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Résumé — À propos de l’implémentation de la programmation dynamique pour des problèmes
de contrôle optimal avec des contraintes sur l’état final — Cette publication présente certains
problèmes concernant l’implémentation de la programmation dynamique pour le contrôle optimal
d’un modèle dynamique scalaire, comme par exemple la gestion énergétique d’un véhicule hybride
électrique. Une étude sur la résolution de l’espace d’état discrétisé souligne le besoin d’une implémen-
tation minutieuse. Une nouvelle méthode qui permet de traiter des problèmes numériques d’une façon
adéquate est présentée. Cette méthode permet particulièrement de résoudre des problèmes numériques
engendrés par de forts gradients dans la fonction coût optimale. Ces gradients se situent surtout aux
bornes de l’ensemble d’états atteignables. La méthode proposée améliore non seulement la précision
de l’optimum global, mais permet aussi de réduire la résolution de l’espace d’état en conservant la
précision. Le nombre de calculs nécessaire pour évaluer l’optimum global est ainsi considérablement
réduit. Cela permet des applications ultérieures de la programmation dynamique pour des véhicules
hybrides électriques comme par exemple des études paramétriques extensives.

Abstract — On Implementation of Dynamic Programming for Optimal Control Problems with Final
State Constraints — In this paper we present issues related to the implementation of dynamic pro-
gramming for optimal control of a one-dimensional dynamic model, such as the hybrid electric vehicle
energy management problem. A study on the resolution of the discretized state space emphasizes the
need for careful implementation. A new method is presented to treat numerical issues appropriately. In
particular, the method deals with numerical problems that arise due to high gradients in the optimal
cost-to-go function. These gradients mainly occur on the border of the feasible state region. The
proposed method not only enhances the accuracy of the final global optimum but also allows for a
reduction of the state-space resolution with maintained accuracy. The latter substantially reduces the
computational effort to calculate the global optimum. This allows for further applications of dynamic
programming for hybrid electric vehicles such as extensive parameter studies.
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INTRODUCTION

Developing and optimizing hybrid electric powertrains
include several tasks, such as energy management strategy
design and component dimensioning. Both when designing
the energy management strategy and when dimensioning the
powertrain components it is a clear advantage if the global
optimal fuel consumption is known for a given configuration
and drive cycle. Knowing the global optimal fuel consump-
tion allows a proposed control system to be evaluated with
respect to the global optimum. This evaluation must be car-
ried out for the same final state-of-charge using the proposed
controller and the global optimal control. As a result, the
optimization problem includes final state constraints. Fur-
thermore, hybrid vehicles inherently include constraints on
the battery state-of-charge since a too high or too low state-
of-charge can damage the battery. What is more, the control
signal which decides the power split between electric and
thermal driving also includes constraints due to power limits
of the two power sources. The optimal control problem for
deciding the power split in a hybrid electric vehicle therefore
includes final state constraints, state constraints, and control
signal constraints.

For the energy management strategy design, and also for
powertrain dimensioning, the hybrid vehicle model can be
simplified, with maintained accuracy, and reduced to having
the battery state-of-charge as the only dynamic state vari-
able [1].

To calculate the optimal control signal trajectory for a
hybrid vehicle model with a single state variable, includ-
ing state and input constraints, most studies [2, 3] use the
dynamic programming algorithm [4, 5]. The theory behind
dynamic programming as a tool for calculating the optimal
control is relatively simple. However, numerical problems
arise when implementing the algorithm. In general, if these
problems are not treated, numerical errors can have a major
impact on the final result. This paper deals with numerical
problems that arise due to high gradients in the optimal cost-
to-go function which occur on the boundary of the feasi-
ble state region. One method for handling state constraints
when using dynamic programming is to apply a penalty
scheme for infeasible states [6, 7].

This paper presents a new method for including final state
constraints. The proposed method is compared to using a
penalty scheme for infeasible states when using dynamic
programming for two different dynamic systems. First, the
issues are emphasized for the well-known optimal control
problem of a fishery based on a Lotka-Volterra system [8].
The proposed method is compared to the penalty scheme
and to the analytic optimal solution of the Lotka-Volterra
fishery problem. Secondly, numerical issues are investigated
that are associated with the dynamic programming algo-
rithm for solving the optimal control problem of a parallel
hybrid electric vehicle on a given drive cycle. The numerical

errors in the hybrid vehicle case are then evaluated for the
proposed method and are compared to the penalty scheme.

The proposed method improves the dynamic program-
ming only if the optimal state trajectory is close to the
bounds of the feasible region at some points. However, this
is typically the case for constrained optimal control prob-
lems such as the hybrid electric vehicle problem.

