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of the Exo-Irreversible Schmidt Cycle with Imperfect

Regeneration for the 3 Classical Types
of Stirling Engine

P. Rochelle and L. Grosu

Laboratoire d'Énergétique, de Mécanique et d'Électromagnétisme, Université Paris Ouest, 50 rue de Sèvres, 92410 Ville d’Avray - France
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Résumé — Solutions analytiques et optimisation du cycle de Schmidt irréversible à régénération
imparfaite appliquées aux 3 types classiques de moteur Stirling — Le “vieux” moteur Stirling est
l’un des moteurs à sources multiples d’énergie les plus prometteurs pour le futur. Des modèles
élémentaires simples et réalistes sont utiles pour faciliter l’optimisation de configurations préliminaires
du moteur. En plus de nouvelles solutions analytiques qui réduisent fortement le temps de calcul, cette
étude du cycle moteur de Schmidt-Stirling modifié est entreprise avec le point de vue de l’ingénieur en
introduisant les exo-irréversibilités dues aux transferts thermiques. Les paramètres de référence sont des
contraintes technologiques ou physiques : la pression maximum, le volume maximum, les températures
de paroi extrêmes et la conductance totale, alors que les paramètres d’optimisation ajustables sont le
rapport volumétrique de compression, les rapports de volume mort, le déphasage des volumes balayés,
les caractéristiques du gaz, le rapport des conductances “chaude” et “froide” et l’efficacité du
régénérateur. Des expressions analytiques nouvelles pour les caractéristiques de fonctionnement du
moteur : puissance, travail, rendement, pression moyenne, vitesse maximale, sont établies et quelques
nombres de références adimensionnels ou pas sont présentés ainsi que des exemples d’optimisation de la
puissance en fonction de la vitesse réduite (adimensionnelle), du rapport des volumes et de l’angle de
déphasage.

Abstract — Analytical Solutions and Optimization of the Exo-Irreversible Schmidt Cycle with
Imperfect Regeneration for the 3 Classical Types of Stirling Engine — The “old” Stirling engine is one
of the most promising multi-heat source engines for the future. Simple and realistic basic models are
useful to aid in optimizing a preliminary engine configuration. In addition to new proper analytical
solutions for regeneration that dramatically reduce computing time, this study of the Schmidt-Stirling
engine cycle is carried out from an engineer-friendly viewpoint introducing exo-irreversible heat
transfers. The reference parameters are the technological or physical constraints: the maximum
pressure, the maximum volume, the extreme wall temperatures and the overall thermal conductance,
while the adjustable optimization variables are the volumetric compression ratio, the dead volume ratios,
the volume phase-lag, the gas characteristics, the hot-to-cold conductance ratio and the regenerator
efficiency. The new normalized analytical expressions for the operating characteristics of the engine:
power, work, efficiency, mean pressure, maximum speed of revolution are derived, and some
dimensionless and dimensional reference numbers are presented as well as power optimization examples
with respect to non-dimensional speed, volume ratio and volume phase-lag angle.analytical solutions.
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NOMENCLATURE 

Variables

cv Specific heat at constant volume (J.kg-1.K-1)
E Energy (J)
h Specific enthalpy (J/kg)
k Regeneration loss factor (-)
K Conductance (W.K-1)
m Mass of working gas in ideal cycle (kg)
n Speed of revolution (rps)
p Pressure (Pa)
P* Normalized mechanical power (-)
Q Heat (J)
Q
.

Thermal power (W)
r Gas constant (J.kg-1.K-1)
T Temperature (K)
U Internal energy (J)
V Volume (m3)
W Work (J)
W
.

