized mirror matter
[2]. They also introduced mirror photons, i.e. mirror
magnetic fields which were not defined in Ref. [1]. Foot
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and Volkas showed that with the introduction of mirror
matter, parity and time reversal symmetries could be
restored in the global sense [3,4].

Mixing of SM′ and SM particles could provide
answers for several long-standing issues in physics today.
Mirror matter could act as a dark matter candidate
[5–11]. It could provide a mechanism to help solve the
sterile neutrino anomaly [12–14]. Mirror matter could also
provide an additional channel of CP violation through
mixing of SM and SM′ particles, thus helping to explain
baryogenesis [15]. It could provide a mechanism to relax
the Greisen-Zatsepin-Kuzmin (GZK) limit through n − n′
oscillations [16,17]. Baryogenesis also requires baryon
number violation. Neutron – mirror-neutron oscillations
are one such process [18]. The corresponding oscillation
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time may be smaller than the neutron β−decay lifetime
[19]. A historical overview of the physics of mirror matter
can be found in Ref. [20].

It was shown in Ref. [21] that neutrons may mix with
mirror-neutrons with an interaction Hamiltonian:

H =
[
µn B · σ �/τnn′

�/τnn′ µn B′ · σ

]
, (1)

where τnn′ is the n − n′ oscillation time, and B, B
′

are the
magnetic and mirror magnetic fields, respectively. Eq. (1)
shows that applying a magnetic field (B′ �= B) lifts the
degeneracy between neutron and mirror-neutron states,
thereby suppressing the oscillation between the states.
From Eq. (1) it follows that there can be two general
techniques for searching for such oscillations:

1. ultra-cold neutron (UCN) storage experiments,
where one searches for a magnetic field dependence
of the storage curve [22–24],

2. regeneration experiments, where a “particle through
a wall” measurement is performed to look for cold
neutrons regenerating after crossing a barrier in
‘mirror state’ [25,26].

Our attempt to search for n − n′ oscillations employs the
UCN storage technique. Counting the number of stored
neutrons as a function of time (N (ts)) is usually referred
to as the storage curve. We performed an experiment
where the storage curves of neutrons were compared with
magnetic field turned on and off. Neutron – mirror-neutron
oscillation, depending on the magnetic field(s) applied,
may add an additional loss channel to the storage curve:

N{0,B}(ts) = N{0,B}(ts = 0) exp
{

−(R + Rnn′
{0,B})ts

}
. (2)

Here, N{0,B}(ts = 0) are the initial numbers of neutrons
stored in the chamber and N{0,B}(ts) denotes the UCN
data points as a function of storage time ts , when the
magnetic field is switched off or switched on, respectively.
The value R refers to the sum of rates of known loss
channels as up-scattering, absorption, and β−decay of
neutrons in the chamber, which are all independent of the
applied magnetic field. Rnn′

{0,B} is the loss channel added due
to n − n′ oscillations when the magnetic field applied is
zero or when it is different from zero. Note that when the
applied magnetic field, B, is zero, there could still be a non-
zero mirror magnetic field, B ′ �= 0. The additional loss
channel due to n − n′ oscillation can be isolated as derived
in section 3 of [21]. By taking the ratio of UCN counts with
magnetic field turned off (B0 ∼ 0) and on (B0 > 0) and the
decay rate formulas in [21] follows:

EB (ts) =
N0 (ts)

NB (ts)
− 1 (3)

= exp
{

−
(

Rnn′
0 − Rnn′

B

)
ts
}

− 1 (4)

=
ts〈
t f
〉 η2

(
3 − η2

)
2τ 2

nn′ω′2 (1 − η2
)2 , (5)

where ω(′) = γ B(′) (using the gyromagnetic ratio γ of the
neutron), η = B/B ′, and

〈
t f
〉

is the mean time between
two consecutive wall collisions of the UCN within the

storage chamber. Eq. (5) is valid in the range ω′ 〈t f
〉� 1

[21]. In the case when no mirror magnetic field is assumed,
Eq. (4) reduces to:

E0(ts) ≈
〈
t2

f

〉
〈
t f
〉 ts

τ 2
nn′

. (6)

Equation (6) is valid in the range ω
〈
t f
〉� 1. Eqs. (5)

and (6) form the “ratio channel” of n − n′ oscillations. To
summarize, EB denotes the generalized case when B ′ �= 0,
whereas E0 denotes the special case when we assume
B ′ = 0.