1 OPTIMAL CONTROL PROBLEM

In this paper a special class of optimal control problems is
studied, namely problems with fixed final time and a par-
tially constrained final state. Furthermore, the considered
problems are assumed to include state constraints and input
constraints. What is more, the dynamic systems in this study
include only a single state variable, and the disturbances are
assumed to be perfectly known. In summary, this problem
can be written as an optimal control problem

min
u(t)

J(u(t)) (1)

s.t.

ẋ(t) = F(x(t), u(t), t) (2)

x(0) = x0 (3)

x(t f ) ∈ [x f ,min, x f ,max] (4)

x(t) ∈ X(t) (5)

u(t) ∈ U(t) (6)

where

J(u(t)) = G(x(t f )) +
∫ t f

0
H(x(t), u(t), t)dt (7)

is the cost functional.

2 DYNAMIC PROGRAMMING

This section gives a brief overview of the deterministic
dynamic programming algorithm [4], which throughout
this study is referred to as dynamic programming (DP).
Since dynamic programming is a numerical algorithm used
here to solve a continuous control problem, the continuous-
time model (2) must be discretized. Let the discrete-time
model be given by

xk+1 = Fk(xk, uk), k = 0, 1, . . . ,N − 1 (8)

with the state variable xk ∈ Xk and the control signal
uk ∈ Uk. Furthermore, assume that the disturbance is per-
fectly known in advance and at every time instance k.
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2.1 Basic Algorithm

Let π = {μ0, μ1, . . . , μN−1} be a control policy. Further let
the discretized cost of Equation (7) using π with the initial
state x(0) = x0 be

Jπ(x0) = gN(xN) + φN(xN) . . .

+

N−1∑
k=0

hk(xk, μk(xk)) + φk(xk) (9)

where gN(xN) + φN(xN) is the final cost. The first term
gN(xN) corresponds to the final cost in Equation (7). The
second term is the additional penalty function φN(xN) forc-
ing a partially constrained final state (4). The function
hk(xk, μk(xk)) is the cost of applying μk(xk) at xk, accord-
ing to H(x(t), u(t), t) in Equation (7). The state con-
straints (5) are enforced by the penalty function φk(xk) for
k = 0, 1, . . . ,N − 1.

The optimal control policy πo is the policy that mini-
mizes Jπ

Jo(x0) = min
π∈Π

Jπ(x0) (10)

where Π is the set of all admissible policies.
Based on the principle of optimality [4], dynamic pro-

gramming is the algorithm which evaluates the optimal cost-
to-go (1) function Jk(xi) at every node in the discretized
state-time space (2) by proceeding backward in time:
1. End cost calculation step

JN(xi) = gN(xi) + φN(xi) (11)

2. Intermediate calculation step for k = N − 1 to 0

Jk(xi) = min
uk∈Uk

{hk(xi, uk) + φk(xi) . . .

+Jk+1(Fk(xi, uk))} (12)

The optimal control is given by the argument that minimizes
the right-hand side of Equation (12) for each xi at time index
k of the discretized state-time space.

The cost-to-go function Jk+1(x) used in Equation (12)
is evaluated only on discretized points in the state space.
Furthermore, the output of the model function Fk(xi, uk) is a
continuous variable in the state space which can be between
the nodes of the state grid. Consequently, the last term
in Equation (12), namely Jk+1(Fk(xi, uk)) must be evalu-
ated appropriately. There exist several methods of finding
the appropriate cost-to-go function Jk+1(Fk(xi, uk)) such as

(1) The terms cost-to-go and optimal cost-to-go are used equivalently
throughout this paper referring to optimal cost-to-go. It is important to
note that the term optimal is used in the sense of optimality achievable
despite the numeric errors.

(2) The following notation is used: xi
k denotes the state variable x in the

discretized state-time space at the node with time-index k and state-
index i, while xk denotes a (state-) continuous state variable at time k.

using a nearest-neighbor approximation or using an interpo-
lation scheme. Throughout this study, linear interpolation
of the cost-to-go function Jk+1 is used to account for the
problem of the discretized state space.

The output of the algorithm (11-12) is an optimal control
signal map. This map is used to find the optimal control
signal during a forward simulation of the model (8), starting
from a given initial state x0, to generate the optimal state
trajectory. In the map the control signal is only given for
the discrete points in the state-space grid. The control sig-
nal is therefore interpolated when the actual state does not
coincide with the points in the state grid.

2.2 Numerical Issues on the Boundary Line

When implementing the algorithm numerical errors must be
considered and minimized. One issue to consider is the def-
inition of the cost function for infeasible states and inputs.
Infeasible states and inputs are of course infinitely expensive
and should therefore have infinite cost φk(xi � Xk) → ∞
for k = 1, . . . ,N since the defined objectives (such as final
state constraints and model limitations) cannot be achieved.
When using infinite cost for such states, some substantial
numerical errors occur due to the discretization of time and
state space.