Mechanical power (W)

Greek symbols

α Conductance ratio (-)
ε Volumetric compression ratio (-)
γ Adiabatic exponent (-)
η Efficiency (-)
τ Temperature ratio (-)

INTRODUCTION

To study machine cycles in a more realistic way than basic
classical thermodynamics do, one introduces the exo-irre-
versibilities due to the finite heat transfer rate between the
wall source (or sink or regenerator) and the working fluid and,
sometimes, those due to internal and/or external frictions and
thermal losses. At constant heat conductance, heat flows and
work, as well as theoretical power and thermal efficiency, are
determined by the temperature gap – the lower the cycle
period, the higher the gap; the higher the heat flows, the lower
the work. However, often, an increase in heat flows is associ-
ated with a decrease of efficiency, thus the point of maximum
power is not the point of maximum efficiency. Moreover, in
addition to the use of source and sink temperatures (TH and
TL) as obvious given parameters, power optimization is gener-
ally carried out using the working gas mass (m) as a reference
parameter. For engineers, though, the working gas mass is not
the preferred parameter to refer to because practical problems
are mainly constrained by technical and physical considera-
tions such as material mechanical- and thermal resistance,

bulk volume, and heat exchanger conductance and efficiency.
Consequently, it would be desirable to introduce, and substi-
tute for the mass, parameters such as the maximum allowed
pressure (pmax), maximum allowed volume (Vmax), and maxi-
mum allowed exchanger area or conductance (KT). Using
speed of revolution instead of time as the main variable is also
of prime interest because heat and mass transfers, as well as
fluid and mechanical frictions, are directly speed-dependant
and thus should be naturally expressed with respect to it.
To date, the engineer-friendly finite-time perspective has
been given only slight consideration (see the well-
documented study of Durmayaz et al. [1]). In the following
sections we develop analytical solutions to show that new
conclusions and propositions arise from this more practical
approach and that analytical solutions for the exchanged
energies lead to a significant improvement in computing
time for initial-optimization procedures.

1 CASE OF ENDO-REVERSIBLE EXO-IRREVERSIBLE
IDEAL CARNOT-LIKE CYCLE WITH IMPERFECT
REGENERATION

1.1 General Case

This endo-reversible cycle with (Stirling-, Ericsson-, ...,
cycles) or without (Carnot cycle) regeneration is assumed to
evolve between two reservoirs at constant wall temperatures
TH and TL (overall temperature ratio τ = TL/TH), with an
isothermal heat delivery Qinrev to the hot gas at temperature
Th, an isothermal heat release Qoutrev from the cold gas at Tl
and a delivered work W. In case of an endo-reversible cycle
with imperfect regeneration, this is revealed by a difference
between the inflow and outflow temperatures (resp. specific
enthalpies) at each end of the regenerator. To preserve the
ideal pressure/temperature history in the swept volumes, the
imperfect regeneration must be continuously compensated
with an added-heat delivery ΔQreg from the hot source to the
gas issuing from the hot outlet of the regenerator into the
expansion volume (Fig. 1, 2) to rise the outlet temperature
level to the one in the volume.

The same amount of heat is assumed to be lost to the low
temperature sink from the gas issuing from the cold outlet of
the regenerator into the compression volume. From the endo-
reversibility assumption, it comes that the ratio of the isother-
mally transferred heats is equal to the “internal” ratio τi of the
temperatures of the hot- and cold isothermal volume gases:

(1)

Hence, the total heat Qin delivered to the gas in the hot
(expansion) volume is the sum of the isothermally delivered
heat Qinrev added to the imperfect-regeneration compensating
heat ΔQreg and the total heat Qout released from the gas in the
cold (compression) volume is the sum of the isothermally

Q

Q

T

T
outrev

inrev

l

h

i= = τ .
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released heat Qoutrev added to the imperfect-regeneration heat
loss –ΔQreg:

Qin = Qinrev + ΔQreg (2)

Qout = Qoutrev – ΔQreg . (3)

ΔQreg is a part of the heat Q+
reg which is reversibly released

and caught by the regenerator matrix in the case of perfect
regeneration. Let ηreg be the regenerator efficiency, then:

ΔQreg = (1 – ηreg) · Q
+
reg. (4)

Q+
reg and Qinrev are dependant on the reference pressure,

the geometry and kinematics of the engine as well as on the
temperature ratio τi.

The work W is the sum of the delivered heat (+) and
released heat (–):

|W | = Qin + Qout = Qinrev + Qoutrev = Qinrev · (1 – τi). (5)

The internal Carnot efficiency ηi is the cycle efficiency in
the case of perfect regeneration:

(6)

In case of exo-reversibility (classical thermodynamics),
and τi = τ and ηi = ηCarnot = 1 – τ.

