
HAL Id: hal-01937421
https://hal.science/hal-01937421

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Real-Time Implementable NMPC Output Feedback
for a Diesel Engine Air Path
André Murilo, Mazen Alamir, P. Ortner

To cite this version:
André Murilo, Mazen Alamir, P. Ortner. A Real-Time Implementable NMPC Output Feedback for a
Diesel Engine Air Path. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, 2011,
66 (4), pp.613-625. �10.2516/ogst/2011120�. �hal-01937421�

https://hal.science/hal-01937421
https://hal.archives-ouvertes.fr


Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 66 (2011), No. 4, pp. 613-625
Copyright c© 2011, IFP Energies nouvelles
DOI: 10.2516/ogst/2011120

A Real-Time Implementable NMPC Output Feedback
for a Diesel Engine Air Path

A. Murilo1∗, M. Alamir2 and P. Ortner3

1 GIPSA-Lab, Control Systems Dept., University of Grenoble, Domaine Universitaire, 38400 Saint Martin d’Hères - France
2 CNRS/Gipsa-Lab, Control Systems Dept., University of Grenoble, Domaine Universitaire, 38400 Saint Martin d’Hères - France

3 Institute for Design and Control of Mechatronical Systems, JKU Linz, Altenberger Straβe 69 1-4040, Linz, Austria
e-mail: andre.murilo@ufpe.br - mazen.alamir@gipsa-lab.grenoble-inp.fr - peter_ortner@gmx.net

∗ Corresponding author

Résumé — Commande prédictive non linéaire avec retour de sortie implémentable en temps-
réel pour un circuit d’air d’un moteur Diesel — Dans cet article, une validation expérimentale d’un
schéma de commande prédictive non linéaire (CPNL) paramétrique avec un observateur à horizon
glissant a été proposé pour le circuit d’air d’un moteur Diesel. La stratégie de commande basée sur
l’approche paramétrique à faible dimension s’est montrée implémentable en temps réel et peut être
utilisée aussi en tant qu’une solution du type boîte noire indépendamment de la structure du modèle
non linéaire.

Abstract — A Real-Time Implementable NMPC Output Feedback for a Diesel Engine Air Path — In
this paper, an experimental validation of a parameterized Nonlinear Model Predictive Control (NMPC)
scheme with a Moving Horizon Observer (MHO) is presented for a Diesel engine air path. The control
design based on the parameterized approach leads to a low dimensional optimization problem which
makes the proposed controller real-time implementable. An attractive feature of this control strategy
lies in its compatibility with more elaborated and fully nonlinear models since it uses the model as a
black box predictor.

http://ogst.ifpenergiesnouvelles.fr
http://www.ifpenergiesnouvelles.fr
http://ogst.ifp.fr/articles/ogst/abs/2011/04/contents/contents.html


614 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 66 (2011), No. 4

INTRODUCTION

The production of diesel engine passenger cars has consid-
erably increased in recent years. This success is particularly
due to some important features presented in such engines
when compared to standard gasoline engines: more torque
at low speed, low fuel consumption, more efficiency and
durability (Heywood, 1998).

On the other hand, diesel engines have important draw-
backs which are the pollutant emissions. These elements
consist of unburnt hydrocarbons (uHC), oxides of nitrogen,
NO and NO2, normally referred to as NOx, carbon monox-
ide CO, and particulate matter PM, mainly soot. Compar-
ing to the gasoline engines, based on Spark-Ignition (SI)
process, diesel combustion produces more NOx and PM.
On the other hand, CO emissions are negligible in diesel
engines, based on Compression-Ignition (CI) process, due
to lean operation and emissions of uHC can be handled
with oxidation catalysts (Heywood, 1998; Johnson, 2001).
In order to avoid PM, it is quite interesting to work with
high temperatures to burn-up the soot at the boundary of the
diffusion flame sheath. On the other hand, high temperatures
may lead to the formation of NOx (Guzzella and Onder,
2010). This paradox is also called NOx-PM trade-off, as
shown in Figure 1 together with the maximum admissible
values according to the European norms Euro III, IV and V.
Therefore, the emissions of NOx and PM deserve a special
attention when diesel engines are considered.