In Ref. [21], Berezhiani showed that the asymmetry
between storage curves is also sensitive to n − n′
oscillations when magnetic fields of opposing directions
are applied:

AB (ts) =
(NB (ts) − N−B (ts))

(NB (ts) + N−B (ts))

= − ts〈
t f
〉 η3 cos (β)

τ 2
nn′ω2

(
1 − η2

)2 . (7)

Here the new variable β is the angle between B and
B′. Equation (7) forms the “asymmetry channel” of
n − n′ oscillations. Particularly, the asymmetry channel is
sensitive to the direction of the mirror magnetic field w.r.t
the applied magnetic field.

If there are no n − n′ oscillations, the measured values
of EB , E0, AB would all be zero. This defines the
null hypothesis. In order to measure n − n′ oscillations,
searches for deviations from the null-hypothesis using both
the UCN storage technique, as well as the regeneration
technique, have been attempted.

The first experiments in search of n − n′ oscillations
were performed using the ratio channel. They set the limits
τnn′ > 103 s (95% C.L.) [22] and τnn′ > 414 s (90% C.L.)
[23], respectively. The current leading limit on the
oscillation time under the assumption the mirror magnetic
field, B ′ = 0 is τnn′ > 448 s (90% C.L.) [27]. The current
leading constraint for the case of B ′ �= 0 is τnn′ >

12 s (95% C.L.) over (0 < B ′ < 12.5µT) [24]. Reanalysis
of experiments in Refs. [22–24] by Berezhiani et al. in
[21,28,29] showed signals in the asymmetry channel in
the region 6 < B ′ < 40µT, which could not be excluded
by any experiment thus far. Testing these signals was
the primary motivation for the new side-project of the
Neutron Electric Dipole Moment (nEDM) Collaboration
[30] searching for neutron - mirror-neutron oscillations
with the apparatus at the Paul Scherrer Institute (PSI).

Our search made use of the PSI UCN source
[31–35] and a re-purposed nEDM apparatus [36,37] for
this experiment. At PSI neutrons are produced from a
proton driven spallation source. These spallation neutrons
are then moderated in heavy water and successively down-
scattered in solid deuterium to UCNs. In the PSI nEDM
apparatus, a switch directs the neutrons to and from the
storage chamber. The neutrons can be stored under the
influence of magnetic (and electric) fields. The storage
chamber is enclosed in a 4-layer µ-metal shield which
is housed inside an active magnetic-field compensation
system [38]. A cycle usually involves letting the UCNs
from the source fill the storage chamber after passing
through the appropriately configured switch. The UCN
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shutter at the bottom of the storage chamber then closes
and the storage of UCNs begins. During this time, the
rest of the UCN exiting from the source are guided to
the detectors and are used as monitor counts. After a
period of storage, the UCN shutter below the storage
chamber is opened and the neutrons are spin-analyzed in
the U-shaped Simultaneous Spin Analyzer (USSA) [39]
before being simultaneously detected by a pair of neutron
detectors (called NANOSC-A and B), each detecting a
single spin state [40]. A schematic diagram of the PSI
nEDM apparatus can be found in Ref. [37]. The cycle
schedule is handled by a slow-control software called
‘micro-timer’. In the mirror-neutron search, we used
unpolarized neutrons, thus spin-analysis was not required.
Patterns of different magnetic fields were applied after
every 4 cycles, referred to in the following as a ‘dwell’.

2. Determining the effective storage time
The emptying phase is the period of time when the UCNs
in the nEDM storage chamber are allowed to drop down
into the detector systems and be detected after a period
of storage. During the emptying phase, the UCN shutter at
the bottom of the nEDM storage chamber is opened and the
switch is set to the empty position. During this phase, time-
of-arrival spectra are recorded in the UCN detectors. A set
of emptying time-constants τemp can be extracted by fitting
these spectra (also called ‘emptying curves’) in the time-
of-arrival histograms with an exponential-decay function.
These fits yield cycle-by-cycle values for τemp as a function
of micro-timer storage time. These values averaged over
all cycles for a given storage time are shown in Fig. 1.
The corresponding errors on the mean do not reflect the
large scatter of the central values shown in Fig. 1. This is
caused by the fluctuations in the motion of the switch, and
in the opening and closing of the UCN shutter at the bottom
of the UCN chamber. Therefore in Fig. 1 the standard
deviations are shown as error bars.

