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ABBREVIATIONS 
 

ANN: artificial neural networks 

ATR: attenuated total reflectance 

CP-ANN: counter-propagation artificial neural networks 

CVA: canonical variate analysis 

DA: discriminant analysis 

DTGS: deuterated triglycine sulphate 

ESM: external standard method 

EVOO: extra-virgin olive oil 

FDA: factorial discriminant analysis 

FT: Fourier transform 

GA: genetic algorithm 

HCA: hierarchical cluster analysis 

IECVA: interval extended canonical variate analysis 

IOC: international olive council 

KNN: k-nearest neighbours 

LDA: linear discriminant analysis 

LOD: limit of detection 

LS-SVM: least-square support vector machine 

MCTA: mercury cadmium telluride-A 

MIR: mid infrared 

MLR: multiple linear regression 

MRM: multivariate range modelling 

MSC: multiple scatter correction 

NCC: nearest centroid classification 

NMR: nuclear magnetic resonance 

NIR: near infrared 

PC: principal component 

PCA: principal component analysis 

PC-OSC:  principal-component orthogonal signal correction 
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PCR: principal component regression 

PDO: protected designation of origin 

PLS: partial least square 

PLSR: partial least square regression 

PLS-DA: partial least square discriminant analysis 

POTFUN: potential function 

QDA: quadratic discriminant analysis 

R2: coefficient of determination 

RMSEC: root mean square error of calibration 

RMSECV: root mean square error of cross-validation 

RMSEP: root mean square error of prediction 

SECV: standard error of cross-validation 

SEP: standard error of prediction 

SG: Savitzky-Golay 

SIMCA: soft independent modelling of class analogies 

SLDA: stepwise linear discriminant analysis 

SNV: standard normal variate 

SVM: support vector machine 

UNEQ: unequal dispersed classes 

UV: ultra-violet 

VOO: virgin olive oil  
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INTRODUCTION 
 

One of the main issues facing the food industry to this day is the authentication of its products. Due to 

their high price compared to other edible oils, especially when they benefit from a certification like the 

Protected Designation of Origin (PDO), Extra Virgin Olive Oils (EVOOs) and Virgin Olive Oils (VOOs) are 

an attractive target for fraudsters. They can indeed be subjected to more or less sophisticated 

fraudulent practices, the most common ones being the falsification or adulteration of VOOs with 

lower-price oils such as seed oils, refined olive oil or olive pomace oil. Many studies have thus been 

conducted in order to fight frauds that disrupt the market and deteriorate the positive image of VOOs.  

First of all, the quality criteria which have been set by the International Olive Council (IOC) allow the 

classification of olive oils in different categories (extra virgin, virgin, lampante virgin) according to their 

free acidity, peroxide value, UV absorbance, alkyl esters contents and sensory properties. In the second 

place, molecular markers including fatty acids (Z and E), sterols, triterpene dialcohols, waxes or 

stigmastadienes are used to detect possible frauds. 

However, the authentication of varietal or geographical origins, as well as the affiliation of a VOO to a 

PDO, often represent a real analytical challenge. Numerous research works, based on various 

physicochemical determinations associated with chemometric data processing, have sought to answer 

this problem. These studies can be classified into two main groups: those analysing the chemical 

composition of the oil, and those relying on spectroscopic techniques like nuclear magnetic resonance, 

infrared, Raman or fluorescence spectroscopies. For instance vibrational spectroscopic analyses, 

namely Near Infrared (NIR), Mid Infrared (MIR) and Raman, coupled with the predictive chemometric 

methods of Partial Least Squares (PLS) regression and PLS discriminant analysis (PLS-DA), have been 

successfully applied to the authentication of French VOOs from different PDOs. 1,2 
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1. BIBLIOMETRICS 
 

A quick search of the terms “olive oil”, “authentication” and “spectroscopy” in Google Scholar, 

restricted to articles published between 1990 and 2016, gives an idea of the vast amount of studies on 

these subjects. Figure 1 also indicates that “olive oil” is almost 3 times more often associated with 

“spectroscopy” than with “authentication”, however “spectroscopy” is present in 94% of the articles 

containing both “olive oil” and “authentication”. This tends to show that olive oil authentication is 

often studied in relation with spectroscopic analyses but that these analytical techniques also have 

other purposes, such as characterisation of oil components or measurement of quality parameters. It 

can also be noted that the number of articles containing “olive oil” and “chromatography” is higher 

than that for “olive oil” and “spectroscopy”. However, this is no longer the case when the term 

“authentication” is added.  

 

A more specific search on Web of Science confirms that the authentication of virgin olive oil using 

vibrational spectroscopy has been a subject of interest since the 1990s, and even more so during the 

past 10 years. This is evidenced by the growing number of publications that are reported in Figure 2. 

The number of studies focused on NIR has been steadily increasing since 2002, while MIR has seen a 

more recent and sharper rise of interest. Raman spectroscopy used to be the most popular in the late 

1990s and early 2000s, but has since then been overtaken by the other two techniques. On average, 

around 20% of the articles included experiments with at least two of the analytical methods of interest. 

 

 

 

 

 

FIGURE 1: NUMBER OF ARTICLES CONTAINING THE WORDS “OLIVE OIL”, “AUTHENTICATION”, “SPECTROSCOPY” OR 

“CHROMATOGRAPHY” AND THEIR COMBINATIONS (GOOGLE SCHOLAR, 20TH MARCH 2017, FIGURE NOT TO SCALE) 
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In the year 2016 alone, six reviews dealing with the applications of spectroscopic and/or chemometric 

methods for the quality control and authentication of VOOs have been published. 3–8 Moreover, a book 

summing up the latest advances in food authenticity has also been edited and contains chapters 

regarding vibrational spectroscopy, chemometrics, the confirmation of geographical origin of food and 

the analysis of adulterated vegetable oils. 9 

The free software Wordle allowed the identification of the most frequently used keywords in the titles 

of the articles from the previous Web of Science search, and the result is presented in Figure 3. The 

terms “olive oil” and “spectroscopy” were removed in order to have a better view of the other words. 

Thus, the importance of Fourier-transform instruments and the predominance of studies using MIR 

over NIR and Raman spectroscopies appear. Other analytical techniques are mentioned, such as UV-

visible, fluorescence or NMR spectroscopies, as well as the possibility to combine several methods. 

The association with chemometrics for multivariate analysis is also highlighted and a few specific 

models are cited, the most prominent one being PLS. The detection and quantification of extra-virgin 

or virgin olive oil adulteration with other vegetable or edible oils seems to be the main application, 

followed by the authentication or determination of geographical and varietal origins. 

 

  

FIGURE 2: EVOLUTION OF THE NUMBER OF PUBLICATIONS FOUND FOR THE QUERY “OLIVE OIL” AND AUTHENTIC* AND 

(NIR OR “NEAR INFRARED”) OR (MIR OR “MID INFRARED”) OR RAMAN (WEB OF SCIENCE, 20TH MARCH 2017) 

FIGURE 3: WORD CLOUD GENERATED BY THE TITLES OF THE ARTICLES FROM WEB OF SCIENCE QUERY (WORDLE, 20TH MARCH 

2017, FONT SIZE REPRESENTATIVE OF FREQUENCY OF APPEARANCE) 
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2. SPECTROSCOPY 
 

Vibrational spectroscopic techniques, such as infrared and Raman spectroscopies, have gained in 

popularity during the past decades, and their applications to food analysis have been extensively 

studied. Compared to chromatographic methods they allow simple, non-destructive, time- and cost-

saving analyses. Moreover, technological advances like the introduction of interferometers, 

attenuated total reflection instruments or detectors with increased sensitivity and resolution made 

them more user-friendly. The spreading use of chemometrics has also significantly improved the ability 

to extract meaningful information from spectral data, and to obtain reliable quantitative results.  

 

 

 

 

 

 

 

 

 

 

 

 

Vibrational spectroscopy relies on changes in the energy levels of the molecules, due to the interaction 

between a sample and an electromagnetic radiation. Each bond between two atoms has a 

characteristic vibration frequency depending on parameters such as the reduced mass of these two 

atoms and bending force constants. The excitation brought by the radiation causes the bonds to 

stretch or bend. In the case of infrared absorption the molecular vibration is related to a change in the 

intrinsic dipole moment, while Raman inelastic scattering depends on a change in the electronic 

polarizability of the molecule. The amount of energy absorbed by the sample also influences the 

vibrations, as summarised in Figure 4. In the MIR region (4000-400 cm-1), the transitions between 

energy levels correspond mainly to fundamental vibrations and a few overtones, whereas in the more 

energetic NIR area (12500-4000 cm-1) lower intensity bands of overtones and combinations of the 

fundamental vibrations can be observed. As a consequence, these three techniques provide 

complementary information about the chemical composition and physical state of a sample. For 

instance, some infrared absorption bands arise from polar groups such as C=O and O-H, while Raman 

spectra show more pronounced scattering bands for nonpolar groups like C=C or C-C. It also worth 

noting that Raman is prone to fluorescence interference, which can be reduced by using a Fourier 

Transform (FT) interferometer and a laser source of lower energy. 10,11 

FIGURE 4: SPECTROSCOPIC TECHNIQUES RELATED TO THE INFRARED REGION OF THE ELECTROMAGNETIC SPECTRUM  
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3. CHEMOMETRICS 
 

Chemometrics is the use of multivariate statistical analyses to extract information from chemical data. 