For this reason, the study of diesel engine emissions has
become extremely important in recent years, especially for
PM and NOx, due to the more restrictive legislation. In
order to deal with the levels of emissions, diesel engines
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Figure 1

Schematic view of the trade-off between NOx and PM for
Diesel vehicle.

are now equipped with two valves: the Exhaust Gas Recir-
culation (EGR) and the Variable Geometry Turbocharger
(VGT). The aim is to track some dynamic setpoint trajectory
on the Mass Air Flow (MAF) and the Manifold Absolute
Pressure (MAP) of the engine. Therefore, a good tracking
of the MAF and the MAP leads to a low level of emissions.
The complete explanation and more details about the effects
of EGR and VGT on the emissions control can be found in
Jacobs et al. (2003) and van Nieuwstadt et al. (2000).

In order to deal with diesel engine emissions, the process
to be controlled concerns the engine air path. Figure 2 shows
a simplified view of the diesel engine air path. The arrows
indicate the direction of the air path into the engine. The
main variables used for control design involves two valves
which are the manipulated variables, namely EGR and VGT,
two measured disturbances, fuel injection w f and the engine
speed N and the two already mentioned outputs, namely the
MAF and the MAP. Normally, the set-points of the MAF and
the MAP are provided by a linear interpolation according
to two-dimensional look-up table of the operational point
defined by the fuel injection and the engine speed, in order
to ensure a good level of emissions.

Several control strategies have been proposed to address
the above problem. From a control point of view, the diesel
engine is a highly coupled multi-variable system due to
the combined effects of VGT and EGR (Nieuwstadt et al.,
1998). Moreover, the system is quite nonlinear (which is
shown in the forthcoming sections) and constrained. There-
fore, sophisticated controllers are necessary to correctly
address the underlying control problem. In Jankovic and
Kolmanovsky (1998) a nonlinear robust controller is pre-
sented by using standard Lyapunov-like approaches and
feedback linearization. The flatness property introduced by
Fliess et al. (1992) inspired some other nonlinear strategies
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Figure 2

Simplified schematic view of the diesel engine air path and the
variables used for control design.
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as in Plianos and Stobart (2007) and Chauvin et al. (2008).
Robust controller is also invoked by Jung (2003) based on
linearization of a Mean Values Model (MVM).

Since diesel engines are highly nonlinear and constrained
systems, Nonlinear Model Predictive Control (NMPC)
arises as an interesting issue for such scenario (Mayne et al.,
2000). However, real time implementation is the major
drawback of NMPC-like approaches, since in most of the
cases, finding the optimum solution may require a huge
computation effort, leading to infeasible controllers. Model
uncertainties may also represent a disadvantage for NMPC
if they are not considered somewhere in the problem formu-
lation.

Some MPC approaches have already been developed for
the diesel engine. In Ortner and del Re (2007), an explicit
formulation is used, and some experimental results are pre-
sented. Nevertheless, since a huge look-up table is needed
to address twelve local linear models, the effort to make
all the off-line calculations limits the range of the control
horizon nc, which is therefore set to 1. On the other hand,
Ferreau et al. (2007) proposes a general purpose active set
based controller where on line computations are performed.
The approach is still based on linear models, but a higher
control horizon is allowed in this case (nc = 5).

In this paper, an output feedback strategy based on a
Moving Horizon Observer (MHO) and a parameterized
NMPC is proposed for a diesel engine test bench (1). Some
simulation results of the present strategy were presented in
Murilo et al. (2009). The main point of this control design is
the fact that the optimal solution computed by the predictive
controller is completely independent of the nonlinear model
structure being used, which may lead to a kind of black-
box solution for diesel engines. Moreover, the constraints
on the control inputs are structurally taken into account in
the formulation and the optimization routine is reduced to a
simple low dimensional optimization problem enabling very
short computation times to be obtained.

This paper is organized as follows. In Section 1, the
system model is introduced. Then, Section 2 presents the
MHO to be used in the output feedback strategy. The control
design and the parameterized NMPC scheme are shown in
Section 3. Section 4 shows the experimental validation on
a diesel engine test bench. Finally, conclusions and future
works are discussed in Section 5.

1 SYSTEM MODEL AND CONTROL PROBLEM

Modeling of diesel engines is still an open issue. Several
approaches have been developed. In most of them (Christen
et al., 2001; Jung, 2003), a mean value model is adopted
to represent the system dynamics. Very often, the control
design is based on linearized and Linear Parameter Varying

(1) Euro 4 passenger car diesel engine, at Johannes Kepler University Linz.

(LPV) models that are derived using a mean value model
(Wei, 2006). However, since diesel engines show strong
nonlinearities and active constraints on the inputs have to
be correctly handled, standard multi-linear methods may be
insufficient to cover the whole engine operational range and
the use of fully nonlinear models may become a crucial
issue. Control design methods that can cope with such mod-
els become therefore attractive. The aim of this section is to
present such an alternative using two identified data models.
The first one is linear up to an output injection while the sec-
ond is linear up to an input injection. The identification of
both methods were previously obtained using a Euro 4 pas-
senger car diesel engine test bench available at the Johannes
Kepler University (JKU) Linz and the details about system
identification are more explained in Ortner et al. (2009).
These two models are presented in the next section.