1.2 Effect of Exo-Irreversibility and Imperfect
Regeneration

Assuming KT as the total convective heat conductance of the
gas, which is the sum of the cycle time-averaged hot and cold
wall/fluid conductances, α as the relative part of conductance

η τi

inrev

i

W

Q
= = −1 .

involved in the heat transfer at hot source and n as the speed
of revolution. Hence, energies could be written as follows:

(7)

(8)

(9)

and, noting that τl = τh · τi, it gives, first with Equations (5)
and (9), second with Equations (2), (4), (7) and (8):

(10a)

(10b)

Combining Equations (10a) and (10b) and assuming no
explicit dependence of the various parameters on n excepted
the one given by (11):

(11)

where has dimension of a speed of revolution (in

rps) or an inverse of time (in 1/s). 

The expression of n (Eq. 11) could be re-introduced into
Equation (10) to get τh with respect to τi and then into
Equation (6) to get Qin.

The cycle efficiency is:

(12)

and, from Equations (5) and (11), with respect to τi the power
is: 

(13)
P n W K TT H

i i

i i

= ⋅ = ⋅ ⋅
⋅ − ⋅ − ⋅ −

+ + ⋅

α α τ τ τ

τ α τ

( ) ( ) ( )

(

1 1

1−−[ ] ⋅ − ⋅
⎧
⎨
⎪

⎩⎪

⎫
⎬
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⎭⎪

+

α η) ( )

.

1 reg
reg

inrev

Q

Q

η
τ

η

= =
−

+ − ⋅
+

W
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Q
in

i

reg
reg

inrev

( )
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1
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Q
T H
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Qinrev THΔQreg
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Figure 1

Balance of energy transfers in an endo-reversible exo-
irreversible cycle with imperfect regeneration.
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With a given KT · TH, derivations of Equation (13) and
equalization to zero of the derivatives give the deduced opti-
mum values ηreg = 1, α = 0.5 (Feidt et al. [2]), τi = √

—
τ and,

then, the (overall) maximum maximorum power:

(14)

τi evolves from τ at very low speed, to 1 (Th = Tl), at the
speed limit nlim. At the speed limit, with the same assumption
as for Equation (11) and, as an addition, with the obvious
assumption of no heat transfer for regeneration-loss compen-
sation at Th = Tl, then Q+

reg = 0 and Qinrev(τi) = Qinrev(1) =
Qinrev1, giving:

(15)

It gives also:

τhlim = τlim = α+ (1 –α) · τ (16)

and, using α optimum value:

(17)

(18)

2 THE SCHMIDT-STIRLING EXO-IRREVERSIBLE
ENDO-REVERSIBLE CYCLE WITH IMPERFECT
REGENERATION

Q+
reg and Qinrev depend on the type of reversible cycle. Let us

examine the case of the Schmidt-Stirling cycle.
There are 3 basic configurations for the classical Stirling

engine (Fig. 2). A classical way to model this engine with
some realism is to use the Schmidt model. Its main assump-
tions, slightly completed, are:
– same instantaneous pressure throughout the engine;
– use of an ideal gas as the working fluid;
– constant working fluid mass (no leakage, no delivery)

during a cycle;
– constant cylinder wall temperature;
– harmonic/sinusoidal movement of the pistons (idealized

crankshaft);
– constant temperature of gas in the hot and cold volumes.

This is nearly verified in LTD (Low Temperature
Differential) Stirling machines with a low speed of revolu-
tion and heat exchanging cylinder head and wall;

– constant speed of revolution;
– perfect regeneration.

 
�Q K Tin T Hlim min .= ⋅ ⋅

−( )1

4

τ

n
K T

Q
T H

inrev

lim min =
⋅
⋅
−( )

1

1

4

τ

n
K T

Q
T H

inrev

lim ( ) .=
⋅
⋅ ⋅ − ⋅ −( )

1

1 1α α τ

P K TT Hmax max .= ⋅ ⋅
−( )1

4

2
τ

This last assumption implies that the entirety of the heat
released to the regenerator material during the gas flow from
the hot volume to the cold volume is reversibly restituted to
the gas during the back flow, at the same levels of tempera-
ture. In our case of imperfect regeneration, it will be assumed
that the gas pressure/temperature history will remain the
same but the part of regeneration heat lost (to the cold sink,
by conduction or other transport) will be continuously com-
pensated by a supplement of heat ΔQreg provided by the hot
source during each cycle as seen before (Sect. 1.1).