Studying the emptying time-constant also allows us to
understand the effective storage time of neutrons which
is different from the micro-timer storage time for the
following reasons. The neutrons experience the same
magnetic field, which is present during storage, also during
both the filling and the emptying phases when neutrons
could oscillate into their mirror counterparts as well. While
the detected neutrons are recorded with a time tag (with
a precision of 1 ns), it is hard to precisely say when the
neutrons left the nEDM storage chamber once the UCN
shutter at its bottom was opened. Also, it is not possible to
tell the precise time at which a neutron entered the nEDM
storage chamber during the filling phase. This makes the
micro-timer storage time t∗

s not equal to the precise time
period during which they were present in the chamber. The
micro-timer storage time starts with the end of the filling
phase and ends at the beginning of the emptying phase, and
it is indicated by t∗

s here.
The analysis using Eqs. (5)–(7) relies on the mean

time (the average over UCN trajectories) the UCN have
spent in the magnetic field. As explained above, this
should also include the mean time of emptying and filling.
The mean emptying time is given by the time-constant
τemp since the time-spectra read by the detectors have
a shape of an exponential decay. The chamber is also
filled through the same opening, and same vertical guide

Figure 1. The emptying time constant of UCNs as a function of
micro-timer storage time. The solid line indicates a linear fit. The
dashed lines show the case for a ±1σ deviation of the constant
term.

(narrower than the beam-line guides), as it is emptied.
Thus, for a given energy spectrum, the mean filling time
will be approximately equal to the mean emptying time.
The optimal filling time, a different quantity discussed
in the next section, is about three times larger. Only the
UCNs that survived the storage phase and were counted are
relevant. These surviving UCNs would thus have similar
filling and emptying time constants, owing to the fact that
the surviving UCNs would have had similar energy spectra
during both the filling and emptying phases. Consequently,
the effective time of storage can be obtained by adding an
additional time period, 2τemp, representing contributions of
the mean times of filling and emptying, to the micro-timer
storage time as follows:

ts = t∗
s + 2τemp. (8)

The emptying time is a function of UCN velocity.
Furthermore, we cannot exclude that the energy spectra
of the neutrons after storage could change when varying
the storage time because faster UCN are lost at a higher
rate than slower ones. Taking the data shown in Fig. 1,
we can assume that if there is a dependence of τemp on
the storage time, this is linear to a first approximation.
Henceforth, the effective ‘storage-time’ will imply adding
to the micro-timer storage-time 2τemp from the linear fit,
and the associated fit error.

3. Optimizing the filling time
The filling time is defined as the time interval after a proton
beam pulse during which the UCN shutter at the bottom
of the nEDM storage chamber is open, while the UCN
switch is set to the filling position. As UCN were only
produced during a short period of 7.5 s in the source, the
number of neutrons delivered to the storage cell decreases
once production stops. At the same time UCNs also leave
the nEDM cell during the same filling period, or some of
them are lost on the walls, similarly as during storage.
The optimal filling time is the moment when filling and
loss rates are equal. As mentioned earlier, the storage time
determines the energy spectrum of those detected UCN
which have been filled.

We studied the optimal filling time by varying it while
keeping the storage time constant. Figure 2 shows two
curves corresponding to the case where the micro-timer
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Figure 2. Plot showing the variation of total neutron counts after
a fixed period of storage w.r.t. the filling time in seconds, along
with a parabolic fit to the data-set. The red data set, with squares
for data points and dashed line fit, corresponds to t∗

s = 90 s,
whereas the blue data set, with dots for data points and solid line
fit, corresponds with t∗

s = 180 s.

storage time was held fixed at 90 s and 180 s respectively,
while the filling time was scanned. A parabolic fit to the
data yields an optimal filling time:

toptimal
filling (t∗

s = 180 s) = 29.4 ± 0.1 s, (9)

toptimal
filling (t∗

s = 90 s) = 29.3 ± 0.1 s. (10)

We notice that within the error bars, the optimal filling time
is independent of the UCN storage time. We used 29 s as
the filling time for all the runs in this effort.