Define the set of reachable states Ωi
k over one time-step

by using all admissible inputs and starting at a given state xi

at time k
Ωi

k = {x|x = Fk(xi, u) ∀ u ∈ Uk} (13)

Consider the grid point/time step domain in Figure 1 (bot-
tom) and the fact that the DP algorithm is calculating the
cost-to-go for the state xi at time k + 1. If an infinite cost
was used for infeasible states together with a linear interpo-
lation, the feasible part of Ωi

k+1 would use an interpolation
between an infinite cost-to-go Jk+2(xi) and a finite cost-to-
go Jk+2(xi+1). As a result, the cost-to-go for xi at time k + 1
becomes infinite, i.e.,Jk+1(xi)→ ∞, although the grid point
{k + 1, i} lies perfectly within the feasible domain.

Now consider the algorithm at time k and the step of cal-
culating the cost-to-go for the state xi. For the same reason
as for the time k + 1, the cost-to-go Jk(xi) will be infinite
since Jk+1(xi) was calculated before to be infinite. When
these effects continue and the algorithm proceeds backwards
in time, the calculated infeasible region will grow into the
actual feasible region.

A first step to tackle this problem is to use a big, but finite
value for the cost instead of infinity φk(xi � Xk) = J∞ for
k = 1, . . . ,N. This big, finite value J∞ must be bigger
than the maximum value of the cost-to-go function Jk(xi).
Using a finite cost value for infeasible domains improves the
solution, but the effect shown above for infinity cannot be
completely eliminated close to the boundary line. Through-
out this paper, the method of using a finite cost value J∞
for infeasible domains together with the algorithm in Sec-
tion 2.1 is referred to as basic DP.
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Figure 1

Schematic overview of an optimal control problem solved
using the dynamic programming algorithm. The figure shows
the state variable boundaries for the dynamic programming
algorithm for the entire problem domain (top) and in the grid
point/time step domain (bottom).

Due to the interpolation between feasible and infeasible
states, the infinite gradient at the boundary line is being
blurred. This is shown in Figure 2 for the fishing problem
(introduced later), where the dashed line is the cost-to-go
computed by DP with a finite cost for infeasible states, i.e.,
the basic DP method. The solid line corresponds to the cost-
to-go from DP improved by the new method introduced in
this paper. As a result of the blurred cost-to-go function,
the optimal state trajectory cannot approach the boundary
line since the computed cost-to-go near the boundary line is
too high. Figure 3 shows the corresponding state trajectory
(dashed) being deviated by this effect. The solid line is the
state trajectory from DP improved by the new method.
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Figure 2

Section of the cost-to-go function Jk(x) at time index k
such that t = 180 h for the fishing problem. State-space dis-
cretization is Δx = 10, penalty for infeasible states is set to
J∞ = 1200.
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Figure 3

State trajectories from DP for the fishing problem. The solid
line shows the result based on the boundary-line method. The
dashed line is the state trajectory resulting from the basic DP.
The dotted vertical line at t = 180 h indicates the time where
Figure 2 is evaluated. State-space discretization is Δx = 10,
penalty for infeasible states is set to J∞ = 1200.

3 BOUNDARY-LINE METHOD

The method presented in this paper tackles the problem of
a blurred gradient at the boundary line due to interpolation
of the cost-to-go between a feasible and an infeasible state-
grid point. Therefore, the boundary line between feasible
and infeasible regions must be found. This is shown in the
first part of this section. The second part shows a simple, yet
powerful method to improve the DP by accounting for this
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boundary line. This improved DP is referred to as boundary-
line DP.

Throughout this section, Equation (8) is reformulated as

xk+1 = fk(xk, uk) + xk, k = 0, 1, . . . ,N − 1 (14)

where
fk(xk, uk) = Fk(xk, uk) − xk (15)

3.1 Computation of the Boundary Line

There exist infeasible regions in the state-time space of
an optimization problem with fixed final time and a par-
tially constrained final state if the state dynamics are
bounded. Since the dynamic system is assumed to be one-
dimensional, there exist only two infeasible regions, namely
an upper and a lower region. This is depicted in Figure 1.
In this section, the lower boundary line between the feasible
and the infeasible region is derived. The upper boundary
line is found analogously.