1.1 Nonlinear Model Depending on the Outputs

This model involves a state vector of dimension 14 and has
been obtained using a sampling period of 10 ms. It shows
the following structure:

x+ =
[
A (y − yc)

]
x + B1 [u − uc] + B2 [w − wc]

y =
[
C (y − yc)

]
x + yc + ε

ε+ = ε

(1)

where x ∈ Rnx is the state (nx = 14), y ∈ Rny , u ∈ Rnu

and w ∈ Rnw the vector of output, control and measured
disturbances respectively (nw = ny = nu = 2). Finally,
ε ∈ Rny represents the current estimation of the prediction
error that enables uncertainties and model mismatches to be
handled. The updating law for this variable is discussed in
Section 2. The terms uc, yc andwc represent central values of
input, output and disturbances respectively at the operation
point that has been used to identify the model.

The matrices B1 ∈ Rnx×nu and B2 ∈ Rnx×nw are constant
while A(·) ∈ Rnx×nx and C(·) ∈ Rny×nx depend on the out-
put vector y. These matrices have been identified at a set
of central values yc. This clearly makes the present model
nonlinear. However, the pair [A(·),C(·)] is not completely
observable as it will be discussed later and simulation results
using this model have been presented in Murilo et al. (2009).
For the experimental validation, a second model has been
identified that is presented in the next section.

1.2 Nonlinear Model Depending on the Inputs

The second model (Ortner et al., 2009) shows the same
structure than before except that the system matrices depend
on the input rather than on the output. The resulting model
involves 8 states and has been obtained using a sampling
period of 50 ms. More precisely:

x+ = [A (u − uc, w − wc)] x + B1 [u − uc] + B2 [w − wc]

y = [C (u − uc, w − wc)] x + yc + ε

ε+ = ε

(2)
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where x ∈ Rnx is the state (nx = 8). The matrices B1

and B2 are constant while A(·) and C(·) are now dependent
on inputs u and w instead of y. The outputs, inputs and mea-
surement disturbances are unchanged (nx = ny = nu = 2).

One of the advantages of (2) when compared to the output
dependent model (1) lies in the fact that the pair [A(·),C(·)]
is observable for each value of the control in the opera-
tional region of interest. Moreover, it covers more opera-
tional points of the engine and leads to more accurate results
according to Ortner et al. (2009). For this reason, model (2)
was chosen by the JKU Linz for the experimental validation
and is used hereafter for control and observer design. On the
other hand, the model (1) corresponds to a sampling period
of 10 ms compared to 50 ms for the model given by (2).
This would have been interesting in deriving a more reactive
controller.

1.3 The Control Problem

The control problem is to design an output feedback that
forces the output y (namely the MAF and the MAP) to track
some desired set-point yd. Moreover, for infeasible values
of yd, the controller must stabilize the system at the closest
admissible value. This has to be done while meeting the
constraints on the input vector u (represented by the valves
EGR and VGT), namely:

u ∈ [umin, umax] ; umin ∈ R2; umax ∈ R2 (3)

δu ∈ [−δmax,+δmax] ; δmax ∈ R2 (4)

where δu(k) = u(k)−u(k−1) are the increments on the inputs.
Note that the inclusions in (3) and (4) are to be interpreted
componentwise.

1.4 Model Particularities

The diesel engine model shows two properties that are worth
considering in the control design: These are the non mini-
mum phase and the open-loop stability.

1.4.1 Non-Minimum Phase

This property is related to the presence of high coupling
in the underlying phenomenon. To illustrate this feature
through a simple example, one may note that when the EGR
valve is opened, more exhaust gas recirculates into the intake
manifold resulting in a slight increase in the MAP. In parallel
to this, less exhaust gas goes to the turbine, which slows
down the turbocharger, and hence decreases the MAP. Such
situations are very common in diesel engines, introducing a
non-minimum phase behavior.

Basically, the non-minimum phase behavior can be
viewed on the output’s profile, as shown in Figure 3, namely,
the outputs are forced to go to the opposite direction to the
desired one during a transient phase before reaching the set-
point. As long as NMPC design is concerned, this implies
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Simulation illustrating the non-minimum phase of the mass air
flow.
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Figure 4

Open-loop behavior at N = 1 800 RPM and w f = 20 mg/cyl
under a step sequence of EGR and VGT.

that the prediction horizon must be sufficiently high to go
beyond this transient phase. On the other hand, increas-
ing the prediction horizon too much leads to computation
time that can go beyond what can be performed given the
available computation time. A trade-off is required here to
combine these two contradictory effects.