Since its creation by Svante Wold and Bruce Kowalski in the 1970s 12,13 different methods have been 

developed to serve various purposes, such as data pre-processing, qualitative or quantitative analysis. 

Pre-treatment of raw spectra is often necessary to reduce the effect of interferences and artefacts on 

the subsequent development of a predictive model. Wavelet filtering 14 or Savitzky-Golay (SG) 

smoothing 15 can be used to improve the signal to noise ratio, while detrending or SG 1st and 2nd 

derivatives provide a correction of the baseline shift. Moreover, 2nd derivative can resolve overlapping 

peaks. Other algorithms, like Standard Normal Variate (SNV) 16 and Multiplicative Scatter Correction 

(MSC) 17, are useful when both additive and multiplicative effects caused by light scattering are 

present. Normalisation or scaling can also be applied to ensure that each spectrum has the same 

importance in the model. 

Before the development of analytical models, the spectral data can be explored through Principal 

Component Analysis (PCA) 18,19 which decomposes the initial matrix into sets of scores and loadings 

allowing to reduce its dimensions. When enough variability is taken into account by the PCs, the 

loadings show which variables have more influence on the PCs and a representation of the scores can 

provide insight into the similarities among samples or the presence of outliers. 

The discrimination between oils of different botanical, varietal or geographical origins involves the use 

of qualitative analyses. Unsupervised classification methods, such as Hierarchical Cluster Analysis 

(HCA) 20, separate the samples into different groups without prior knowledge of their category 

membership. On the other hand, supervised methods like classification by Linear Discriminant Analysis 

(LDA) 21 or class-modelling by Soft Independent Modelling of Class Analogy (SIMCA) 22, assign new 

samples to previously defined categories. LDA reduces the space dimensions by selecting directions 

that maximise the separation between classes, whereas SIMCA performs a PCA on each class to 

minimise its internal differences. More recently, artificial intelligence algorithms such as Artificial 

Neural Networks (ANN) 23 have been developed to categorise samples after a phase of training by 

iterative adjustments.  

The development of quantitative models is required to determine the amount of adulterant that may 

have been added to a sample. Multiple Linear Regression (MLR) 24, Partial Least Squares (PLS) 25 or 

Principal Component Regression (PCR) 26 are the most commonly used methods. They are based on 

the construction of a linear relationship between the variations of spectral data and the chemical 

parameter to be explained. However, other methods using non-linear models, such as ANN or Support 

Vector Machines (SVM) 27, also have the ability to perform quantitative analyses. 3,11,28 
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4. NEAR INFRARED SPECTROSCOPY 
 

1. Spectra interpretation  

As can be seen in Figure 5, characteristic NIR absorbance bands arise in several regions of the EVOO 

spectrum. Region A (8700-8000 cm-1) is attributed to the 2nd overtone of C-H stretching vibrations, 

while B (7400-6700 cm-1) results from combinations of C-H stretching and bending, and C (6000-5500 

cm-1) corresponds to the 1st overtone of C-H stretching vibrations. These three regions contain 

information regarding the degree of unsaturation of the fatty acids and triacylglycerols present in a 

sample. The two bands in region D (5300-5100 cm-1) have been attributed to the 2nd overtone of C=O 

stretching vibration from carbonyl functional groups. Finally, region E (5000-4500 cm-1) presents 

combination bands of =C-H and C=C stretching vibrations. 9,11,29,30 

 

2. Identification of Virgin Olive Oils vs other oils 

The first step of authentication is to differentiate olive oil from other oils and fats. This can be achieved 

through the analysis of their major compounds, such as fatty acids and triacylglycerols, usually 

conducted by gas chromatography and high performance liquid chromatography respectively. 

However, differences in the composition of the samples are also reflected in their NIR spectra, as can 

be seen in the examples presented in Table 1. Hourant et al. 31 indeed showed that the absorption 

intensity of the bands around 5814 cm-1 (1720 nm), 4668 cm-1 (2142 nm) and 4595 cm-1 (2176 nm) 

could be related to the degree of total unsaturation in the sample. This allowed the classification of  

eighteen different oils and fats with the modelling of a dendroid structure based on seven linear 

discriminant functions. Yang et al. 32 confirmed that LDA could discriminate pure edible oils and fats 

using FT-NIR spectra, but obtained more satisfying classification rates with Canonical Variate Analysis 

(CVA).  

FIGURE 5: NEAR INFRARED SPECTRUM OF EVOO WITH IDENTIFICATION OF MAIN ABSORBANCE BANDS 
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TABLE 1: EXAMPLES OF NIR SPECTROSCOPY APPLICATIONS TO DIFFERENTIATE OLIVE OILS FROM OTHER OILS 

References Other oils Materials Chemometrics Results 

31 Almond, Brazil nut, coconut, grape 
seed, high oleic sunflower, 

hydrogenated fish, maize, palm, 
peanut, rapeseed, safflower, sesame, 

soya, sunflower, tallow, walnut 

NIR, 1 mm quartz cell, 
range: 9090-4000 cm-1 

Canonical 
discrimination after 
variable selection by 

SLDA 

Combination of 7 
equations gives 90% 

correct 
classification 

32 Butter, coconut, cod liver oil, lard, 
maize, peanut, rapeseed, safflower, 

soya 

FT-NIR, DTGS detector, 
quartz cell, 

range: 8000-2000 cm-1, 
resolution: 16 cm-1 

CVA after 
normalisation and data 

compression by PCA 
 

92.2% correct 
classification 

 

3. Adulteration of Virgin Olive Oils with other oils 

Several articles focusing on the ability of NIR to analyse binary mixtures of VOOs with other kinds of 

oils have been published over the past 20 years (Table 2). Dispersive and FT-NIR have been equally 

used in these studies, and three of them report results obtained with a fibre optic probe although not 

in an on-line setting 33–35. 

Downey et al. 36 developed a SIMCA model that gave 100% of correct classification for VOOs versus 

adulterated samples containing 1 to 5% of sunflower oil. Karunathilaka et al. 37 also applied SIMCA to 

FT-NIR spectra to successfully detect the addition of 10 to 20% of various vegetable oils in EVOOs. 

Mignani et al. 33 obtained spectra through an integrating sphere and fibre optic detector. In this study, 

the application of PCA followed by LDA enabled the discrimination between EVOOs adulterated with 

refined olive oil, deodorised olive oil, olive pomace oil and refined olive pomace oil, with 75% of correct 

classification. 

In addition to the detection of adulteration, most of the articles are interested in the use of regression 

models to quantify the amount of adulterant. For instance, Downey et al. 36, Wesley et al. 38 and Christy 

et al. 39 applied PLS regression after various pre-treatments to predict the amount of sunflower oil 

added to olive oil. They all obtained R2 values superior to 0.9 and Standard Errors of Prediction (SEP) 

under 2%. The analysis of VOOs adulterated with maize, soya, rapeseed, safflower, peanut, walnut, 

hazelnut or palm oils yielded similar results according to Azizian et al. 34, Wesley et al. 38, Christy et al. 
39 and Mendes et al. 40. The latter constructed different models to quantify the addition of high linoleic 

oils, high oleic oils or palm olein, based on the absorption ratio at 5280 and 5180 cm-1, attributed 

respectively to volatile and non-volatile compounds. Mignani et al. 33, Azizian et al. 34, Yang and 

Irudayraj 35, Wesley et al. 38 and Wojcicki et al. 41 also tried to quantify the adulteration of EVOOs by 

refined olive oil or olive pomace oil. These studies tend to show higher errors of prediction, ranging 

from 1.78 to 13%, which may be due to the higher similarity between the composition of pure and 

adulterated samples. Finally, Ozedmir and Ozturk 42 developed a Genetic Inverse Least Square model, 

capable of predicting the concentration of tertiary mixtures with SEP of 1.42%, 5.42% and 6.38% for 

the amount of VOO, sunflower oil and maize oil respectively. 
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TABLE 2: EXAMPLES OF NIR SPECTROSCOPY APPLICATIONS TO ANALYSE VOOS ADULTERATED WITH OTHER OILS 

References Adulterants Materials Chemometrics Results 

33 Olive pomace, refined 
olive pomace, refined 

olive, deodorised olive oils 
(5 to 95%) 

NIR, fibre optic source and 
detector, integrating 

sphere, 
range: 25000-5880 cm-1 

LDA and PLS 
regression after SG 

smoothing 
 

LDA: 75% correct 
classification 

PLS: R2 = 0.932 to 
0.997, 

RMSEP = 2% to 13% 
34 Refined olive oil (3 to 60%) 

and soya, sunflower, 
maize, rapeseed, hazelnut, 

safflower, peanut, palm 
oils (3 to 30%) 