The partially constrained final state is given by Equa-
tion (4). The lower boundary line is defined as the lowest
state xk,low at each time instance k that allows achieving the
minimal final state x f ,min. Note that the lower boundary
line is only discretized in time, i.e., it is continuous in the
state variable. The lower boundary line can be evaluated by
sequentially going backward in time from k = N−1 to k = 0
and solving the following optimization problem at each time
instance k

min
xk,low,uk

xk,low (16)

s.t.

fk(xk,low, uk) + xk,low = xk+1,low (17)

uk ∈ Uk (18)

xk,low ∈ Xk (19)

The problem is initialized with xN,low = x f ,min. At each time-
step, uk and xk,low are the only unknowns, while xk+1,low is
a parameter at time k. By solving Equation (17) for xk,low

and inserting it in Equation (16) the following, more direct
problem is obtained

max
xk,low,uk

fk(xk,low, uk) (20)

s.t.

fk(xk,low, uk) + xk,low = xk+1,low (21)

uk ∈ Uk (22)

xk,low ∈ Xk (23)

If the state is assumed to be unconstrained, i.e., (23) is omit-
ted, the following formulation is equivalent

xk,low = xk+1,low − max
uk∈Uk

fk(xk,low, uk) (24)

Equation (24) is a so-called fixed point problem (x = f (x)),
where xk,low is the unknown.

The lower boundary line is finally found by the following
algorithm:
1. Initialize with the lower bound of the partially con-

strained final state xk,low = x f ,min.
2. Proceed backward in time for k = N − 1, . . . , 0:

(a) solve the fixed point problem (24) without state con-
straints as shown below in (25-27);

(b) check wether the solution found respects the state con-
straints;

(c) if the constraints are not respected, solve the general
problem (20-23);

(d) store the solution xk,low with the respective minimizer
uk,low and the cost-to-go Jk,low.

The fixed point problem (24) of time step k without state
constraints can be solved with the following algorithm (3):
1. Initialization:

x j=0
k,low = xk+1,low (25)

2. Iteration over j until a specified tolerance is achieved:

x j+1
k,low = xk+1,low − max

uk∈Uk
{ fk(x j

k,low, uk)} (26)

This algorithm converges if∣∣∣∣∣∣∣
∂

∂x j
k,low

max
uk∈Uk
{ fk(x j

k,low, uk)}
∣∣∣∣∣∣∣ < 1 (27)

Note that the algorithm mentioned above (25-27) finds the
limit value xk,low in the first iteration if the update function
fk is independent of the state variable xk.

3.2 Interpolation Near the Boundary Line

It is assumed that the state boundary lines xk,low (and xk,high)
shown in Figure 1 with their corresponding cost-to-goJk,low

(and Jk,high) along the boundary line have been calculated
prior to the DP algorithm. Therefore, when the set Ωi

k con-
tains the boundary it is possible to interpolate between the
exact boundary and a feasible state grid point, as illustrated
in Figure 4 with the solid and the dashed lines. The dotted
line illustrates the interpolation by the basic algorithm at the
boundary between feasible and infeasible regions.

Consider the DP algorithm to evaluate the cost-to-go for
the state-grid point xi at time k + 1 (see Fig. 1, bottom).
Starting from state xi, the state achieved at the end of this
time-step

xk+2 = fk+1(xi, uk+1) + xi ∈ Ωi
k+1 (28)

can reach the feasible as well as the infeasible region. The
corresponding cost-to-go Jk+2(xk+2) is evaluated by inter-
polation between Jk+2(xi+1) and Jk+2,low if the state xk+2 is

(3) The top right index of x is the iteration index, here. It is not the index
of the state-grid as used in the rest of the paper.
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,

,

Figure 4

Interpolation of Jk+1(x) near the boundary line. The dashed
lines illustrates the (linearly) interpolated values including the
boundary line. The dotted line illustrates the interpolation used
by the basic algorithm.

above or on the boundary line xk+2,low. Otherwise, the cost-
to-go is set to infinity or to the big, finite value J∞. This
procedure allows maintaining the same accuracy close to the
boundary line as achieved within the feasible domain.

The application of the optimal control signal map in the
forward simulation which is mentioned in Section 2.1 is
improved by the boundary line analogously. Since the con-
trol signal on the boundary line was evaluated before, inter-
polation of the control signal is carried out between the grid
points of the feasible domain or between the feasible domain
and the boundary line.

4 EXAMPLE 1: SIMPLE DYNAMIC MODEL

This section studies a well-known optimal control problem,
namely the optimal fishing in a Lotka-Volterra fish popu-
lation. The fishing problem is chosen because it has an
analytic solution.

4.1 Continuous-Time Problem

The continuous-time dynamic Lotka-Volterra system is

ẋ(t) =
2

100
·
(
x(t) − x2(t)

1000

)
− u(t) (29)

where the state variable x(t) is the amount of fish in a lake,
the control signal u(t) is the fishing rate. The control signal

u(t) is limited to u(t) ∈ [0, 10]. For the considered system
the state x(t) is limited to x(t) ∈ [0, 1000] since

lim
t→∞
u(t)=0

x(t) = 1000 (30)

The objective is to maximize the amount of fish caught,
which is equivalent to minimizing

J =
∫ t f

0
−u(t)dt (31)

within a fixed time t f while the minimal amount of fish in
the population at the final time must be x f ,min = 750. This
can be stated as the optimal control problem

min
u(t)

∫ t f

t=0
−u(t)dt (32)

s.t.