1.4.2 Open-Loop Behavior

A second important point to emphasize concerns the open-
loop behavior of the diesel engine model. As a matter of
fact, the system is open-loop stable. Figure 4 illustrates the
outputs when a sequence of step changes is used as inputs.
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This means that for a given value of the EGR, the VGT, the
speed and the fuel injection, the outputs reach a given set of
steady values.

The open-loop stability can be used in the NMPC design
by computing first the steady state to be reached and then
use the remaining degrees of freedom to improve the quality
of the transient. This is more detailed in Section 3. But let
us first introduce the observer used to recover the entire state
of the system.

2 OBSERVER DESIGN

2.1 The Importance of the Observer

The NMPC design needs the state of the system to be recon-
structed. As a matter of fact, the first nonlinear model (1)
depending on the outputs is not observable. Nevertheless,
a moving horizon algorithm can be used to reconstruct the
observable part of the system. Note that this may not be
sufficient in general. Here it could be enough since the prob-
lem is to track the desired set-point of the measured output
and thanks to the open-loop stability property of the system
model. As as result, for the model (1), a MHO was devel-
oped, as shown in Murilo et al. (2009), in order to deal with
this lack of observability where other classical observers like
Extended Kalman Filter (EKF) are inappropriate.

However, it can be shown that the second nonlinear
model (2) which is used here in the experimental validation
is observable for any input vector belonging to the set of
operational values of interest. As a result, the same structure
of the MHO, initially developed for the first model (1) and
presented in Murilo et al. (2009) is also adopted in this paper
to reconstruct the state of (2). This is detailed in the next
section.

2.2 Moving Horizon Observer Design

Moving horizon observers share the same advantages and
drawbacks of NMPC (Alamir, 1999; Alamir and Calvillo-
Corona, 2002; Michalska and Mayne, 1995). Indeed, these
observers can deal with nonlinearities and constraints in
the system at the price of on-line optimization that may be
incompatible with the available computation time.

The main idea of MHO’s is to estimate the current state
using a moving and fixed-size window containing No past
measurements. The oldest measurements are discarded
while the newest one is taken into account. Then, the col-
lected data are used to define a cost function, which is min-
imized with the state at the beginning of the observation
window as a decision variable. As mentioned previously,
the observer was developed using the model (2) which is
used hereafter in the experimental validation.

Let us first consider a fixed-size window containing No

past measurements. At the present instant k, the value of the

current state x(k) can be derived from the past state x(−) =

x(k−No+1) at the beginning of the observation horizon and
the vectors of past inputs Ūk according to:

x(k) =
[
Φ
(
Ūk

)]
· x(−) +

[
Ψ
(
Ūk

)]
· Ūk (5)

Ȳk =
[
Ω
(
Ūk

)]
· x(−) +

[
Γ
(
Ūk

)]
· Ūk + Ēk (6)

where Ȳk ∈ Rny·No is the vector of past measurements,
Ūk ∈ R(nu+nw)·No is the vector of control inputs and measure-
ment disturbances while the matrices Φ(Ūk), Ω(Ūk), Γ(Ūk)
and Ψ(Ūk) are obtained after straightforward computations
in terms of the system matrices A(·), C(·), B = [B1 B2].
The vector Ēk corresponds to the past prediction error values
represented by ε. In order to update the estimation of the
prediction error, the value of ε is updated at each sampling
instant k according to:

ε(k) = ε(k − 1) + ki. (yp(k) − ym(k)) (7)

where yp(k) and ym(k) are, respectively, the predicted value
under the previous estimated state at instant k − 1 and the
measured output at instant k, ε(k − 1) the previous value of
the prediction error and ki ∈ Rny the integrator gain. There-
fore, the past estimation x̂(k− 1) can be related to x̂(k) in (5)
as follows:

A(u(k − 1), w(k − 1))x̂(k − 1) + B[u(k − 1) w(k − 1)]T =
[
Φ
(
Ūk

)]
· x(−) +

[
Ψ
(
Ūk

)]
· Ūk (8)

Ȳk =
[
Ω
(
Ūk

)]
· x(−) +

[
Γ
(
Ūk

)]
· Ūk + Ēk (9)