REGSH

Expansion side
piston

Compression side
piston

SC

Alpha

Beta

Gamma

Displacer

Displacer

Working piston

Working piston

SH

REG

SC

SH

REG

SC

Figure 2

The 3 classical types of Stirling engine configuration.
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2.1 Instantaneous Volume Expressions

In the 3 types of engine, the expansion (hot) space variation
has a unique expression:

(19)

where ϕ is the rotation angle of the idealized crankshaft and
VE0 is the “swept expansion volume”; in the case of beta- and
gamma-type engines, this is the displacer swept volume.

For the compression space, in the case of beta- or gamma-
type engines, that geometrically differ by either a not common-
or a common cylinder and an overlapping swept volume),
there is a combination of volume variations; it could be
expressed as:

(20)

where aj and bj values, displayed in Table 1, depend on the
type of engine, ϕ0 is the phase lag angle of the piston move-
ments and VC0 is the “swept compression volume”. In fact, in
our case of beta- and gamma-type engines, it only is the work-
ing-piston swept volume. Vol is the overlapping volume in the
case of a beta-type engine and is due to the intrusion of the
displacer piston into the working piston swept volume. Here,
this volume equation is obtained by assuming there is one and
only one contact point between the displacer piston and the

working piston (VC = 0 and = 0 for ϕ = ϕcontact), during
their cyclical movement.

TABLE 1

Engine-type Alpha Beta Gamma

aj 0 1 1

bj 0 1 0

Dead volumes, due to the heat exchangers and the imper-
fect geometry of the cylinder volumes must be taken into
account. Let VES, VCS, VR be the 3 dead volumes respectively
related to the expansion and hot exchanger volumes (VES), to
the compression and cold exchanger volumes (VCS) and to
the regenerator volume (VR); the sum of these will be the
total dead volume VS.

The total instantaneous working gas volume Vt is the sum
of the previous ones:

(21)

The maximum global volume is:

VT = VE0 + VC0 + VS – bjVol. (22)

V V V V
V

at E C S
E

j= + + = ⋅ −[ ] + ⋅ +[ ]{ }0

2
1 1cos( ) cos( )ϕ ϕ

      + ⋅ − −[ ] − ⋅ +
V
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j ol S
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2
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V
V

E
E= ⋅ −[ ]0

2
1 cos( )ϕ

Normalizing the volumes with respect to VT, Vt is
expressed as a function of expansion-, compression-, dead-
and overlapping volume ratios (εE, εC, εS and εol) and,
even, of ω which is the compression to expansion swept 

volume ratio ( ):

(23)

Using a classical trigonometric relation (see set of Eq. A1
in Appendix) gives:

V*
t = BV – AV · cos(ϕ–ϕV) (24)

with BV, AV and ϕV expressed as:

Let , then one gets the normalized volume

V*
t = BV · [1–δV · cos(ϕ–ϕV)] and the volumetric compression

ratio:

(25)

2.2 Instantaneous Pressure Expression

Assuming a constant working gas mass in the engine, which
is the sum of the masses in each volume, this total mass of
gas is expressed as a function of the instantaneous pressure
and volumes:

(26)

where, remembering that , the regenerator mean 
temperature could be either:
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or, assuming a linear temperature profile in the regenerator as
Urieli and Berchowitz [3] did:

then . For p, Equation (26) gives:

(27a)

(see Eq. A2).
After passing Th into the numerator and normalizing the

volumes with respect to VT, with the same trigonometric
method as before, the new denominator D (Eq. A3), having
dimension of a volume, could be written as:

VT · [Bp – Ap · cos(ϕ –ϕp)].
with the set of equations obtained by identification of the
parameters:

The maximum pressure is obtained for ϕ=ϕp:

Normalizing p with respect to pmax, it becomes:

(27b)

where .The maximum to minimum pressure ratio ϖ is:

(28)

2.3 Expressions of the Work and Isothermally
Delivered Heat 

Since the heat Qinrev delivered isothermally at hot temperature
Th during a complete cycle equals the opposite value of the
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gas work done in the expansion volume VE, therefore (with
the “continental” convention that the work, as well as the
heat, produced and lost by the gas is negative):

(29)

It gives, following Meijer [4], Finkelstein [5], Walker [6],
Rochelle and Andrzjewski [7] (pp. 745-746) and applying
the properties of the finite trigonometric integrals (Dwight
[8]) (Eq. A4):

(30a)

and, from the endo-reversibility assumption: Qoutrev =–τi·Qinrev

then:

(30b)

the same ones are given under their normalized form with
respect to pmax · VT, as follows:

(31a)
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dQreg can be rewritten as:

(32a)

with VtR used as a provisional volume for the demonstration
purpose. Developed under its normalized form and letting

and it leads to the normalized form of dQreg:

(32b)

The perfect regeneration heat Qreg is null on a complete
cycle, resulting from the sum of 2 equal and opposed parts.
The angles corresponding to the change of sign dQreg or
dQ*

reg are obtained for d(p* ·V*
tR) = 0 hence, in this case, (from

Eq. A6):

(33)

From Equation (32b), Q+*
reg is given by the expression of

the definite integral:
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The 2 solutions of Equation (33) are obtained, after its
decomposition (set of Eq. A7 and A8) and the use of the
previous trigonometric method, as:
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Then, after further similar developments, we get Equation
(36):

(36)

Hence, after using Equations (35) and (36) in (34) (see Eq.
A9), and after further simplifications and factorizations (see
Eq. A10), we get:

(37)

With this result, efficiency η (Eq. 12) and power P (Eq. 13)
could be expressed:
– with the ratio of the developed expressions of isothermally

delivered heat Qinrev and positive exchanged heat of regen-
eration Q+

reg or;
– with the ratio of their normalized expressions (Eq. 30b and

37) given by Equation (40) (see Eq. A11). They are, under
there completely developed form, functions of seven para-
meters (εE, εC, εES, εCS, εR, γ, ϕ0) and one variable (τi).

2.5 Speed, Power and Efficiency Expressions

Introducing a reference speed of revolution 

into Equation (11), the normalized speed is given by:
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the normalized power is:
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3 APPLICATIONS OF THE ANALYTICAL SOLUTIONS
TO THE PARTIAL CYCLE OPTIMIZATION

As an example application, the previous equations are used
here to describe the influence of the compression to expansion
volume ratio ω and of the speed n* on the main operating
parameters W*, P* and η (Fig. 3).

For the 3 engine types at the same time, computation and
display of these lines and surfaces (and much more), were
obtained within few seconds, with Matlab software.

In this first example, the engine is of alpha type, the phase
lag angle ϕ0 is π/2, the gas has a specific heat ratio γ of 1.4,
the dead volume ratios εES, εCS, εR are respectively 0.06, 0.06,
0.08, the heat conductance ratio α equals 0.5, the temperature
ratio τ is 0.5 and the regeneratio efficiency ηreg is 1, or 0
(lower right quadrant).

With perfect regeneration, both the work (upper left
quadrant) and the efficiency (lower left quadrant) are maxi-
mum at very low speed. The work at its overall maximum is

obtained for a value of the volume ratio ω slightly lower than
1, as previously stated by Walker [6]; the efficiency is con-
stant (= 0.5) at n* = 0 whatever the volume ratio is (basic
thermodynamics case). The power representing-surface
(upper right quadrant) shows a bended crest of constant
height, indicating that maximum power could be obtained for
a particular value of n* whatever the volume ratio is, but
speed is at a minimum for a value of volume ratio ω slightly
lower than 1. Moreover, a high power could be also obtained
within a large range of high speed in a narrow band of low to
very low volume ratios, at the cost of high optimum speeds.

Without regeneration (Fig. 3, lower right quadrant), the
power is more than halved compared to the value obtained
with perfect regeneration and it increases with volume ratio.
Moreover, the optimum speed for power is lower, and the
band of high power at low volume ratios doesn’t really exist.