4. Normalizing emptying counts with
monitor counts
So far, a common feature of sD2 based UCN sources at
neutron spallation targets is that the maximum intensity,
after each proton pulse, decays over timescales of the order
of days [35], as shown in Fig. 3 (top). In order to use
Eqs. (5) and (7), one has to assume that the number of
neutrons that were filled until the beginning of the storage
time is stable. If that is not the case, the counts have to
be normalized by a reliable method. This allows us to use
counts such as N0(ts), NB(ts), and N−B(ts) from different
cycles. Other experiments searching for mirror-neutrons
based on UCN counting, such as Ban et al. (2007) [22],
Serebrov et al. (2008) [23], and Altarev et al. (2009) [24],
used neutrons from the PF2 source at the Institute Laue-
Langevin (ILL) [41], where the initial neutron counts did
not decay over time. The initial number of neutrons in the
ILL turbine-based experiments only fluctuated by about
2% over time correlating to the reactor performance. Here,
we present our method to correct for both fluctuations
and drifts in the initial number of neutrons stored in the
chamber.

Just after filling the chamber with UCN and closing
the shutter, during the storage phase, the neutrons still
emerging from the source are directly guided to the UCN
detectors for a constant time period. These neutrons are
referred to as monitor counts. We use monitor counts
to normalize the emptying counts as shown in Fig. 3
(bottom). Eqs. (5)–(7) use the number of neutrons counted
after storage under various magnetic field configurations.

We shall henceforth replace bare counts such as N0(ts),
NB(ts), and N−B(ts) with normalized counts n0(ts), nB(ts),
and n−B(ts) as follows:

n{0,B,−B}(ts) =
N emptying

{0,B,−B}(ts)

N monitor
{0,B,−B}(ts)

. (11)

Using Eq. (11) transforms Eqs. (5) and (7) as follows:

EB =
n0 (ts)

nB (ts)
− 1, (12)

AB =
(nB (ts) − n−B (ts))

(nB (ts) + n−B (ts))
. (13)

The monitor counts are typically of the order of a million,
far exceeding the emptying counts which are of the order
of few tens of thousands. Thus, the uncertainty on the ratio
of emptying and monitor counts is mostly dependent on the
uncertainty coming from the emptying counts. Studying
the uncertainty on the ratio will also help us understand
if the monitor counts are an accurate normalizing
number.

Figure 3 (top) shows monitor and emptying counts
averaged over a single dwell, of 4 cycles. Figure 3 (bottom)
shows the corresponding ratio between emptying and
monitor counts. In the following paragraphs we analyze
the relative spread of the normalized counts and the
contribution of the Poisson statistical uncertainty of the
associated emptying counts. In Fig. 3 (bottom), for each
of the magnetic field series (in pink regions labeled
‘B ∼ 10µT’, and green regions labeled ‘B ∼ 20µT’,
respectively), we see two distinct levels. The higher level
corresponds to 180 s of micro-timer storage, and the lower
level corresponds to 380 s of micro-timer storage. The
distribution of the residuals, after subtracting the mean
value from the ratio between the UCN counts and their
corresponding monitor counts, (n − 〈n〉)/ 〈n〉, is shown in
Fig. 4 for each of the four series along with a best fit
with a Gaussian distribution. Building histograms from
normalized residuals allows us to study the relative width
parameters of the corresponding distributions (w.r.t 〈n〉).
The final analysis will focus instead on the distributions of
EB and AB .

The aim of the present study was to check if the errors
propagated from the neutron counts are compatible with
the data scatter, and whether the histograms are normal
distributions. For each histogram in Fig. 4, we give the
average counts per cycle

〈
N emptying

〉
and the simple mean

of the normalized counts (indiscernible from the weighted
mean because of the large counts). The following width
parameters were calculated for comparison: (i) standard
deviation, s of 〈n〉 quantifying the scatter of the central
values, (ii) σPoisson, the width parameter of the distribution
calculated from counting statistics, (iii) width parameter
of the best fit with a normal distribution, σGaussian-fit along
with the associated χ2/nd f . The corresponding values
inserted in Fig. 4 were normalized with 〈n〉 for easier
interpretation.
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Figure 3. Top: Plot showing UCN monitor counts in purple (in units of ten thousands, corresponding to the vertical axis on the right hand
side), and emptying counts in red (in units of thousands, corresponding to the vertical axis on the left hand side), both averaged over a
dwell of 4 cycles over the entire data taking stretch of the n − n′ oscillation search. Bottom: Ratio between the emptying and monitor
counts as a function of time, for each dwell of 4 cycles. In both plots, yellow regions labeled - ‘ts−Scans’ refer to a time period when
the stored UCN energy spectra were estimated. The pink regions labeled ‘B ∼ 10µT’ and green regions labeled ‘B ∼ 20µT’ refer to
runs which were collected by applying the corresponding indicated magnetic field. The large steps in the normalized counts correspond
to switching between the micro-timer storage times, 180 s and 380 s. The vertical orange dotted lines indicate when the solid deuterium
moderator was reconditioned [35], to recover the maximal neutron flux from the UCN source.