Note that these two equations represent the requirements
on the past value x(−) to be estimated. The first requirement
is related to the state equation while the second is related
to the measured output. Therefore, a trade-off similar to
the classical one involved in the Kalman-filter through the
covariance related weighting matrices can be obtained by
means of the following cost function:

x̂(−) = arg min
ξ∈Rn
‖G1.ξ − S 1‖2Q1

+ ‖G2.ξ − S 2‖2Q2

where Q1 and Q2 are the weighting matrices that can be
taken equal to the inverse of the noise covariance matrices
exactly as in the EKF framework, and the other matrices are
defined so that the cost function expresses the above two
requirement (8) and (9), namely:

G1 = Ω
(
Ūk

)

G2 = Φ
(
Ūk

)

S 1 = Yk − Γ
(
Ūk

)
.Ūk − Ēk

S 2 = A(u(k − 1), w(k − 1))x̂(k − 1) +

B[u(k − 1) w(k − 1)]T −Ψ
(
Ūk

)
.Ūk
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Simulation results related to the state estimation error and the
offset estimation. The disturbance ε inserted at t = 100 s is
quickly determined by the updating mechanism (7).

With the above notations, an updating law x̂(k) for the state
estimation can be defined as follows:

x̂(k) = Φ
(
Ūk

)
.
[(

GT
1 .Q1.G1 +GT

2 .Q2.G
T
2

)†

(
S T

1 .Q1.G1 + S T
2 .Q2.G2

)T ]
x̂(k − 1) + Ψ

(
Ūk

)
.Ūk (10)

leading to the following implicit form for the observer:

x̂(k) = Obs
(
x̂(k − 1), Ȳk, Ūk

)

The simulation results of Figure 5 show the evolution of the
norm of the state estimation error ||x − x̂|| of the moving
horizon observer and the disturbance rejection of the off-
set ε given by (7). The weighting matrices Q1 and Q2 were
set to the identities and the integrator gain ki = (3.5, 3.5).
Note that despite the presence of a bias on the outputs, the
asymptotic convergence of the estimation error is provided
by the observer thanks to the updating mechanism (7).

3 CONTROL DESIGN

In this section, a parameterized NMPC scheme is proposed
for the input dependent model (2). This scheme involves
a state observer design presented in the previous section as
well as the computation of the steady state that is compatible
with the desired output. This is the aim of the next section.

3.1 Steady State Computation

The construction of the control parametrization involves the
computation of the steady state/control pair that is compat-
ible with the desired output value. This comes from the
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Achievable set-points yd at w = (0, 0) for the model (1).

fact that the diesel engine system is open loop stable, as
shown previously. More precisely, given the measured dis-
turbance vector w and the desired value yd, if the model (2)
is considered, the steady control is computed by solving the
following two-dimensional optimization problem:

u∗
(
w, yd
)
= arg min

ud∈[umin,umax]

∥∥∥yc (ud, w) − yd
∥∥∥2 (11)

yc (ud, w) = C (ud, w) [In − A (ud, w)]−1 . [B.ud +G.w]

Moreover, having the steady control u∗, the steady state x∗
easily follows according to:

x∗ (u∗, w) =
[
In − A (u∗, w)

]−1 .
[
B.u∗ +G.w

]
(12)

As a matter of fact, the present formulation represents a
generic way to find the stationary control (11). By keeping
this simple optimization problem, one enforces the generic
definition of the control structure. In the next section, it
is shown how this steady state pair is incorporated in the
NMPC control design in order to derive a real-time compat-
ible output feedback scheme. However, before going further
into the NMPC formulation, it is important to emphasize
some notions about the feasibility of set-points.

As mentioned in the introduction, the set-points yd are
generated by another control loop that manages the emission
level. Considering for instance the model (1) and assuming
that the set-point yd is given as well as the measured distur-
bance vector w. In Murilo et al. (2009), it has been shown
that one can define a Linear Programming (LP) problem
according to (1), in order to compute the closest feasible set-
point corresponding to the steady state x∗. The parameter μ∗
is obtained by solving this LP and gives a crucial informa-
tion on the feasibility of the desired set-points. This can be
clearly seen in Figure 6, where a schematic view of the set
of achievable values yd under w = 0 is shown.
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The green region of Figure 6 shows the achievable zones,
those for which the solution of the LP gives μ∗ = 1. No
controller can achieve a pair that is outside this region. If
a set-point falls in the red region it must be replaced by the
closest one y∗ = μ∗ · yd corresponding to (0 ≤ μ∗ < 1). The
formulation of the related LP and the complete description
of its parameters are presented in Murilo et al. (2009).