FT-NIR, fibre optic probe, 
InGaAs detector, 

range: 8000-4500 cm-1, 
resolution: 8 cm-1 

PLS regression on the 
absorption ratio 
5280/5180 cm-1 

R2 = 97.6 to 99.9, 
RMSECV = 3.7% to 

0.9% 

35 Olive pomace oil 
(5 to 100%) 

NIR, fibre optic probe, 
InGaAs DAD, 

range: 25000-5880 cm-1 

PLS regression after 
MSC 

R2 = 0.990, 
SECV = 3.48%, 
SEP = 3.27% 

36 Sunflower oil 
(1 and 5%) 

NIR, 0.1 mm camlock cell, 
range: 25000-4000 cm-1 

SIMCA and PLS 
regression after SG 

1st derivative 

SIMCA: 100% correct 
classification 

PLS: R2 = 0.93, 
RMSEP = 0.8%, 

LOD = 1.6% 
37 Sunflower, soya, rapeseed, 

maize, hazelnut, safflower, 
peanut oils, palm olein  

(10 and 20%) 

FT-NIR, 8 mm glass vials, 
range: 12500-4000 cm-1, 

resolution: 8 cm-1 

SIMCA after SG 
smoothing, SG 1st 

derivative and SNV 

100% correct 
classification 

38 Refined olive oil, maize, 
sunflower oils 

(5 to 30%) 

NIR, 1 mm quartz cell, 
range: 12500-4000 cm-1 

PLS regression after 
SG smoothing and 1st 

derivative 

R2 = 0.97, 
SECV = 1.31%, 
SEP = 1.78% 

39 Hazelnut, walnut, maize, 
soya, sunflower oils 

(0 to 100%) 

FT-NIR, Ge diode detector, 
4 mm quartz cell, 

range: 12000-4000 cm-1, 
resolution: 4 cm-1 

PLS regression after 
MSC and SG 
smoothing 

R2 = 0.999 
SEP = 0.56% to 1.32% 

40 Soya oil 
(1.5 to 100%) 

FT-NIR, Te-InGaAs 
detector, 8 mm glass vials, 
range: 12000-4000 cm-1, 

resolution: 4 cm-1 

PLS regression R2 = 0.998, 
RMSECV = 1.71, 
RMSEP = 1.76 

41 Mildly deodorised and 
refined olive oils 

(2.5 to 75%) 

NIR, 2 mm quartz cell, 
range: 6150-4500 cm-1 

PCR after MSC and 1st 
derivative 

R2 = 0.98, 
RMSEP = 2.7% 

42 Sunflower and maize oils 
(4 to 96%) 

FT-NIR, PbSe detector, 
2 mm quartz cell, 

range: 10000-4000 cm-1 

Genetic Inverse Least 
Squares 

SEP = 1.42% to 6.38% 
for tertiary mixtures 
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4. Authentication of geographical or varietal origins 

The most recent and prominent application of NIR spectroscopy has been the classification of VOOs 

according to their geographical or varietal origins. Table 3 summarises some of the articles published 

on this subject, with a majority preferring FT-NIR to dispersive instruments.  

The potential of PLS-DA modelling applied to NIR spectra to discriminate VOOs from different cultivars 

or regions of origin has been highlighted by several authors, amongst which Dupuy et al. 1, Sinelli et al. 
43, Woodcock et al. 44, Galtier et al. 45 and Bevilacqua et al. 46. Indeed, all of them obtained 85 to 100% 

of correct classification rates. Other discriminant analysis algorithms, like FDA or LDA, have also been 

rather successfully tested by Downey et al. 47, Casale et al. 48 and Sinelli et al. 49. Class modelling 

techniques such as SIMCA seem to give less satisfying results overall, although Casale et al. 50, Oliveri 

et al. 51 and Laroussi-Mezghani et al. 52 managed to correctly predict the origin of 84.5 to 98.5% of their 

samples. Oliveri et al. 51, Casale et al. 53 and Forina et al.54 also used POTFUN or UNEQ class models 

giving 83 to 100% of correct classification. In another study, Oliveri et al. 55 developed a novel 

Multivariate Range Modelling technique yielding a classification rate of 94.9%. Devos et al. 56 achieved 

a classification rate of 86.3% with a SVM supervised learning model coupled with genetic algorithm for 

pre-treatment selection. 
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TABLE 3: EXAMPLES OF NIR SPECTROSCOPY APPLICATIONS TO DETERMINE THE ORIGIN OF VOOS 

References Origins Materials Chemometrics Results 

1 6 French PDOs, 
5 harvest years 

FT-NIR, 2 mm quartz cell, 
range: 10000-4500 cm-1, 

resolution: 4 cm-1 

PLS-DA 85% correct classification for 
PDOs 

43 3 Italian regions FT-NIR, 8 mm vials, 
range: 12500-4500 cm-1, 

resolution: 8 cm-1 
 

PLS-DA after SG 2nd 
derivative 

 

93% correct classification 
with commercial oils 

44 Liguria and other 
European regions, 

3 harvest years 

NIR, 0.1 mm camlock cell, 
range: 9090-4000 cm-1 

PLS-DA after SG 1st 
derivative 

92.8% correct classification 
for Ligurian oils, 81.5% for 

other oils 
45 5 French PDOs, 

4 harvest years 
FT-NIR, 2 mm quartz cell, 
range: 10000-4500 cm-1, 

resolution: 4 cm-1 

PLS-DA 100% correct classification for 
PDOs 

46 PDO Sabina and 
other 

Mediterranean 
regions, 

2 harvest years 

FT-NIR, integrating sphere, 
19 mm glass cell, 

range: 10000-4000 cm-1, 
resolution: 4 cm-1 

PLS-DA after MSC, 
detrend, or SG 1st 

derivative 

100% correct classification for 
Sabina and 95.5% for other 

origins 

47 3 Greek regions NIR, 0.1 mm camlock cell, 
range: 25000-4000 cm-1 

FDA 94% correct classification for 
geographic origin 

48 3 cultivars from 3 
Italian regions 

FT-NIR, 8 mm vials, 
range: 12500-4500 cm-1, 

resolution: 8 cm-1 

LDA after SNV, SG 1st 
derivative and variable 

selection (SELECT) 

82.9% correct classification 
for cultivars 

49 3 cultivars from 3 
Italian regions 

FT-NIR, 8 mm vials, 
range: 12500-4500 cm-1, 

resolution: 8 cm-1 

LDA after SNV, SG 1st 
derivative and variable 

selection (SELECT) 

83% correct classification 
 

50 Liguria and other 
Italian regions 

FT-NIR, 5 mm quartz cell, 
range: 10000-4000 cm-1, 

resolution: 8 cm-1 

SIMCA after SG 1st 
derivative and variable 

selection (SELECT) 

92.4% correct classification 
for Ligurian oils 

51 Liguria and other 
European regions, 

3 harvest years 

NIR, 0.1 mm camlock cell, 
range: 9090-4000 cm-1 

SIMCA or POTFUN after 
SG 1st derivative 

84.5% correct classification 
with SIMCA, 83% and higher 

confidence level with 
POTFUN 

52 6 Tunisian cultivars 
and other 

countries, 2 harvest 
years 

FT-NIR, 2 mm quartz cell, 
range: 10000-4500 cm-1, 

resolution: 4cm-1 

SIMCA after SNV and 
SG 1st derivative 

89.55 to 98.50% correct 
classification for cultivars 

53 PDO Chianti 
Classico and other 

Italian regions 

FT-NIR, 5 mm quartz cell, 
range: 10000-4000 cm-1, 

resolution: 4 cm-1 

UNEQ after SNV, SG 1st 
derivative and variable 

selection (SELECT) 

97.5% correct classification 

54 PDO Chianti 
Classico and other 

Italian regions 

FT-NIR, 5 mm quartz cell, 
range: 10000-4000 cm-1, 

resolution: 4 cm-1 

QDA-UNEQ after SG 1st 
derivative and variable 
selection (STEP-LDA) 

100% correct classification 

55 PDO Chianti 
Classico and other 

Italian regions 

FT-NIR, 5 mm quartz cell, 
range: 10000-4000 cm-1, 

resolution: 4 cm-1 

MRM after SNV 94.9% correct classification 

56 Liguria and other 
Italian regions, 
3 harvest years 

NIR, 0.1 mm camlock cell, 
range: 9090-4000 cm-1 

SVM after detrend 86.3% correct classification 
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5. MID INFRARED SPECTROSCOPY 
 

1. Spectra interpretation   

Figure 6 shows a characteristic MIR spectrum of EVOO, presenting sharper absorption bands than the 

NIR spectrum. Band A, around 3005 cm-1, is associated to the =C-H stretching vibrations of cis (Z) 

double bonds. Bands B and C (2920 and 2850 cm-1) arise respectively from C-H aliphatic asymmetric 

and symmetric stretching vibrations. D (1740 cm-1) corresponds to the C=O stretching of carbonyl 

groups, and E (1650 cm-1) to C=C stretching vibrations. The fingerprinting region, under 1500 cm-1, 

presents overlapping peaks that are less easily attributed. However, region F between 1500 and 1300 

cm-1 can be related to C-H aliphatic bending vibrations and region G (1250-1000 cm-1) to C-C and C-O 

bending vibrations. Finally, band H (700 cm-1) is attributed to the C-H bending of CH2. 9,11,29,30 

 

2. Identification of Virgin Olive Oils vs other oils 

The discrimination between VOOs and other fats and oils has been more extensively studied using MIR 

than NIR spectroscopy, and always with FT instruments (Table 4).  