Thus for a series of data points {ni , σni } we have:

〈n〉 =
#∑

i=1

ni

#
, (14)

s =

√√√√ #∑
i=1

1

(# − 1)
(ni − 〈n〉)2, (15)

σPoisson = σ〈n〉
√

#

=

√
#∑#

i=1(1/σ 2
ni

)
. (16)

In the case of σPoisson in Eq. (16), the errors associated (σni )
with each ratio ni = N emptying

i /N monitor
i , came directly from

Poisson statistic uncertainties:

(
σni

ni

)2

=

(√
N emptying

N emptying

)2

+

(√
N monitor

N monitor

)2

. (17)

We found that s/ 〈n〉 ∼= σGaussian-fit with a relatively good
χ2, indicating a normal distribution. Note that the Poisson-
propagated widths in Fig. 4 are dominated by errors
arising from emptying counts. The Poisson propagated
widths, normalized with 〈n〉, are around a factor of
two narrower compared to the widths which one would

obtain from 1/

√〈
N emptying

〉
alone. For example, the

Poisson-propagated width in Fig. 4 (top-left) is close to√〈
N emptying

〉
/
〈

N emptying
〉÷ 2 ≈ 0.6% ÷ 2 ≈ 0.3% (w.r.t〈

N emptying
〉
). Here, a factor of approximately 2 arises

because we are considering ratios, ‘n’, which are from

emptying and monitor counts from the average of 4 cycles
in a dwell.

In all the four series of measurements in Fig. 4, the
scatter of the central values expressed by s is larger
than σPoisson. This means that the Poisson statistics from
the counts alone does not explain the width of these
distributions. Indeed, we observed a correlation between
the position parameter of the UCN switch and N emptying.
The corresponding difference, in quadrature, between
σPoisson and s, is consistently ∼ 0.3% for all the four sets of
runs shown in Fig. 4. Based on this histogram analysis, we
decided not to use Poisson propagated errors later in the
evaluation of the EB and AB distributions. Instead we will
use the scatter of the center values.

5. Magnetic field calibration using
atomic magnetometers
During the storage phase, the neutrons are exposed to a
magnetic field B0. The PSI nEDM experiment ran with a
routine magnetic field of 1µT and associated linear spatial
gradient |gz| < 40 pT/cm. A B0 coil current of ∼ 17 mA is
required to produce a 1µT field. From Refs. [21,28,29] it
is clear that we need a magnetic field up to 20µT for a n −
n′ oscillation search. B0 = 20µT required a coil current
of ∼ 340 mA. We limited the maximum applied magnetic
field to B0 ≤ 20µT, in order to be able to effectively
degauss the passive µ-metal magnetic shield.

In the n − n′ oscillation search, patterns of magnetic
field such as [0 ↑ 0 ↓ 0 ↓ 0 ↑ 0 ↓ 0 ↑ 0 ↑ 0 ↓] (where
the arrow shows the direction of the B0 vector w.r.t. to
the vertical direction) were applied. This magnetic field
pattern allows to measure both the ratio and asymmetry

5
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Figure 4. Histograms of normalized residuals of the ratio between emptying and monitor counts from Fig. 3 (bottom), along with
the corresponding best fit with a Gaussian distribution. In clockwise order: top-left corresponds to dwells with run identifiers of
t∗
s = 180 s and B0 ∼ 10 µT; top-right corresponds to dwells with run identifiers of t∗

s = 380 s and B0 ∼ 10 µT; bottom-right
corresponds to dwells with run identifiers of t∗

s = 380 s and B0 ∼ 20 µT; bottom-left corresponds to dwells with run identifiers of
t∗
s = 180 s and B0 ∼ 20 µT. The extracted values are explained in the text.

values of n − n′ oscillations while compensating for drifts
in magnetic field.