ẋ(t) =
2

100
·
(
x(t) − x2(t)

1000

)
− u(t) (33)

x(0) = 250 (34)

x(t f ) ≥ 750 (35)

x(t) ∈ [0, 1000] (36)

u(t) ∈ [0, 10] (37)

t f = 200 (38)

The solution to this optimal control problem is straightfor-
ward to determine and consists of three parts: First, there
is no fishing to let the population grow, then there is fishing
such that the population is kept constant, then there is no
fishing again to let the population grow to the final condition.
The optimal control expressed in time is

uo(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t ∈ [0, ta]
5 if t ∈ (ta, t f − tb)
0 if t ∈ [t f − tb, t f ]

(39)

where

ta = tb = 100 · artanh

(
1
2

)
(40)

The final maximum amount of fish caught is

Jo
analytic = −5 · (t f − ta − tb)

= −1000 ·
(
1 − artanh

(
1
2

))

≈ −450.694 (41)

4.2 Discrete-Time Problem

In order to evaluate the optimal solution by means of
dynamic programming, the continuous-time state dynam-
ics (29) must be discretized. Using an Euler forward approx-
imation with a time step ts = 0.2 h, the discrete-time
model is

xk+1 = f (xk, uk) + xk, k = 0, 1, . . . ,N − 1 (42)
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where

f (xk, uk) = ts ·
⎛⎜⎜⎜⎜⎝ 2

100
·
⎛⎜⎜⎜⎜⎝xk −

x2
k

1000

⎞⎟⎟⎟⎟⎠ − uk

⎞⎟⎟⎟⎟⎠ (43)

The state xk is the amount of fish in a lake, while the control
signal uk is the constant fishing rate during one time step.
The discrete-time optimal control problem is

min
uk∈[0, 10]

N−1∑
k=0

−uk · ts (44)

s.t.

xk+1 = f (xk, uk) + xk (45)

x0 = 250 (46)

xN ≥ 750 (= x f ,min) (47)

xk ∈ [0, 1000] (48)

N =
200
ts
+ 1 (49)

As mentioned in Section 2.2, use of a big, but finite value
J∞ to penalize infeasible states improves the numerics. This
value should be chosen as small as possible, but larger than
any value of the (feasible) cost-to-go that could occur. Since
this simple example allows for analytic solutions, the maxi-
mum cost-to-go of the continuous-time problem is evaluated
in order to choose a suitable value forJ∞. The minimum of
the cost-to-go Jt(x) is obviously at t = 0 and x = 1000 and
yields

Jt=0(x = 1000) = 500 artanh

(
1
2

)
− 1000 − 125π

≈ −1118 (50)

For the fishing problem, at t = 0, the minimum cost-to-
go (50) is approximately 1118 less than the cost-to-go at
t = t f = 200

Jt=200(x ∈ Xt=200) = 0 (51)

The infeasible states at t f must therefore be penalized by a
value larger than 1118 to ensure that the final state constraint
is met.

Consequently, the penalty J∞ used for the cost-to-go of
infeasible states is set to a value greater than J∞ > 1118.
For the example here a value of

J∞ = 1200 (52)

is chosen and is used in the DP algorithm.
The output of the dynamic programming algorithm is an

optimal control signal map, specifying the optimal control
signal at each time step k and each state xk ∈ Xk. The
optimal control signal map for the Lotka-Volterra system is
shown in Figure 5. It shows that in the beginning of the prob-
lem the optimal control is "not fishing" (u = 0) if the fish
population is small (x < 500), "moderate fishing" (u = 5)
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Figure 5

The optimal control signal map, determined using dynamic
programming, for the discrete-time Lotka-Volterra system.
The optimal state trajectory for x0 = 250 when using the map
is shown as the solid black line.

if the population is x = 500 and "full fishing" (u = 10) if
the population is large (x > 500). Toward the end of the
problem, one must stop fishing as late as possible, such that
the population reaches the specified minimum final size of
x f ,min = 750. The resulting optimal state trajectory, i.e., the
fish population for an initial state of x0 = 250 is shown as the
black solid line. The solution of the dynamic programming
clearly reflects the optimal control found for the continuous
problem (39).

4.3 Resolution Study

As mentioned earlier, the accuracy of the solution obtained
with dynamic programming can degrade due to numeric
issues. The state space must be discretized for the DP algo-
rithm. The resolution of the state-space discretization is
a critical quantity. On one hand, the computational effort
increases with a higher resolution. On the other hand, the
accuracy of the solution improves with increasing resolu-
tion.