3.2 Recall on the Parameterized NMPC

It is well-known that one of the main challenges concerning
NMPC approaches is the real-time implementation. This is
much more evident when fast dynamical systems are consid-
ered since optimization process must be solved within the
sampling time. Many approaches have been developed in
recent years to meet the real-time implementation require-
ment. Although different kinds of classifications can be
adopted. One possible and legitimate classification splits the
existing solution in two categories: Piece-Wise Affine-like
(PWA) solutions (Bemporad et al., 2002; Ferreau et al.,
2006) and fully nonlinear solution (Alamir, 2006; Diehl
et al., 2005; Ohtsuka, 2004; Zavala et al., 2006).

The approach proposed in the present papers falls in this
last category. More precisely, the parameterized approach
is adopted here as it enables a low dimensional on-line opti-
mization problem to be derived that can be solved using sim-
ple and therefore potentially certified solution. This last fea-
ture is of great importance when talking about solutions that
have to be adopted in industrial large production units con-
text. Indeed, in such context, implementing quite involved
algorithms that would be needed to handle high dimensional
decision variable may be incompatible with car company
certification requirements.

The control parametrization approach comes down to
choose the candidate piecewise open-loop control profiles
within a class of control profiles that are defined by a low
dimensional vector of parameters p ∈ P. More precisely, a
mapUpwc : P×Rnx → UNp has to be defined where Np is the
prediction horizon, such that the piecewise constant control
sequence corresponding to the parameter p is given by:

u = Upwc (p, x̂(k))

where p is the parameter to optimize at each decision
instant k, and x̂(k) the estimated state at present instant.

Now, the optimal parameter p̂ is computed by solving the
following optimal control problem in the decision variable p
for a given estimated state x̂(k):

p̂ = argmin
p∈P
[
J (p, x̂(k))

]
under C (p, x̂(k)) ≤ 0

where C(p, x̂(k)) are the constraints to be respected and p̂
the optimal parameter vector. Once the optimal parameter p̂
is obtained, the optimal control sequence ũ follows accord-
ing to:

ũ = Upwc ( p̂, x̂(k)) =
(
u(1) ( p̂, x̂(k)) . . . u(Np) ( p̂, x̂(k))

)

from which only the first element of u(1)( p̂, x̂(k)) is applied
during the sampling period [k + 1, k + 2], namely:

uopt(k + 1) = u(1) (p̂, x̂(k))

During the next sampling period [k + 1, k + 2] (while the
control uopt(k+1) is applied), the same steps described above
are executed again, and the next optimal control namely
uopt(k+2) is provided, which leads to an implicit output feed-
back strategy. In the following section, the parametrization
used to solve the diesel engine control problem as described
above is presented.

3.3 Parametric NMPC Formulation for Diesel Engines

The parametrization of the control sequence involves the
stationary control (11) together with a simple temporal
parametrization of the future control sequence. In order to
do this, at the current instant k, the controller needs the esti-
mated state x̂(k) (10), the actual value of the control input
u(k − 1), already scheduled according to the computation
performed over the sampling period [k− 1, k] and the values
of the measured disturbances w(k).

While in standard formulation, all the components of the
control sequence u are taken as degrees of freedom, here an
exponential parametrization is used (Alamir, 2006). More
precisely, the temporal structure of the control sequence can
be written as follows:

u (iτs + t) = S atumax
umin

(
u∗ + α1.e

−λ.i.τs + α2.e
−q.λ.i.τs

)
(13)

for t ∈ [(k − 1)τs, kτs[

where i ∈ {1, . . . ,Np}, τs is the sampling time, λ > 0, q ∈ N
are tuning parameters, α1,α2 ∈ Rnu are the coefficients to be
determined as explained below and S at a saturation map for
the control input S at : Rnu → Rnu defined as:

S atui
max

ui
min

(ui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ui
min if ui ≤ ui

min

ui
max if ui ≥ ui

max

ui otherwise

, i ∈ {1, 2} (14)

Note that Equation (13) leads to the following set of equa-
tions:

u∗ + α1 + α2 = u(k − 1) (15)

α1.
(
e−λ.τs − 1

)
+ α2.