The requirement for precision on the magnetic field
comes from the condition for the zero mirror field case
ω
〈
t f
〉� 1 (where ω = ωB/4, and ωB is the Larmor

precession frequency of the UCNs) under which Eq. (6)
is valid. Assuming a maximum value of

〈
t f
〉 ∼ (0.074 ±

0.004) s obtained from the free flight time in the nEDM
chamber in simulations with MCUCN [42], we require a
precision on the magnetic field better than ∼ 1.71µT (at
1 σ C.L.) [43]. The power source has a precision better
than ∼ 0.2% (relative to 17 mA which is used to create
a 1µT B0 field), and results in a precision of better than
∼ 20 nT. This is well within the ∼ 1.71µT requirement.
In order to measure a magnetic field with a precision
better than ∼ 1.71µT, we do not need to run the 199Hg
co-magnetometer during every cycle. Using a nanoampere
meter to measure the current supplied to the B0 coil is
sufficient to measure the B0 magnetic field. The analogous
condition under which Eq. (5) is valid, i.e. ω′ 〈t f

〉� 1,
imposes a lower limit on the validity of the constraints
on τnn′ from this measurement. Assuming a minimum
value of

〈
t f
〉 ∼ (0.061 ± 0.003) s based on simulations,

our results are valid in the range B ′ > 2.42µT (at 1 σ

C.L.) or B ′ > 2.57µT (at 95% C.L.). The requirement
of precision on the magnetic field better than ∼ 1.71µT
also sets the requirement on the linear spatial gradient
|gz| < 72.5 nT/cm.

The magnetic field, B0 can be obtained using the value
of the applied coil current. In order to calibrate the current

Figure 5. Plot showing the B0 magnetic field measured by 199Hg
(indicated by blue dots) and 133Cs (indicated by green squares)
magnetometers as a function of B0 coil current.

source and to characterize the current and the resulting
B0 magnetic field, we used the 199Hg co-magnetometer
[44–46] and 133Cs magnetometers [47,48].

For the calibration of the dependence of B0 on
the coil current, we measured the precession frequencies
of 199Hg and 133Cs magnetometers. We know the
gyromagnetic ratios of atomic 199Hg and 133Cs to be
γ199Hg/2π = 7.5901152(62) MHz/T [49] and γ133Cs/2π =
3.49862111(39) GHz/T [48]. The fit in Fig. 5 gives a
consistent relationship for the two magnetometer data,
between B0 and the coil current:
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Figure 6. Decay in the magnitude of B0 magnetic field when
the current through the B0 coil is turned off, as measured by the
199Hg magnetometer. The line and the shaded region indicate an
exponential decay fit and its 1σ uncertainty, respectively.

B0

µT
= 0.05996 (1)

I0

mA
+ 0.0016 (1). (18)

Since we did not degauss the µ-metal shield while the
magnetic field patterns were applied, we also studied how
the B0 magnetic field behaved when it was ramped down in
magnitude. When the current to the B0 coil was switched
off for the next storage phase of the neutrons in the
chamber, it is vital that the magnetic field is smaller than
1.71µT so that the condition of ω

〈
t f
〉� 1 holds true.

In order to measure the residual magnetic field when the
current to the B0 coil was switched off, we ramped the
magnetic field to 20µT, the maximum field used in the
measurements, held this field for 500 s, and then switched
off the current. This was repeated with reversed polarity.
The results are plotted in Fig. 6. The average magnetic
field felt by the neutrons during storage when the B0 coil
current is off can be obtained by averaging the exponential
decay curve in Fig. 6 in the appropriate time interval. For
300 s long cycles with micro-timer storage time of 180 s,
storage occurs in the time interval of [30, 210] s, whereas
for 500 s long cycles with micro-timer storage time of
380 s, storage occurs in the time interval of [30, 410] s. The
average “zero” magnetic field experienced by the neutrons
during storage is well below the 1.71µT requirement for
both 300 s and 500 s long cycles, and given by:〈

B0(t∗
s )
〉B0∼0

t∗
s=[30,210] s = (18.98 ± 0.53) nT (19)

〈
B0(t∗

s )
〉B0∼0

t∗
s=[30,410] s = (18.58 ± 0.73) nT. (20)

6. Statistical sensitivity to n − n′

oscillations
The sensitivity of an experiment searching for n − n′
oscillations is represented by the time variable, τnn′ in
Eq. (1). The quantities from which τnn′ , or a constraint
on it, can be obtained appear in Eqs. (5–7). In the case
where we assume B ′ = 0, the oscillation time is purely
dependent on the time of storage ts , the mean time-of-
flight between two consecutive wall collisions

〈
t f
〉
, and

the neutron count ratio EB + 1. When we assume the

mirror-magnetic field experienced by neutrons to be non-
zero (B′ �= 0), the sensitivity, also depends on the applied
magnetic field B. The sensitivity rises dramatically when
B′ = B, i.e. when the neutron and mirror-neutron states
are degenerate.