Therefore, a study is carried out here to quantify the accu-
racy of the solution obtained by DP for the simple example
of the fishing problem. The fishing problem has been cho-
sen because an analytic solution exists that can be used as a
benchmark. The resolution study is carried out for the basic
DP, but also for the new method presented in this paper, i.e.,
the boundary-line DP.

The quality of the solution is expressed as the relative
difference between optimal cost obtained by DP and the
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The relative deviation of the cost computed by dynamic pro-
gramming compared to the optimal analytic solution for the
fishing problem.

analytic optimal solution,
Jo

analytic−Jo
dp

Jo
analytic

. Figure 6 shows this

deviation of the optimal solution evaluated with DP (basic
and boundary-line) from the analytic optimal solution.

Since the analytic solution is evaluated for the origi-
nal continuous-time problem, the discrete-time solution can
never achieve the analytic optimal solution. This discretiza-
tion error is indicated in Figure 6 with the dotted line marked
as "minimum time-discretization error". It emphasizes that
the solution using the boundary-line DP converges well
toward the discrete-time optimum. Furthermore, this figure
illustrates the importance of the boundary line: the numeric
solution with the boundary-line DP is closer to the analytic
solution by a factor of 50 to 68 000 than with the basic DP
for the same resolution. It is interesting to note that the
cost (44) resulting from boundary-line DP is inferior to the
cost resulting from basic DP over the entire range of resolu-
tion that was investigated. The solution using the boundary-
line DP at the lowest resolution (Δx = 125) is closer to the
analytic solution than the solution of the basic DP at the
highest resolution (Δx = 1).

The relative deviation of the final state achieved by the
DP (basic and boundary-line) from the optimal final state is
shown in Figure 7 for different resolutions. The optimal final
state is the lowest admissible final state for this example,
i.e., xo(t f ) = x f ,min. The figure shows clearly that the final
state deviation of the basic DP decreases with decreasing
Δx, i.e., with increasing resolution. Using the boundary-
line DP, the final state deviation is negligible over the entire
range of resolutions investigated here.
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The relative deviation of the actual final state and the optimal
final state for the fishing problem.

4.4 Computational Effort

The computational effort of an optimization method is often
a crucial factor that determines whether a method is being
applied in practice for a given problem or not. Therefore,
not only the accuracy of a solution as shown in Section 4.3
is relevant, but also the corresponding computational cost.

The number of model-function evaluations for the basic
DP with an equally spaced grid is given by

NDPbasic
f eval = Nx · Nu · N (53)

This is only true for a single-dimensional state space and a
scalar control signal. The variable Nx represents the number
of grid points for the state space, Nu for the control signal,
and N for the time discretization.

When using the boundary-line DP, the infeasible domain
is well known. Consequently, the computation for the grid
points in this infeasible domain (see Fig. 1) can be omit-
ted [2]. The number of infeasible grid points at a time step
k is denoted as Nin f eas

k,x . Hence, the number of function eval-
uations that can be saved are

Nin f eas
f eval = Nu ·

N−1∑
k=0

Nin f eas
k,x (54)

The cost for evaluating the boundary line cannot be
neglected. The number of function evaluations needed to
compute the line is denoted by Nline

f eval.
Consequently, the number of function evaluations

required for solving the DP with the boundary-line method
is given by

NDPline
f eval = NDPbasic

f eval − Nin f eas
f eval + Nline

f eval (55)
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Number of function evaluations needed to find the solution of
the fishing problem.

Figure 8 shows the number of function evaluations for
the fishing problem over the discretization step Δx. It shows
that more computations can be saved due to the infeasible
domain than are required to evaluate the boundary line. The
boundary-line DP requires fewer function evaluations by a
factor of 1.5 to 1.85 than the basic DP over the entire range
of discretization steps investigated here. Furthermore, it
should be recalled that the accuracy of the solution is con-
siderably higher, even though the computational burden is
lower.

More interesting is a comparison of solutions of similar
accuracy. Therefore, the solution using the basic DP at the
lowest discretization step of Δx = 1 is compared to the
solution of the boundary-line DP at its highest discretization
step of Δx = 125. The values obtained are shown in Table 1.
These results reveal that the boundary-line DP is computa-
tionally more efficient by a factor of 1 002 001 000

4 877 143 ≈ 205 than
the basic DP, even though the accuracy of the solution is still
better (449.340 > 445.936). This result motivates to apply
the method to more complex systems.