Several authors, such as Lai et al.57, Marigheto et al. 58, Tay et al. 59, Obeidat et al. 60, Lerma-Garcia et 

al. 61, de la Mata et al. 62, reported a classification rate of 100% with the use of various discriminant 

analysis techniques including PLS-DA and LDA. Javidnia et al. 63 reached the same result by using 

interval extended canonical variate analysis (iECVA). Yang et al. 32 obtained better results with CVA 

applied to MIR spectra of olive and sunflower oils compared to NIR, since 98.9% of the samples were 

correctly classified versus 92.2% for NIR spectra. In two different studies, Baeten identified refined 

olive oil and hazelnut oil using either ANN 64 or stepwise linear discriminant analysis (SLDA)65. 

FIGURE 6: MID INFRARED SPECTRUM OF EVOO WITH IDENTIFICATION OF MAIN ABSORBANCE BANDS 
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TABLE 4: EXAMPLES OF MIR SPECTROSCOPY APPLICATIONS TO DIFFERENTIATE VOOS FROM OTHER OILS 

Reference Other oils Materials Chemometrics Results 

32 Butter, coconut, cod liver 
oil, lard, maize, peanut, 

rapeseed, safflower, soya 

FT-MIR, DTGS detector, 
ZnSe ATR crystal, 

range: 4000-400 cm-1, 
resolution: 16 cm-1 

CVA on 1800-1400 cm-1 
region, after normalisation 
and data compression by 

PCA or PLS 

98.9% correct 
classification 

57 Grapeseed, groundnut, 
maize, rapeseed, refined 

olive, walnut 

FT-MIR, DTGS detector, 
ZnSe ATR crystal, 

range: 4800-800 cm-1, 
resolution: 4 cm-1 

DA on PC scores 
 

100% correct 
classification for extra 
virgin vs refined olive 

oil 
58 Coconut, grapeseed, 

hazelnut, maize, mustard, 
palm, peanut, rapeseed, 
refined olive, safflower, 

sesame, soya, sunflower, 
sweet almond, walnut 

FT-MIR, DTGS detector, 
ZnSe ATR crystal, 

range: 4000-800 cm-1, 
resolution: 4 cm-1 

LDA after normalisation, 
baseline correction and 

data compression by PLS 

100% correct 
classification 

59 Maize, peanut, rapeseed, 
sesame, soya, sunflower, 

walnut 

FT-MIR, MCTA detector, 
ZnSe ATR crystal, 

range: 4000-700 cm-1, 
resolution: 2 cm-1, 

128 averaged scans 

DA 100% correct 
classification 

60 Cottonseed, maize, 
sunflower 

FT-MIR, DTGS detector, 
range: 4000-400 cm-1 

PLS-DA after mean 
centring and normalisation 

 

100% correct 
classification 

61 Hazelnut, maize, soya, 
sunflower 

FT-MIR, KBr disks, 
range: 4000-500 cm-1, 

resolution: 4 cm-1 

LDA after normalisation 
and variable selection 

100% correct 
classification 

 
62 Flaxseed, grapeseed, 

maize, peanut, rapeseed, 
safflower, sesame, soya, 

sunflower 

FT-MIR, MCTA detector, 
diamond ATR crystal, 
range: 3800-600 cm-1, 

resolution: 2 cm-1 

PLS-DA after 
normalisation, detrend 

and SG 1st derivative 

100% correct 
classification 

 

63 Butter, maize, rapeseed, 
soya, sunflower 

FT-MIR, 
range: 4000-450 cm-1, 
transmittance mode 

iECVA after MSC 100% correct 
classification 

64 Hazelnut FT-MIR, ZnSe ATR crystal, 
range: 4000-400 cm-1, 

resolution: 4 cm-1 

CP-ANN Good classification for 
olive and hazelnut oils 

65 Hazelnut FT-MIR, ZnSe ATR crystal, 
range: 4000-900 cm-1, 

resolution: 4 cm-1 

SLDA after SG smoothing, 
SG 1st derivative and 
selection of variables 

related to unsaponifiable 
matter 

95.5% correct 
classification for olive 

vs hazelnut oil 

 

3. Adulteration of Virgin Olive Oils with other oils 

Numerous articles, gathered in Table 5, focus on the qualitative or quantitative analysis of mixtures of 

olive oil and other oils based on MIR data. Once again, only FT-MIR instruments were used. 

Marigheto et al. 58 applied LDA after data compression by PLS and obtained 99% correct classification 

for olive oil adulterated with as little as 5% of various vegetable oils. Similarly, Oussama et al. 66 used 

PLS-DA after variable selection to correctly classify 100% of the samples containing 1 to 24% of soya or 

sunflower oils, and de la Mata et al. 62 to discriminate between VOOs adulterated with more and less 
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than 50% of other oils. Discriminant analyses also allowed Tay et al. 59 to successfully detect the 

addition of 2 to 10% of sunflower oil, while Rohman and Che Man reached 100% correct classification 

for samples adulterated with palm oil 67, lard 68, rice bran oil 69, maize and sunflower oils 70 and 97.4% 

with rapeseed oil 71. Other techniques seem to give satisfying results, for instance Sun et al. 72 reached 

96.6% correct classification with a Nearest Centroid algorithm after dimension reduction. Mixtures of 

hazelnut oil in VOO appear to be more difficult to detect. Indeed, Ozen and Mauer 73 achieved a correct 

classification rate of 100% with DA but only for samples containing at least 25% of hazelnut oil. Baeten 

et al. 65 reached a LOD of 8% for Turkish hazelnut oil in refined olive oil by applying SLDA on variables 

characterising the unsaponifiable matter. Georgouli et al. 74 obtained a correct classification rate of 

75% for samples adulterated with as little as 1% of hazelnut oil, with the use of k-NN after Continuous 

Locality Preserving Projections. The application of CP-ANN by Baeten and Novi 64 only resulted in a 

partial separation between VOOs with and without the addition of 2 to 20% of hazelnut oil. As for the 

quantification of adulterants, most authors found that PLS regression after various pre-treatments 

gave satisfactory results. For instance, Wojcicki et al. 41, Tay et al. 59, Oussama et al. 66, Sun et al. 72, 

Rohman and Che Man 75, Lai et al. 76, Küpper et al. 77, Gurdeniz et al. 78 and Nigri and Oumeddour 79 all 

obtained R2 superior to 0.97 and RMSECV or RMSEP below 2.5% when predicting the concentration of 

diverse vegetable oils mixed with olive oil. However, Yang and Irudayaraj 35, Mendes et al. 40 and 

Maggio et al. 80 had higher errors of prediction for the analysis of added olive pomace oil, soya oi and 

hazelnut oil respectively. PCR was usually shown to be less efficient than PLS regression, except for 

Jovic et al. 81 who managed to quantify the amounts of olive oil, sunflower, high oleic sunflower and 

rapeseed oils in binary and ternary mixtures with R2 over 0.99 and RMSEP under 2.3%. Another 

method, based on linear regression between the amount of adulterant and a ratio of peak heights, was 

applied by Vlachos et al. 82 and Poiana et al. 83 using the absorbance at 3006 and 2925 cm-1 which can 

be related to the degree of unsaturation. Allam and Hamed 84 employed a similar method, but focused 

on the peaks at 1118 and 1097 cm-1 that were assigned to C-O stretching. 