Note that in the ratio channel under both conditions of
B′ = 0 and B′ �= 0, as well as in the asymmetry channel
under the condition of B′ �= 0, the oscillation time τnn′

depends on 1/
√

AB or 1/
√

EB . If no deviations from zero
are observed in either EB or AB , then the constraint on
the oscillation time depends on the uncertainty associated
with EB and AB . If one assumes similar individual neutron
counts involved in the computation of EB and AB , i.e.
N0 ∼ NB ∼ N−B ≈ N , then the uncertainty on EB and
AB is given by 2/

√
N and 4/

√
N respectively. Along with

Eqs. (5) and (6) it follows that:

ζτB′=0
nn′

∝ 4
√

N ·
√

ts
〈
t2

f

〉
〈
t f
〉 [43] (21)

ζ
τ

B′ �=0
nn′

∝ 4
√

N ·
√

ts〈
t f
〉 · f (η), (22)

where ζ is the maximum constraint on oscillation time τnn′ ,
and f (η) is a function in units of time. The above equations
also imply that an uncertainty on the

〈
t f
〉

and the
〈
t2

f

〉
distributions, due to uncertainty on the energy spectrum,
will affect the final sensitivity by error propagation. This
will be treated carefully in the analysis. Here, we consider
the
〈
t f
〉

variables as fixed and thus constrain ourselves to
the statistical sensitivity coming from the spread in UCN
counts.

Null-hypothesis constraints can directly be estimated
from Eqs. (21) and (22), imposing a lower limit on τnn′

with given statistical confidence, for example 1σ ∼ 68.3%
C.L.. Note that in order to increase the sensitivity, i.e.
increase the lower bound on τnn′ , we could:

1. increase the storage time of the UCNs
2. increase the number of neutrons surviving after a

storage time of ts
3. in the case of B′ = 0, use lower-energy UCNs so

that the free flight-time is as high as possible (from
Eq. (21)); in the case of B′ �= 0 use high energy
UCNs so that

〈
t f
〉

is as low as possible (from
Eq. (22)).

Usually, the sensitivity is a compromise between the above
three items, as:

1. since the sensitivity always goes as 4
√

N · √
ts and

neutron counts decay exponentially with increase in
storage time, there will be an optimal ts ,

2. the mean energy of the UCNs decreases with an
increase in storage time, resulting in an increase
of
〈
t f
〉
.

The energy spectra of the UCNs at a specific storage time
is a given. However we can optimize the time of storage
ts in view of achieving the best sensitivity, by studying
the decay curve of the neutrons in the chamber. In Fig. 7,
the decay curve is shown for unpolarized neutrons in the
PSI nEDM apparatus, compared to the measurement at
ILL [22]. At ILL the measurements routinely counted
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Figure 7. Number of neutrons as a function of storage time in
the PSI nEDM apparatus compared to the storage curve of Ref.
[22] at the ILL. Solid blue curve, with blue dots for data points,
indicates the storage curve measured at PSI for unpolarized
UCNs. The dashed red curve, with red squares for data points,
shows the storage curve measured at ILL for unpolarized UCNs.

Figure 8. Plot showing the length of the predicted run time it
takes to achieve a sensitivity in τ

B′ �=0
nn′ (at 95% C.L.) w.r.t. storage

time. Here, the blue dotted curve indicates a goal of τnn′ ≥ 12 s,
the orange dot-dashed curve corresponds to a goal of τnn′ ≥ 24 s,
and the green curve shows the time required to achieve a goal of
τnn′ ≥ 36 s.

around ∼ 17, 000 neutrons after 180 s of storage, whilst
at PSI we measured on average over ∼ 27, 000 neutrons
after 180 s of storage. The number of cycles scales linearly
with the number of neutrons counted, thus an increase in
the number of cycles has a similar effect as that shown by
neutron counts in Eq. (22) (∝ 4

√
N ).