Another example application concerns the optimization of
the power with respect to the phase angle and to the compres-
sion-to-expansion volume ratio. With help of Equation (13),

W* = f (omega, n*), etareg = 1 P* = f (omega, n*), etareg = 1

Eta = f (omega, n*), etareg = 1 P* = f (omega, n*), etareg = 0

Omegan* n*
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Figure 3

Work, power and efficiency versus volume ratio and speed in case of perfect regeneration and, lower right quadrant, power without
regeneration.

ogst100058_Rochelle  17/11/11  11:04  Page 754



giving expression of power to be normalized by KT · TH, and
Equation (40), we get the results illustrated by Figure 4 after
few minutes of iterative calculations to find the set of maxi-
mum power values and associated values of the other operat-
ing parameters. The chosen engine, of which results are dis-
played here, is of alpha type and the fixed parameters are the
same as in the previous example except the regeneration effi-
ciency at 0.5 and the phase lag angle ϕ0 considered as a vari-
able. Maximum power increases with ω increase and ϕ0
decrease, but the criterion of maximum power is not the only
one to consider as Figure 4 shows: in fact the corresponding
work (or torque), the efficiency and the speed of revolution
must be examined too. A compromise solution could be
found through a high work (or a low speed) or a high effi-
ciency is privileged in addition to maximum power. In this
particular case, we see (higher right quadrant) that a maxi-
mum work (or torque) is obtained for a phase lag angle
approximately equal to 1.6 radian and a volume ratio of

approximately 0.8. This point corresponds nearly to the
minimum of speed of revolution (lower left quadrant) with a
not-too-much reduced value of efficiency (lower right quad-
rant). Favoring the efficiency could be done choosing a lower
value of phase lag angle and a higher value of volume ratio at
the price of a higher speed and lower work (or torque).

These examples show that a first approximate optimiza-
tion, which, however, neglects conduction- and friction
losses, is possible without large efforts.

CONCLUSION

In this paper, we have studied the exo-irreversible, endo-
reversible Schmidt-Stirling engine cycle. Analytical expressions
were derived for the phase angles at gas flow inversion within
the regenerator and for the positive or negative perfect-
regeneration heat. Adding these ones to other previously
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Pmax* = f (omega, phi0) WPmax* = f (omega, phi0)

nPmax* = f (omega, phi0) EtaPmax = f (omega, phi0)
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Maximum-power surface and corresponding work, speed and efficiency surfaces versus phase lag angle ϕ0 and volume ratio ω.
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obtained analytical expressions (expansion and compression
volumes, pressure, work, isothermally delivered heat) allowed
analytical calculations of each cycle-averaged energy transfer
and of efficiency with respect to geometrical and physical
parameters (e.g. regenerator efficiency and overall heat
conductance) without step-by-step numerical computation of
the cycle. An example of cycle optimization with a given
phase angle was described; it illustrated the versatility of this
set of equations.

Moreover, a second example using this set of equations
with an iterative calculation allowed the choice of near-
optimum phase angle and volume ratio to obtain a “good”
compromise between maximum power and maximum work
(or torque) at minimum speed.

Nevertheless, to be closer to reality, a more elaborate
procedure could be followed which takes into account the
speed-dependence of physical phenomena such as convective
heat transfers, conductive heat losses, gas friction and
mechanical friction as, for instance, Senft [9,10] and Petrescu
et al. [11] did. Moreover, the normalization could be done
with respect to more representative and “absolute” con-
straint-parameter combinations. For instance, we found ear-
lier [12] that, for an exo-irreversible ideal Stirling cycle, the
maximum attainable theoretical work is given by:

which could

be used instead of pmax · VT. It can be established, too, that the
maximum heat delivered per unit time (which has dimension

of power) is which could be used

instead of KT · TH.
This study could be extended to the exergy balance, to

improve the energy use and optimize the cycle by irre-
versibility localizations (Martaj et al. [13]).

Using this set of equations, a preliminary design of a
Stirling engine, to be used in a solar power plant at medium
source temperature, is under progress (Nov. 2009).
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