(
e−q.λ.τs − 1

)
= p · δmax (16)

where the first equation guarantees continuity of the control
profiles when i = 0 in (13) while the (16) simply states
that the difference between two successive applied control
does not exceed a fraction p ∈ [−1, 1]2 of some maximal
allowable values δmax ∈ Rnu involved in the constraint (4).
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The terms α1 and α2 become now dependent on the param-
eter vector p and can be determined by:
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
u1
1 (p)
α

u1
2 (p)
α

u2
1 (p)
α

u2
2 (p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
e−λ.τs − 1 e−q.λ.τs − 1 0 0

0 0 1 1
0 0 e−λ.τs − 1 e−q.λ.τs − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1(k − 1) − u∗1
p1δmax

1

u2(k − 1) − u∗2
p2δmax

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

where the notation α1 = [αu1
1 ;αu2

1 ] and α2 = [αu1
2 ;αu2

2 ]
is used. Injecting (17) in the expression of the control
sequence (13) leads to:

u (iτs + t, p) = S atumax
umin

(
u∗ + α1(p).e−λ.i.τs + α2(p).e−q.λ.i.τs

)

Based on the above notation, given the closest feasible set-
point y∗, the estimated state x̂ and the current measure-
mentw of the disturbance vector, the best set of parameters p̂
to be used in the definition of optimal control sequence is
provided by solving the following optimization problem:

p̂ = argmin
p∈P

⎡⎢⎢⎢⎢⎢⎢⎢⎣ρx.
∥∥∥∥X
(
Np, x̂(k), p

)
− x∗ (y∗, w)

∥∥∥∥+
Np−1∑
i=0

∥∥∥Y (i, x̂(k), p) − Y∗f (i, y∗)
∥∥∥2

Qy

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (18)

where Y(i, x̂(k), p) and X(Np, x̂(k), p) are respectively, the
output and the final state prediction based on the system
model (2) under the open loop control profile defined by p
over [k+1, k+Np] and starting from the estimated state x̂(k).
The state x∗(y∗, w) is the closest stationary state obtained
by (12), ρx > 0 is some weighting coefficient used to enforce
the constraint on the final state and hence stability of the
closed-loop system. Finally Y f (i, y∗) is the filtered version
of the set-point trajectory enabling to decouple the response
time from overshoots:

Y f (i, y∗) = y∗ + e−3τs .i/tr .
[
y(k) − y∗]

where tr is the desired response time of the closed-loop sys-
tem. The weighting matrix Qy ∈ Rny×ny is used to differently
weight the outputs y1 and y2, and has the following structure

Qy =

⎛⎜⎜⎜⎜⎜⎜⎝
ρ1
ȳ21

0

0 ρ2
ȳ22

⎞⎟⎟⎟⎟⎟⎟⎠
ny×ny

where ρ1 and ρ2 are the weighting terms of y1 and y2 respec-
tively while ȳ1 and ȳ2 are normalization terms related to y1

and y2 respectively. Figure 7 illustrates the whole output
feedback strategy, with the MHO representation and the
parameterized NMPC.

The next step consists in defining a suitable optimization
process in order to solve the optimization problem (18) and
to obtain p̂.

h h

p

Figure 7

Schematic view showing the output feedback strategy based
on the moving horizon observer and the predictive control. The
present instant is k. Ȳk is collected during the past time interval
[(k − No + 1)τs, kτs] and the past values of u and w are stored
in Ūk. Then, the state x̂(k) can be estimated by using (10),
which is used to define the parameterized NMPC scheme.

3.4 Optimization Process

As soon as systems with fast dynamics are concerned, the
computation time becomes a crucial issue since the time
needed to reach an optimal solution may be greater that
the nominal control updating period (Alamir, 2006). More
precisely, assume that only a finite number qmax ∈ N of
iterations of some optimization process S can be performed
during the sampling period [k−1, k]. The optimal parameter
vector is no more available and p becomes a dynamic vari-
able that is no more defined as a function of the state. This
leads to the following extended representation:

x̂+(k) = X (τs, x̂(k), p(k)) (19)

p+(k) = Sqmax (p(k), x̂(k)) (20)

where Sqmax denotes qmax successive iterations of S starting
from the initial guess p(k), and X(τs, x̂(k), p(k)) the state at
instant k + 1 under the control defined by p(k).

Note that the stability of the extended system (19)-(20)
depends on both the quality of the model and the efficiency
of the optimizer at the current state. More detailed descrip-
tion of this stability issue can be found in Alamir (2009).