TABLE 5: EXAMPLES OF MIR SPECTROSCOPY APPLICATIONS TO ANALYSE VOOS ADULTERATED WITH OTHER OILS 

References Adulterants Materials Chemometrics Results 

40 Soya oil 
(1.5 to 100%) 

FT-MIR,  RT-DLaTGS detector, 
range: 4000-350 cm-1, 

resolution: 4 cm-1 

PLS regression R2 = 0.986, 
RMSECV = 14.71, 

RMSEP = 4.89 
35 Olive pomace oil 

(0 to 100% in 5% 
increments) 

FT-MIR,  DTGS detector, ZnSe 
ATR crystal, 

range: 3200-600 cm-1, 
resolution: 4 cm-1 

PLS regression after 
MSC 

R2 = 0.991, 
SECV = 4.74%, 
SEP = 3.28% 

 
41 Mild deodorised 

and refined olive 
oils (2.5 to 75%) 

FT-MIR, ATR crystal, 
range: 4000-650 cm-1, 

resolution 4 cm-1 

PLS after MSC and 1st 
derivative 

R2 = 0.99, 
RMSEP = 2.1% 

58 Refined olive oil, 
sunflower, 

rapeseed, peanut, 
soya, maize oils 

(5 to 45%) 

FT-MIR, DTGS detector, ZnSe ATR 
crystal, 

range: 4000-800 cm-1, 
resolution: 4 cm-1 

LDA after 
normalisation, 

baseline correction 
and data compression 

PLS 

99% correct 
classification 

LOD = 5% 

59 Sunflower oil 
(2 to 10%) 

FT-MIR, MCTA detector, ZnSe 
ATR crystal, 

range: 4000-700 cm-1, 
resolution: 2 cm-1 

DA, PLS regression DA: 100% correct 
classification 

PLS: R2 = 0.974, 
RMSECV < 1% 

60 Sunflower, maize 
oils (25 to 75%) 

FT-MIR, DTGS detector, 
range: 4000-400 cm-1 

PLS-DA after mean 
centring and 

normalisation 

Good separation 
between pure and 

adulterated samples 
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References Adulterants Materials Chemometrics Results 

61 Sunflower, maize, 
soya, hazelnut oils 

(5 to 100%) 

FT-MIR, KBr disks, 
range: 4000-500 cm-1, 

resolution: 4 cm-1 

MLR after 
normalisation 

R2 = 0.91 to 0.99%, 
SEP = 1.5 to 2%, 

LOD = 1.3 to 4.8% 
62 Rapeseed, maize, 

flaxseed, grape 
seed, peanut, 

safflower, sesame, 
soya, sunflower 
oils (10 to 90%) 

FT-MIR, MCTA detector, 
diamond ATR crystal, 
range: 3800-600 cm-1, 

resolution: 2 cm-1 

PLS-DA and PLS 
regression after 

normalisation, detrend 
and SG 1st derivative 

PLS-DA: 95% correct 
classification for 
samples >50% 

adulterant 
PLS: R2 = 0.79, 

RMSECV = 8.28 
64 Hazelnut oil 

(2 to 20%) 
FT-MIR,  ZnSe ATR crystal, 

range: 4000-400 cm-1, 
resolution: 4 cm-1 

CP-ANN partial separation 
between mixtures 

and olive oil 
65 Hazelnut oil 

(2 to 20%) 
FT-MIR,  ZnSe ATR crystal, 

range: 4000-900 cm-1, 
resolution: 4 cm-1 

SLDA after SG 
smoothing, SG 1st 

derivative and 
selection of variables 

related to 
unsaponifiable matter 

100% correct 
classification, 

LOD = 8% of Turkish 
hazelnut oil in olive 

oil 

66 Soya, sunflower 
oils 

(1 to 24%) 

FT-MIR,  DTGS detector,  
ATR crystal, 

range: 4000-600 cm-1, 
resolution: 4 cm-1 

PLS-DA and PLS 
regression after 

variable selection (VIP) 

PLS-DA: 100% correct 
classification 

PLSR: R2 = 0.996, 
RMSECV = 0.63, 
RMSEP = 0.41, 

LOD = 1.2% 
67 Palm oil 

(1 to 50%) 
FT-MIR, DTGS detector,  

ATR crystal, 
range: 4000-650 cm-1, 

resolution: 4 cm-1 

LDA and PLS regression 
after SG 1st derivative 

LDA: 100% correct 
classification 

PLSR: R2 = 0.998, 
RMSECV = 0.285, 
RMSEP = 0.616 

68 Lard 
(1 to 50%) 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-650 cm-1, 
resolution: 4 cm-1 

DA and PLS regression 
after SG 1st derivative 

DA: 100% correct 
classification 

PLSR: R2 = 0.987, 
RMSEC = 0.070, 
RMSEP = 1.99 

69 Rice bran oil 
(1 to 50%) 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-650 cm-1, 
resolution: 4 cm-1 

LDA and PLS regression 
after normalisation 

LDA : 100% correct 
classification 

PLSR: R2 = 0.981, 
RMSECV = 1.34%, 
RMSEP = 2.15% 

70 Maize and 
sunflower oils 

(1 to 50%) 

FT-MIR, DTGS detector, 
 ZnSe ATR crystal, 

range: 4000-650 cm-1, 
resolution: 4 cm-1 

DA and PLS regression 
after SG 1st derivative 

 

DA: 100% correct 
classification 

PLSR: R2 = 0.987 to 
0.997, 

RMSEC = 0.034 to 
0.404, 

RMSEP = 1.13 to 2.02 
71 Rapeseed oil 

(1 to 50%) 
FT-MIR, DTGS detector,  

ZnSe ATR crystal, 
range: 4000-650 cm-1, 

resolution: 4 cm-1 

DA and PLS regression 
after SG 1st derivative 

 

DA: 97.4% correct 
classification 

PLSR: R2 = 0.997, 
RMSEC = 0.108, 
RMSEP = 1.52 

72 Camelia, soya, 
sunflower, maize 

oils (1 to 90%) 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-400 cm-1, 
resolution: 2 cm-1 

Nearest centroid 
classification after SLLE 
dimension reduction, 
PLS regression after 

NCC: 96.6% correct 
classification 

PLSR : R2 = 0.971 to 
0.999, 
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References Adulterants Materials Chemometrics Results 

mean centring, 
normalisation and SG 

1st derivative 

RMSECV = 0.095 to 
0.017 

73 Hazelnut oil 
(5 to 50%) 

FT-MIR, MCTA detector,  
ZnSe ATR crystal, 

range: 3200-800 cm-1, 
resolution: 4 cm-1 

DA 100% correct 
classification for 

hazelnut adulteration 
> 25% 

74 Refined and crude 
hazelnut oils 

(1 to 90%) 

FT-MIR, DTGS detector,  
diamond ATR crystal, 
range: 4000-550 cm-1, 

resolution: 4 cm-1 

kNN after SNV, SG 
smoothing and 

Continuous Locality 
Preserving Projections 

75% correct 
classification 

75 Virgin coconut oil 
(1 to 50%) 

FT-MIR, DTGS detector,  
ATR crystal, 

range: 4000-650 cm-1, 
resolution: 4 cm-1 

PLS regression R2 = 0.997,  
RMSEC = 0.756, 
RMSEP = 0.823 

76 Refined olive oil, 
walnut oil 
(0 to 22%) 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4800-800 cm-1, 
resolution: 4 cm-1 

PLS regression after 
mean centring and 

variance scaling 
 

SEP = 0.68 to 0.92 

77 Sunflower oil 
(2 to 10%) 

FT-MIR, silver halide probe, 
range: 3000-600 cm-1, 

resolution: 4 cm-1 

PLS regression after 
variable selection 

SEP = 1.2% 

78 Rapeseed, cotton, 
maize, sunflower 

oils 
(2 to 20%) 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-650 cm-1, 
resolution: 2 cm-1 

PLS regression after 
mean centring and 

wavelet analysis 
 

R2 = 0.93 to 0.98, 
SEP = 1.04 to 1.4 

LOD = 5% 

79 Olive pomace oil FT-MIR, KBr disk, 
range: 4000-450 cm-1, 

resolution: 4 cm-1 

PLS regression R2 = 0.98 

80 Olive pomace, 
oleic and linoleic 

sunflower, 
rapeseed, hazelnut 

oils 
(5 to 40%) 

FT-MIR,  ZnSe ATR crystal, 
range: 4000-700 cm-1, 

resolution: 4 cm-1 

PLS regression after 
mean centring and SG 

1st derivative 
 

R2 = 0.935 to 0.999, 
SEP = 1.13 to 20.8% 

 

81 Sunflower, high 
oleic sunflower, 

rapeseed oils 
(10 to 90%) 

FT-MIR, diamond ATR crystal, 
range: 4000-600 cm-1, 

resolution: 2 cm-1 

QDA and PCR after 
mean-centring 

QDA: 89% correct 
classification for 

binary and ternary 
mixtures 

PCR: R2 = 0.992 to 
0.998, 

RMSEP = 2.27% to 
1.22% 

82 Olive pomace, 
sunflower, soya, 

sesame, maize oils 
(2 to 90%) 

FT-MIR, DTGS detector,  
KBr disks, 

range: 4000-400 cm-1, 
resolution: 4 cm-1 

linear regression on 
the ratio of peak 

height 3006/2925 cm-1 

R2 = 0.991 to 0.996 
LOD = 6 to 9% 

83 Refined soya oil 
(10 to 90%) 

FT-MIR, ATR crystal, 
range: 4000-400 cm-1, 

resolution: 4 cm-1 

linear regression on 
the ratio of peak 

height 3006/2925 cm-1 

R2 = 0.998 
LOD = 6% 

84 Refined sunflower, 
soya, maize oils 

(25 to 100%) 

FT-MIR, DTGS detector, KBr 
disks, 

range: 4000-400 cm-1, 
resolution: 4 cm-1 

linear regression on 
the ratio of peak 

height 1118/1097 cm-1 

R2 = 0.963 to 0.985 
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4. Authentication of geographical or varietal origins 

Similarly to NIR, the ability of FT-MIR spectroscopy to differentiate VOOs from various origins has been 

the subject of numerous research works, as can be seen in Table 6. 