TABLE 1

Comparison at similar accuracy for the fishing problem

Basic DP Boundary-

line DP

State-space discretization (-) Δx 1 125

Amount of fish caught (-) −J 445.936 449.340

Function evaluations (-) N f eval 1 002 001 000 4 877 143

5 EXAMPLE 2: HYBRID ELECTRIC VEHICLE

This section studies the control problem of deciding the
power split between the two power converters in a full par-
allel electric hybrid vehicle throughout a given drive cycle.
A hybrid vehicle includes state-of-charge constraints and
normally also a final state-of-charge constraint to ensure a
charge-sustaining solution. As a result, the dynamic pro-
gramming solution is sensitive to the method used to account
for final state constraints. The basic DP is compared to the
proposed boundary-line DP for the optimal control problem
of the hybrid vehicle. The focus of this section is not on
modeling, but rather on handling the state constraints appro-
priately when implementing dynamic programming. Read-
ers interested in detailed equations of the model are referred
to [9].

5.1 Discrete-Time Problem

The full parallel hybrid electric vehicle model is a quasi-
static, discrete-time model. The modeling follows the theo-
ries described in [1, 10]. Essentially, the model contains the
battery state-of-charge as the only state variable which is
sufficient for energy management considerations. To sum-
marize the model, the combustion engine is modeled using
an affine Willans approximation, the electric motor is mod-
eled using an electric-power map (derived from detailed
simulations), and the battery is modeled as a voltage source
together with a resistance in series. The vehicle model
includes air drag, rolling friction, and inertial forces. The
gearbox is modeled using a constant efficiency of 95%. The
hybrid vehicle considered in this study has a 20% hybridiza-
tion as defined in [9]. The model equations can be summa-
rized and described as

xk+1 = f (xk, uk, vk, ak, ik) + xk (56)

where xk is the battery state-of-charge, uk is the torque split
factor, vk is the vehicle speed, ak is the vehicle acceleration,
and ik is the gear number. The model assumes isothermal
conditions, no extra fuel consumption during the startup of
the combustion engine, and no energy losses during gear
shifting. A constant auxiliary electric power demand of
350 W is used in the model.

Since the drive cycle is assumed to be known in advance,
the particular driving speed vk, acceleration ak, and gear
number ik at instance k can be included in the model function
to form the time-variant model

xk+1 = fk(xk, uk) + xk, k = 0, 1, . . . ,N − 1 (57)

The optimization problem of minimizing the total fuel mass
consumed

J =
N−1∑
k=0

Δm f (uk, k) (58)
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Output of the dynamic programming algorithm. The optimal
input map for a full HEV driving the NEDC and the state-of-
charge trajectory (black) when using the optimal control signal
map.

for the hybrid vehicle over a given drive cycle, here the
New European Driving Cycle (NEDC), can be stated as the
discrete-time optimal control problem

min
uk∈Uk

N−1∑
k=0

Δm f (uk, k) (59)

s.t.

xk+1 = fk(xk, uk) + xk (60)

x0 = 0.55 (61)

xN ≥ 0.55 (= x f ,min) (62)

xk ∈ [0.4, 0.7] (63)

N =
1180

ts
+ 1 (64)

where Δm f is the fuel mass consumption at each time step.
The time step in this example is ts = 1 s. Throughout
this section the optimal control problem (59-64) is studied
and solved using dynamic programming for the NEDC. In
Figure 9 the optimal torque split is shown at each state-of-
charge over the duration of the drive cycle for the hybrid
vehicle. Similarly to the fishing problem, the optimal state-
of-charge trajectory is close to the boundary of the feasible
state region at the end of the problem.

As mentioned in Section 2.2 for the fishing problem, the
cost-to-go function is blurred when a finite value for J∞ is
used together with an interpolation. For the hybrid vehicle
problem, the blurring effect is similar to that of the fishing
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Section of the cost-to-go function Jk(x) at time index k such
that t = 1100 s for the HEV-problem. State-space discretiza-
tion is Δx = 2.15 × 10−3, penalty for infeasible states is set to
J∞ = 104.

problem when a finite cost for infeasible states is used. Fig-
ure 10 shows the cost-to-go at t = 1100 s when the basic
DP and the boundary-line DP are used. Since the blurring
effect is dependent on the state-space resolution, the next
section investigates this dependency for the basic DP and on
the boundary-line DP.

5.2 Resolution Study

Dynamic programming is often used to calculate the opti-
mal fuel consumption for hybrid vehicles. The optimal fuel
consumption is then used, for example, to compare different
causal energy management strategies or component dimen-
sions. However, such comparisons rely on the accuracy of
the dynamic programming solution. In general, a higher
resolution of the state space improves the accuracy of the
solution. This section studies different state-space resolu-
tions for the hybrid vehicle problem using the basic DP and
the boundary-line DP.