Since this effort is aimed at testing the signals reported
in the asymmetry channel (Eq. (13)) in Refs. [22–24], we
can estimate the sensitivity of the PSI nEDM apparatus
to τnn′ by scaling up the constraint of τnn′ > 12 s ∀ (0 ≤
B ′ ≤ 12.5µT at 95% C.L.) in Ref. [24], by using Eqs. (21)
and (22). The PSI nEDM measurement used a micro-timer
storage time of 180 s with each cycle being 300 s long.
Thus an overhead of 120 s was reasonable to accommodate
filling UCNs into the storage chamber and counting the
UCNs after storage for time ts . An overhead of 120 s
along with the storage time ts allows us to calculate the
number of cycles per day which then scales linearly with
the number of neutrons counted. Along with the decay
curve in Fig. 7 and Eq. (22), by scaling up the published
constraint of Ref. [24], we can plot (Fig. 8) the time it
takes to achieve a sensitivity in τ

B′ �=0
nn′ (at 95% C.L.), viz.

τ
B′ �=0

nn′ ≥ {12, 24, 36} s as a function of storage time. From

Figure 9. Plot showing the sensitivity to τ B′=0
nn′ (90% C.L.)

achievable as a function of total running time of the experiment.
The solid blue line marks the sensitivity projection for the PSI
nEDM apparatus using 500 s long cycles (with t∗

s = 380 s).
The dashed lines indicate the constraints imposed by older
experiments: the flat dashed red curve shows the constraint from
Ref. [23], the flat dot-dashed gray line indicates a constraint
which is twice that of the constraint in Ref. [23], and the flat solid
green line indicates the constraint from Ref. [22].

Fig. 8 we conclude that the shortest time it takes to achieve
a certain sensitivity is always t∗

s = 380 s. Therefore we
chose to operate our experiment with 380 s of micro-timer
storage time.

Previous experiments were performed with ∼ 180 s of
storage time [22,24]. We performed a part of this effort
using this storage time, to ensure that we can compare old
simulations of

〈
t f
〉

with recent ones. These values will be
used in the analysis even though the storage chamber has
since been renewed, and the energy spectrum from the PSI
UCN source is not identical to the one at ILL.

In Fig. 9 we plotted the sensitivity of the PSI nEDM
apparatus to τ B′=0

nn′ by scaling up the constraint of τnn′ >

103 s (at 95% C.L.) in Ref. [22]. For this we used Eq. (21),
and assumed a micro-timer storage time of 380 s, with
a total overhead of 120 s, resulting in 500 s cycles. A
running time of the order of a month with the PSI nEDM
apparatus is sufficient to achieve a sensitivity comparable
to the current leading constraint under the assumption of
B′ = 0 [23]. However, Fig. 9 also makes it clear that it
is unreasonable to schedule for an effective sensitivity a
factor two better than the current leading constraints in the
PSI nEDM apparatus.

The sensitivity evaluations in Figs. 8 and 9 do not
include the contributions from the uncertainty on the
energy spectra, affecting

〈
t f
〉
.

7. Conclusion
The measurements by the PSI nEDM collaboration
searching for n − n′ oscillations were performed using
storage times t∗

s = {180, 380} s corresponding to total
cycle times of tt = {300, 500} s, and applied magnetic
fields B0 = {10, 20}µT. These together provided four
different configurations for the experiment cycles. While
the storage time, t∗

s = 380 s is statistically optimized for
greatest sensitivity, t∗

s = 180 s provides ample perfor-
mance overlap with the previous generation of experiments
reported in Refs. [22,24]. The B0 = {10, 20}µT configu-
rations provide ample coverage of the relevant parameter
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space to test the signals reported in Refs. [21,28,29]. UCN
storage curve data were collected by applying magnetic
field patterns of [0 ↑ 0 ↓ 0 ↓ 0 ↑ 0 ↓ 0 ↑ 0 ↑ 0 ↓] for
� 2000 dwells over 42 days. The long run schedule
also allows us to study periodic behavior, which may
be interpreted in the n − n′ oscillation framework. This
provided a sensitivity to n − n′ oscillations comparable
to the leading constraints for B ′ = 0. The final analysis
will pay special attention to the uncertainty in the energy
spectra of UCNs. This PSI nEDM effort also marks the
first dedicated simultaneous search for n − n′ oscillations
in both the asymmetry and ratio channels.
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