EVOOs from three different Italian regions were correctly classified by Sinelli et al. 43 using PLS-DA, 

while Galtier et al. 85 discriminated virgin olive oils from France and other countries with the same 

technique. Moreover, PLS-DA allowed Galtier et al. 85 and Dupuy et al. 1 to reach a correct classification 

of 96% and 98% respectively between VOOs from the six French PDOs, with samples collected over 

several harvest years. Bevilacqua et al. 46 also correctly identified 92.3% of the samples from PDO 

Sabina versus other Mediterranean regions by applying PLS-DA to MIR data, even though NIR data 

provided better results. De Luca et al. 86 built a model based on PLS-DA after cluster analysis and 

variable selection by Martens test to separate VOOs from 4 Moroccan regions, and obtained 

satisfactory results with R2 over 0.986 and RMSEP under 0.049. LDA has also been used by several 

authors. For instance, Tapp  et al. 87 applied it after variable selection by genetic algorithm (GA), 

resulting in a correct classification rate of 100% for the country of origin of VOO samples. Casale et al; 
48 and Sinelli et al. 49 both obtained a correct classification of 86.6% between three Italian cultivars with 

LDA after variable selection, and Abdallah et al. 88 correctly classified 100% of the samples from seven 

Tunisian cultivars. Additionally, in this last study the concentrations of binary mixtures of cultivars were 

predicted by MLR, giving R2 over 0.956 and SEP under 3.88%. Although supposedly less efficient than 

discriminant analyses, SIMCA was applied by Gurdeniz in several studies 89–91 and allowed the 

discrimination of Turkish olive oils according to their region of origin, harvest year and cultivar. PLS 

regression was also used to predict the concentration of cultivars in binary mixtures with R2 between 

0.84 and 0.91 and RMSEP between 3.14 and 20.9%. In another study, Casale et al. 53 developed a UNEQ 

model and achieved a correct classification of 92.5% between olive oils from PDO Chianti Classico and 

other Italian regions. This was however a less satisfactory result than that obtained with NIR data. 

Finally, SVM analyses were employed by Devos et al. 56 and Caetano et al. 92, resulting in mixed 

outcomes. 

TABLE 6: EXAMPLES OF MIR SPECTROSCOPY APPLICATIONS TO DETERMINE THE ORIGIN OF VOOS 

References Origins Materials Chemometrics Results 

1 6 French PDOs, 
5 harvest years 

FT-MIR, DTGS detector, 
diamond ATR crystal, 
range: 4000-600 cm-1, 

resolution: 4 cm-1 

PLS-DA after mean 
centring and 

normalisation 

98% correct classification for PDO 

43 3 Italian regions FT-MIR, DTGS detector,  
Ge ATR crystal, 

range: 4000-700 cm-1, 
resolution: 4 cm-1 

PLS-DA after SG 2nd 
derivative 

 

100% correct classification 

46 PDO Sabina and 
other 

Mediterranean 
regions, 

2 harvest years 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-630 cm-1, 
resolution: 2 cm-1 

PLS-DA after MSC 
and detrend 

92.3% correct classification for 
Sabina, 95.5% for other origins 

 

48 3 cultivars from 
3 Italian regions 

FT-MIR, DTGS detector,  
Ge ATR crystal, 

range: 4000-700 cm-1, 
resolution: 4 cm-1 

LDA after SNV, SG 1st 
derivative and 

variable selection 
(SELECT) 

86.6% correct classification for 
cultivars 

49 3 cultivars from 
3 Italian regions 

FT-MIR, DTGS detector,  
Ge ATR crystal, 

range: 4000-700 cm-1, 
resolution: 4 cm-1 

LDA after SNV, SG 1st 
derivative and 

variable selection 
(SELECT) 

86.6% correct classification 
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References Origins Materials Chemometrics Results 

53 (PDO Chianti 
Classico and 
other Italian 

regions 

FT-MIR, DTGS detector,  
Ge ATR crystal, 

range: 4000-700 cm-1, 
resolution: 4 cm-1 

UNEQ after SNV, SG 
1st derivative and 
variable selection 

(SELECT) 

92.5% correct classification 

56 (Liguria and 
other Italian 

regions, 
3 harvest years 

FT-MIR, Ge ATR crystal, 
range: 4000-600 cm-1, 

resolution: 4 cm-1 

SVM after SG 
smoothing, SG 1st 

derivative and 
normalisation 

82.2% correct classification 

85 (6 French PDOs 
and other 
countries, 

4 harvest years 

FT-MIR, DTGS detector, 
diamond ATR crystal, 
range: 4000-600 cm-1, 

resolution: 4 cm-1 

PLS-DA after MSC 100% correct classification for France 
vs other countries, 

96% correct classification for PDOs 

86 4 Moroccan 
regions 

FT-MIR, DTGS detector, 
range : 4000-600 cm-1, 

resolution: 4 cm-1 

PLS-DA after variable 
selection by Martens 

test 

R2 = 0.986 to 0.993 
RMSEP = 3.55 to 4.90% 

87 Spain, Italy, 
Greece, 
Portugal 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-800 cm-1, 
resolution: 4 cm-1 

LDA after variable 
selection by genetic 

algorithm 

100% correct classification 

88 7 Tunisian 
cultivars, 

2 harvest years 
/ binary 
mixtures 

FT-MIR,  ATR crystal, 
range: 4000-600 cm-1, 

resolution: 4 cm-1 

LDA and MLR (binary 
mixtures) after 
normalisation 

LDA: 100% correct classification for 
cultivars 

MLR: R2 = 0.956 to 0.998, 
RMSEC = 2.40 to 5.90,  

SEP = 1.09 to 3.88% 
89 3 Turkish 

cultivars / 
binary mixtures 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-650 cm-1, 
resolution: 2 cm-1 

PLS regression R2 = 0.84 to 0.91, RMSE = 3.14 to 
2.09% 

90 5 cultivars from 
2 Turkish 
regions, 2 

harvest years 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-650 cm-1, 
resolution: 2 cm-1 

Coomans plot on PCA 
after wavelet 
compression 

R2 = 0.759 to 0.953 for geographical 
origin, effect of harvest year and 

cultivar 

91 Turkey, 2 
harvest years 

FT-MIR, DTGS detector,  
ZnSe ATR crystal, 

range: 4000-650 cm-1, 
resolution: 2 cm-1 

SIMCA after 
Orthogonal Signal 

Correction and 
wavelet analysis 

discrimination for area of origin and 
harvest year 

92 Italy, Greece, 
Spain, France, 

Turkey, Cyprus, 
2 harvest years 

FT-MIR, Ge ATR crystal, 
range: 4000-600 cm-1, 

resolution: 4 cm-1 

SVM after SG 1st 
derivative 

 

88.7 to 94.2% sensitivity and 50 to 
76.9% selectivity for Italian vs other 
countries / 58.5 to 65.2% sensitivity 

and 91.4 to 94.8% selectivity for 
Ligurian vs other regions 
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6. RAMAN SPECTROSCOPY 
 

1. Spectra interpretation  

The Raman spectrum of EVOO presented in Figure 7 gives complementary information compared to 

the MIR spectrum. Peak A (1750 cm-1) results from C=O stretching vibrations, and peak B (1660 cm-1) 

is related to cis C=C stretching. They correspond to the peaks D and E of the MIR spectrum, although 

their relative intensities are reversed. The two peaks labelled C (1450-1300 cm-1) are associated with 

C-H aliphatic bending vibrations, thus matching the region F of the MIR spectrum. Peak D, at 1270 cm-

1, is attributed to =C-H bending vibrations of cis double bonds and is not identified on the MIR 

spectrum. Region E (1150-800 cm-1) is also characteristic of the Raman spectrum and related to C-C 

stretching vibrations. 9,11,29,30 

2. Identification of Virgin Olive Oils vs other oils  

Although it is less frequently used than NIR or MIR, several authors have studied the potential of 

Raman spectroscopy to authenticate olive oils (Table 7). In this case, as for MIR, only FT-Raman 

instruments were used. 

Baeten et al. 93,94 demonstrated the ability of Raman spectra to discriminate between various oils and 

fats, including VOO. SLDA indeed allowed to classify the samples depending on their saturated, mono-

unsaturated and poly-unsaturated fatty acids content. In another study 65, SLDA on selected variables 

related to unsaponifiable matter gave a correct classification of 95% between refined olive oil and 

hazelnut oil, which is a similar result to that obtained with MIR data. Marigheto et al. 58 reached a 

correct classification rate of 93% for EVOO versus other vegetable oils with LDA after data compression 

by PCA, although the same method applied to MIR spectra correctly identified 100% of the samples. 

Similar results were obtained by Yang et al. 32 using CVA after Raman data treatment by PLS, which 

gave 94.4% correct classification.  