Figure 11 shows the fuel consumption calculated with the
basic DP and the boundary-line DP. The fuel consumption
is proportional to the total cost J, which is the fuel mass
consumption. In contrast to the simple model in Section 4,
no analytic solution to the hybrid vehicle problem is known.
Consequently, the absolute value of the fuel consumption is
shown instead of the relative deviation from the optimum.
Figure 11 shows that the fuel consumption is considerably
lower when using the boundary-line DP compared to the
basic DP, especially for large state-space discretizations Δx.
Furthermore, the figure shows that the fuel consumption
resulting from the boundary-line DP, compared to the results
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Fuel consumption of the HEV obtained using DP for different
state-space discretizations.
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The deviation of the actual final state and the optimal final state
for the HEV problem.

of the basic DP, is insensitive to the state-space discretiza-
tion.

Figure 12 shows the relative deviation of the final state
achieved by the DP algorithm from the optimal final state
xo(t f ) = x f ,min. The behavior of the fuel consumption shown
in Figure 12 resembles the behavior of the relative deviation
of the final state in Figure 11. This is a consequence of
the fact that any final state deviation is accumulated elec-
tric energy that could have been used to save fuel during
the drive cycle. For low resolutions of the state space, the
blurring effect of the cost-to-go substantially affects the final
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Number of function evaluations needed for the HEV problem.

state-of-charge when using the basic DP. For a state-space
discretization of Δx = 0.01 the error is greater than 16%.
However, when increasing the state-space resolution, the
final state approaches the lowest admissible final state x f ,min,
and the fuel consumption decreases.

In general, for the hybrid vehicle problem, the errors
in the final state-of-charge and in the total cost originate
from two main problems. First, the blurring effect unreal-
istically increases the cost-to-go and therefore increases the
final state-of-charge. Second, the state-space discretization
must include enough points to capture the nonlinearities in
the cost-to-go, which both methods suffer from. However,
for the hybrid vehicle problem, the error associated with the
blurring effect is by far the largest error source. Using the
boundary-line method eliminates this blurring effect and is
therefore an appropriate method for increasing the accuracy
of the final solution.

5.3 Computational Effort

The accuracy of the final solution described in the previous
section must be put in relation to the computational effort
of the particular discretization. This section shows the rela-
tionship between the accuracy of the solution and the com-
putational effort, expressed as model function evaluations,
similarly to those described in Section 4.4.

Figure 13 shows the number of function evaluations for
the hybrid vehicle problem over the discretization step Δx.
The difference between the boundary-line DP and the basic
DP is due to the removal of infeasible states in the state
space for the boundary-line DP. However, this effect is not
as large as in the fishing problem since it depends on the
problem length and on the boundary line.
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TABLE 2

Comparison at similar accuracy for the HEV problem

Basic DP Boundary-

line DP

State-space discretization (-) Δx 10−4 1.3 × 10−3

Fuel mass consumed (kg) J 0.3790 0.3788

Fuel consumption (l/100 km) 4.5879 4.5852

Function evaluations (-) N f eval 74 364 780 5 578 935

When comparing the boundary-line DP and the basic DP
at a similar accuracy the difference in computational efforts
becomes clear, as shown in Table 2. For the basic DP using
Δx = 10−4 the total cost of the HEV is 0.3790 kg fuel mass
consumed. Furthermore, the boundary-line method achieves
a similar total cost of 0.3788 kg using Δx = 1.3 × 10−3.
Consequently, the number of model function evaluations
used for the boundary-line DP is computationally 74 364 780

5 578 935 ≈
13 times more efficient than using the basic DP.

Similarly to the fishing problem, the biggest reduction in
computational effort is due to the possibility of reducing the
state-space discretization while maintaining the accuracy of
the solution.

CONCLUSIONS

The boundary-line DP presented in this paper improves the
efficiency of dynamic programming considerably for the
case of a single state variable. Not only the final state con-
straint is fulfilled at high accuracy, but also the calculated
optimal cost is very close to the true solution even for a mod-
erate resolution of the discretized state space. The compu-
tational cost is substantially reduced since the new method
allows the accuracy to be maintained at a much lower state-
space resolution. Furthermore, the number of calculated
grid points is reduced by evaluating the feasible domain
only. The method presented here improves the dynamic
programming only if the optimal state trajectory is close to
the bounds of the feasible region at some points. This is
typically the case for constrained optimal control problems.

The new method is well suited for optimal control of
hybrid electric vehicles because the optimal trajectory coin-
cides with the boundary line at the end of most drive cycles
and because the system can be sufficiently well described
with a single state variable. The resulting gain in computa-
tional time can be used for extensive parametric studies, for

instance, such as optimal component dimensioning without
increasing the total computational effort.

In this study, the proposed method is applied to partially
constrained optimal control problems where only the lower
state boundary line is determined. However, the proposed
method can easily be applied to constrained optimal control
problems where a lower and an upper state boundary line
have to be determined.

Future work includes investigations of a possible exten-
sion of the proposed method to include multi-dimensional
discrete optimal control problems.
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