FIGURE 7: RAMAN SPECTRUM OF EVOO WITH IDENTIFICATION OF MAIN ABSORBANCE BANDS 



22 |  

 

TABLE 7: EXAMPLES OF RAMAN SPECTROSCOPY APPLICATIONS TO DIFFERENTIATE VOOS FROM OTHER OILS 

References Other oils Materials Chemometrics Results 

32 Butter, coconut, cod liver oil, 
lard, maize, peanut, rapeseed, 

safflower, soya 

FT-Raman, laser: HeNe, 
2 W, InGaAs detector, 
range: 3700-400 cm-1, 

resolution: 32 cm-1 

CVA after normalisation 
and data compression 

by PLS 
 

94.4% correct 
classification 

58 Coconut, grapeseed, hazelnut, 
maize, mustard, palm, peanut, 

rapeseed, refined olive, 
safflower, sesame, soya, 

sunflower, sweet almond, walnut 

FT-Raman, laser: Topaz, 
1064 nm, 0.9 W, Ge 

detector, 
range: 3500-500 cm-1, 

resolution: 4 cm-1 

LDA after 
normalisation, baseline 

correction and data 
compression by PCA 

93% correct 
classification 

65 Hazelnut FT-Raman, laser: 
Nd:YAG, 1064 nm, 0.6 

W, 
InGaAs detector, 

range: 4000-900 cm-1, 
resolution: 4 cm-1 

SLDA after SG 
smoothing, SG 1st 

derivative and selection 
of variables related to 
unsaponifiable matter 

95% correct 
classification 

93 Almond, Brazil nut, butter, 
coconut, grapeseed, hazelnut, 

high oleic sunflower, 
hydrogenated fish, maize, 
margarine, palm, peanut, 

rapeseed, safflower, sesame, 
soya, sunflower, tallow, walnut 

FT-Raman, laser: 
Nd:YAG, 1064 nm, 0.5 

W, Ge detector, 
range: 3250-0 cm-1, 
resolution: 4 cm-1 

SLDA after SG 
smoothing, 

normalization and 
variable selection 

Classification by 
type of oil 

according to their 
fatty acid contents 

94 Coconut, high oleic sunflower, 
hydrogenated fish, maize, palm, 

peanut, rapeseed, soya, 
sunflower, tallow 

FT-Raman, laser:  
Nd:YAG, 

range: 3250-0 cm-1, 
resolution: 4 cm-1 

SLDA Discrimination of 
oils depending on 

their fatty acid 
contents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



| 23 

 

3. Adulteration of Virgin Olive Oils with other oils 

Table 8 presents some articles studying the ability of Raman spectroscopy to detect and quantify the 

adulteration of VOOs. A majority of these works used FT-Raman, but an interest for confocal benchtop 

and handheld instruments can be noticed. 

Marigheto et al 58 employed Raman spectroscopy to detect the adulteration of EVOOs with different 

vegetable oils and reached a correct classification of 97% with PLSR, but these results were less 

satisfactory than with MIR spectra. Baeten et al. 65,94  also showed that SLDA could discriminate genuine 

olive oil from adulterated samples, and even obtained a correct classification of 97.5% for samples of 

refined olive oil adulterated with as little as 2% of hazelnut oil. A method involving Raman 

measurements at increasing temperatures to enhance spectral differences between pure and 

adulterated samples was successfully tested by Kim et al. 95. Temperatures of 80 and 90°C allowed a 

correct classification of 100% by applying LDA on the PCA scores of the spectra. 

Regarding quantitative analyses, several authors such as Mendes et al. 40, Yang and Irudayaraj 35, El-

Abassy et al. 96, Davies et al. 97, Lopez-Diez et al. 98 or Heise et al. 99, applied PLS regression to Raman 

spectra to predict the concentrations of added sunflower, soya oil, hazelnut or olive pomace oils to 

VOO. They obtained quite satisfactory results, with R2 over 0.97 and SEP below 3.6%. Yang and 

Irudayaraj 35 concluded that Raman spectroscopy was slightly more efficient that NIR and MIR to 

quantify the adulteration of EVOO with olive pomace oil, whereas Mendes et al. 40 detected no 

statistically significant difference between the three techniques for the analysis of soybean and olive 

oil mixtures. Baeten et al. 100 used stepwise linear regression analysis (SLRA) to measure the amount 

of trilinolein added to VOO, yielding a R2 of 0.998 for concentrations between 1 and 10% of adulterant. 

The same method applied to VOOs adulterated with maize, soya or olive pomace oils gave a R2 of 0.92. 

Zhang  et al. 101 developed an external standard method (ESM) resulting in R2 over 0.99 and RMSE 

below 3.2%, while Dong et al. 102 generated a LS-SVM model after parameter optimization by Bayesian 

framework that gave a R2 of 0.997 and RMSEP of 0.051. 
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TABLE 8: EXAMPLES OF RAMAN SPECTROSCOPY APPLICATIONS TO ANALYSE VOOS ADULTERATED WITH OTHER OILS 

Reference

s 

Adulterants Materials Chemometrics Results 

40 Soya oil 
(1.5 to 100%) 

FT-Raman, laser: Nd:YAG, 1064 
nm, 0.2 W, Ge detector, 

range: 3500-50 cm-1, 
resolution: 4 cm-1 

PLS regression R2 = 0.998, RMSECV 
= 1.61, RMSEP = 1.57 

35 olive pomace oil (0 
to 100% in 5% 
increments) 

FT-Raman, laser: 1064 nm, 0.5 W, 
InGaAs detector, 

range: 4000-400 cm-1, 
resolution: 8 cm-1 

PLS regression after MSC R2 = 0.997, 
SECV = 2.23%, 
SEP = 1.72% 

 
58 Refined olive oil, 

sunflower, 
rapeseed, peanut, 

soya, maize oils 
(5 to 45%) 

FT-Raman, laser: Topaz, 1064 nm, 
0.9 W, Ge detector, 

range: 3500-500 cm-1, 
resolution: 4 cm-1 

PLS after normalisation, 
baseline correction and 

data compression by 
PCA 

 

97% correct 
classification 

LOD = 45% for 
refined olive oil, 5% 

for others 
65 Hazelnut oil 

(2 to 20%) 
FT-Raman, laser: Nd:YAG, 1064 

nm, 0.6 W, InGaAs detector, 
range: 4000-900 cm-1, 

resolution: 4 cm-1 

SLDA after SG 
smoothing, SG 1st 

derivative and selection 
of variables related to 
unsaponifiable matter 

97.5% correct 
classification 

94 Olive pomace oil, 
maize, sunflower, 

soya oils 
(1 to 10%) 

FT-Raman, laser: Nd:YAG, 
range: 3250-0 cm-1, 
resolution: 4 cm-1 

SLDA discrimination of 
genuine vs 

adulterated samples 

95 Soya oil (5%) Raman, laser: 785 nm, 0.1 W, 
8 temperatures (20 to 90°C), 

range: 1500-690 cm-1, 
resolution: 4 cm-1 

LDA after normalisation, 
baseline correction and 

data compression by 
PCA 

80 or 90°C gives 
100% correct 
classification 

96 Sunflower oil 
(5 to 100%) 

Raman, laser: Ar, 514 nm, 0.01 
W, CCD detector, 

range: 3100-700 cm-1 

PLS regression after 
baseline correction 

 

R2 = 0.971 to 0.988, 
RMSECV = 1.33 to 

3.59 
LOD = 0.05% 

97 Sunflower Oil 
(2 to 10%) 

FT-Raman, laser: Nd:YAG, 1064 
nm, 1 W, 

range: 3600-100 cm-1 

PLS regression RMSEC = 2.40%, 
RMSEP = 2.86% 

 
98 Hazelnut oil 

(5 to 100%) 
Raman, laser: 780 nm, 0.02 W, 

range: 3000-1000 cm-1, 
resolution: 6 cm-1 

PLS regression after 
baseline correction, 

normalisation and SG 
smoothing 

R2 = 0.979, 
RMSEP = 0.94 

 

99 Sunflower oil 
(1 to 10%) 

FT-Raman, laser: Nd:YAG, 1064 
nm, 1 W, 

resolution: 4 cm-1 

PLS regression after SG 
1st derivative and 

variable selection (Tabu) 

SEP = 1.26% 

100 Trilinolein, olive 
pomace, maize, 

soya oils 
(1 to 10%) 

FT-Raman, laser: Nd:YAG, 1064 
nm, 0.5 W, Ge detector, 
range: 3250-100 cm-1, 

resolution: 4 cm-1 

SLRA after SG 
smoothing, SG 1st 

derivative and variable 
selection 

R2 = 0.998 for 
trilinolein 

R2 = 0.92 for oils 

101 Soya, sunflower, 
maize oils 

(1 to 100%) 

Handheld Raman, laser: 785 nm, 
0.2 W, 

range: 2000-200 cm-1, 
resolution: 8 cm-1 

External standard 
method after 
normalisation 

R2 = 0.996 to 0.991, 
RMSE = 1.40 to 

3.13% 

102 Soya, maize, 
sunflower oils 

(2 to 100%) 

Handheld Raman, laser: 785 nm, 
0.375 W, 10 mm quartz cell, 

range: 2100-150 cm-1, 
resolution: 6 cm-1 

LS-SVM with Bayesian 
network 

R2 = 0.997, 
RMSEC = 0.020, 
RMSEP = 0.051 
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4. Authentication of geographical or varietal origins 

Few studies have been published regarding the confirmation of VOOs declared geographical origin or 

cultivar with Raman spectroscopy, all of them using confocal instruments, as shown in Table 9. 

Korifi et al. 2 applied PLS-DA to Raman spectra, yielding a correct classification of 92.3% for the six 

French PDOs with samples collected over several harvest years. A similar method gave Sanchez-Lopez 

et al. 103 a correct classification of 86.6% for three Andalusian PDOs. In this study, PLS-DA on Raman 

data was also able to discriminate the EVOOs based on their harvest year, region of origin and olive 

variety with correct results of 94.3%, 89% and 84% respectively. Finally, Gouvinhas et al. 104 used LDA 

to correctly classify 81.9% of Portuguese EVOO samples depending on their maturation stages. 

TABLE 9: EXAMPLES OF RAMAN SPECTROSCOPY APPLICATIONS TO DETERMINE THE ORIGIN OF VOOS 

References Origins Materials Chemometrics Results 

2 6 French PDOs, 
6 harvest years 

Raman, laser: Nd:YVO4 DPSS, 
532 nm, 0.15 W, CCD detector, 

range: 1800-440 cm-1 

PLS-DA after SNV 
and MSC 

 

92.3% correct 
classification for PDOs 

103 3 Andalusian PDOs 
and other Spanish 

regions, 
6 harvest years 

Raman, laser: Nd:YAG, 1064 
nm, 0.3 W, 

range: 3100-100 cm-1, 
resolution: 4 cm-1 

PLS-DA after SG 
smoothing and 
normalisation 

 

94.3% correct 
classification for harvest 

year, 89% for 
geographical origin, 

86.6% for PDOs, 
84% for olive variety 

104 3 Portuguese 
cultivars, 3 

maturity stages 

Raman, laser: Ar, 488 nm, 0.1 
W, CCD detector, 

range: 3050-250 cm-1 

LDA after SNV and 
data compression by 

PCA 
 

81.9% correct 
classification for 
maturation stage 
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7. MULTIBLOCK ANALYSIS - CONCATENATION OF SPECTRAL DATA 
 

1. Adulteration of Virgin Olive Oils with other oils 

A couple of studies focusing on the combination of data from several analytical methods have recently 

been published and are presented in Table 10. 

Wojcicki et al. 41 applied PLS regression to concatenated data from NIR, MIR, visible and fluorescence 

spectra, yielding a R2 of 0.96 and RMSEP of 4.1%. However these results showed no significant 

improvement compared to those obtained with separate spectra. On the other hand, Nigri and 

Oumeddour 105 obtained better results with concatenated MIR and fluorescence data than with 

individual datasets. In this case, PLS regression gave a R2 of 0.992 and RMSECV of 2.67.  

TABLE 10: EXAMPLES OF CONCATENATED DATA APPLICATIONS TO ANALYSE VOOS ADULTERATED WITH OTHER OILS 

References Adulterants Materials Chemometrics Results 

41 Mild deodorised 
and refined 

olive oils 
(2.5 to 75%) 

NIR, 2 mm quartz cell, 
range: 6150-4500 cm-1 

FT-MIR, ATR crystal, 
range: 4000-650 cm-1, 

resolution: 4 cm-1 

Fluorescence, 10 mm quartz 
cell, range: 40000-14285 cm-1 

PLS regression No improvement vs 
separate spectra 

R2 = 0.96, 
RMSEP = 4.1% 

105 Sunflower, olive 
pomace oils 
(5 to 50%) 

FT-MIR, DTGS detector, KBr 
disks, 

range: 4000-450 cm-1, 
resolution: 4 cm-1 

Fluorescence, xenon lamp 
source, 10 mm quartz cell, 
range: 45455-11110 cm-1 

PLS regression after 
normalisation and SG 1st 

derivative 
 

Better results vs 
separate spectra 

R2 = 0.992, 
RMSECV = 2.67 

 

2. Authentication of geographical or varietal origins 

Diverging conclusions have been drawn regarding the usefulness of spectral data concatenation for 

the authentication of virgin olive oils, as can be seen in the articles from Table 11. 

Harrington et al. 106 reached 100% of correct classification between oils from five French PDOs by 

applying Principal-Component Orthogonal Signal Correction (PC-OSC) and PLS-DA to fused NIR and MIR 

data. However, this result was not compared to that obtained with each technique alone. In another 

study, Dupuy et al. 1 obtained 99% of correct classification for six French PDOs with PLS-DA on 

concatenated NIR and MIR spectra, but this did not significantly improve the result compared to MIR 

data alone. On the contrary, in three different articles 48,53,107, Casale et al. obtained an improved rate 

of correct classification by combining data from various analytical instruments. For instance, LDA on 

fused NIR and MIR spectra gave a correct classification rate of 90.2% for three Italian cultivars, versus 

respectively 82.9% and 86.6% for NIR and MIR data alone 48. UNEQ class modelling applied to combined 

NIR, MIR and UV-visible spectral data gave a correct classification of 100% for PDO olive oil Chianti 

Classico and improved the predictive ability of the model 53. Concatenation of NIR, UV-visible and MS 

data also resulted in 100% discrimination between EVOOs from Liguria and other Italian regions, which 

was not possible with each separate technique 107. 
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TABLE 11: EXAMPLES OF CONCATENATED DATA APPLICATIONS TO DETERMINE THE ORIGIN OF VOOS 

References Origins Materials Chemometrics Results 

1 6 French PDOs, 
5 harvest years 

FT-NIR, 2 mm quartz cell, 
range: 10000-4500 cm-1, 

resolution: 4 cm-1 
FT-MIR, DTGS detector,  

diamond ATR crystal, 
range: 4000-600 cm-1, 

resolution: 4 cm-1 

PLS-DA after mean 
centring and 

normalisation 

No improvement 
vs separate spectra 

99% correct 
classification for 

PDO 

48 3 cultivars from 
3 Italian regions 

FT-NIR, 8mm vials, 
range: 12500-4500 cm-1, 

resolution: 8 cm-1 
FT-MIR, DTGS detector, Ge ATR crystal, 

range: 4000-700 cm-1, 
resolution: 4 cm-1 

LDA after SNV, SG 
1st derivative and 
variable selection 

(SELECT) 

Better results vs 
separate spectra 
90.2% of correct 
classification for 

cultivars 

53 PDO Chianti 
Classico and 
other Italian 

regions 

FT-NIR, 5mm quartz cell, 
range: 10000-4000 cm-1, 

resolution: 4 cm-1 
FT-MIR, DTGS detector, Ge ATR crystal, 

range: 4000-700 cm-1, 
resolution: 4 cm-1 

UV-Visible, 5 mm quartz cell, 
range: 52360-9090 cm-1 

UNEQ after SNV, SG 
1st derivative and 
variable selection 

(SELECT) 

Better results vs 
separate spectra 

100% correct 
classification 

106 5 French PDOs, 
5 harvest years 

FT-NIR, 2 mm quartz cell, 
range: 10000-4500 cm-1, 

resolution: 4 cm-1 
FT-MIR, DTGS detector, diamond ATR 

crystal, 
range: 4000-600 cm-1, 

resolution: 4 cm-1 

PLS2-DA after PC-
OSC 

100% correct 
classification for 

PDO 

107 Liguria and other 
regions 

FT-NIR, 5 mm quartz cell, 
range: 10000-4000 cm-1, 

resolution: 4 cm-1, 
transmittance mode 

Headspace mass spectrometer 
UV-Visible, 10 mm quartz cell, 

range: 52630-9090 cm-1 

UNEQ-DA after SG 
1st derivative and 
variable selection 

(SELECT) 

Better results vs 
separate data 
100% correct 
classification 
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CONCLUSION 
 

Bibliometric results show a growing interest in vibrational spectroscopic techniques as an alternative 

method for the authentication of VOOs and EVOOs. The ability of NIR, MIR and Raman spectroscopies 

to detect and quantify the adulteration of VOOs with cheaper oils, and to identify the geographical or 

varietal origins of samples, has been demonstrated in numerous research works. Even though MIR is 

more often studied, no significant difference appears in the quality of the results obtained with the 

three techniques. Thus, this apparent preference may be due to the greater availability of MIR 

instruments. Despite these promising results, vibrational spectroscopic techniques are not currently 

recognised as reference analytical methods by international standards and regulations.  

The importance of chemometrics pre-treatment and modelling, allowing to treat the large amount of 

complex data generated by the vibrational spectroscopic analyses, should also be noted. Indeed, NIR, 

MIR and Raman spectra represent “fingerprints” of the samples, and only chemometrics can reveal 

the slight differences between two VOOs spectra.  

In the future, more studies could be focused on the use of multiblock models to explore the interest 

of combining complementary information from several analytical techniques. The use of on-line 

instruments, for instance with fibre optic probes, could be an interesting way to monitor the varietal 

origin and quality parameters during olive oil extraction. However, the issue of NIR, MIR and Raman 

instrumental drift should be addressed if they are to be used on a routine basis.  
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