Figures 8 and 9 show the evolution of p as well as the
system outputs. Three particular instants ki, i{1, 2, 3} have
been chosen to illustrate the shape of the performance index
J(·, x̂(ki)) as a function of the two decision variables p1

and p2.
Regardless the solver choice, the complexity of the opti-

mization task heavily depends on the problem formulation,
in particular, the control parametrization. Figure 10 clearly
shows how the low dimensional control parametrization
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Figure 8

Simulation results showing the evolution of p1 and p2, with
Np = 30, λ = 1, q = 5, w = (448, 0.8)T and yd = (60,−25)T

(Fig. 9). The initial state of the observer has been set to 0.
Three particular instants (t = 0.1 s, t = 2.2 s and t = 5 s) have
been used to illustrate the instantaneous shape of cost function
(Fig. 10).
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Figure 9

Simulation results showing the measured values of the MAF
and the MAP (deviations from the central values) and desired
outputs yd . Vertical lines define the three instants used to illus-
trate the shape of the cost function (Fig. 10).

adopted above leads to a well posed optimization problem
(the cost function seems to be convex). This explains why
the upper bound (qmax = 30) on the number of function eval-
uations has never been reached during all the forthcoming
validation results.

As for the optimizer being used, some classical gradient-
free algorithms such as the Powell’s method and the simplex

8 000

7 500

7 000

6 500

6 000

5 500

1.0

-1.0

1.0

-1.0

1.0

-1.0

Figure 10

The shape of the cost function J(·, x̂(ki)) for the three particular
instants depicted in Figures 8 and 9 [t1 = 0.1 s (top), t2 =
2.2 s (middle), t3 = 5.0 s (bottom)]. Note the trajectory of the
optimum value p̂ and the decrease of the cost function from top
to bottom showing the efficiency of proposed algorithm. This
efficiency relies on the convex shape and the low dimensional
underlying optimization problem.

were tested, and the results were quite positive and very sim-
ilar. For the sake of completeness, let us briefly introduce
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a particular SQP routine which was developed for simula-
tion and also used for experimental validation. Basically,
the algorithm performs successively scalar SQP’s on each
component, each followed by an adaptation of a trust region.
After each complete cycle of scalar SQP’s (over the two
components), the results are used to construct an approxima-
tion of the gradient along which potentially successful steps
are attempted. Again, a trust region along the gradient is
updated accordingly. This yields an optimization algorithm
that uses the model as a black-box simulator and is therefore
easily re-usable if a more sophisticated and faithful process
model is made available.

4 EXPERIMENTAL RESULTS

The experimental validation of the present parameterized
NMPC was performed on the real world diesel engine at
JKU Linz. The test bench consists in a diesel engine ful-
filling the EU4 emission standard, controlled by the Engine
Control Unit (ECU) and an AVL dynamometer to simulate
the load on the engine shaft. The real time environment
was managed by d-Space Autobox running at 480 MHz,
linked to Matlab software, and the programs (controller and
observer) were developed in C language. The sampling time
was set to 50 ms.

As mentioned earlier, the set-points are generated by
look-up tables of the measured disturbances w, the engine
speed and fuel injection. Two types of experiments are pre-
sented hereafter. First, a manual setting of w profile was
used, by imposing a step sequence trajectory for both vari-
ables. In the second part, the trajectories were generated
by the non-urban part of the New European Driving Cycle
(NEDC). This cycle is defined to represent the typical use
of a car in Europe, and the resulting performance is used,
among other indicators, to assess the emission levels of car
engines.

Figure 11 illustrates these scenarios. In both cases, the
NMPC closed-loop performances are compared to the per-
formance of the ECU. Table 1 shows the parameters used in
the experiments. Since the model (2) was identified around
a central value, the MAF and the MAP are represented by
their difference with respect to this central value.

TABLE 1

Parameters used in experiments

Parameter Value Parameter Value

τs 0.05 s δmax (1, 1)T %/τs
Np 30 No 10

λ 1 qmax 30

q 5 ρx 0.001

ρ1 1 ρ2 1

ȳ1 1 ȳ2 1

tr 3 · τs/q · λ ki (0.6, 0.01)T
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Figure 11

The measured disturbances (fuel injection and speed engine)
used for the set-point generation. On the top the step sequence
and on the bottom the non-urban part of the NEDC.

4.1 Successive Steps Sequence

Figure 12 shows the ECU’s response to a sequence of step
changes. The ECU’s control design is based on a Single
Input Single Output (SISO) controller, with feed-back con-
trol for MAF and feed-forward for MAP. As shown in this
figure, the MAF is highly weighted by ECU while the
MAP’s tracking is viewed as a secondary task.
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Figure 12

ECU’s response to a sequence of step changes. Note that the
VGT is not directly controlled and only the MAF is correctly
tracked. The steady-state error for MAP can reach 90% of the
desired set-point.
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Figure 13

Experimental results using a parameterized NMPC scheme,
with the standard parameters of Table 1. The MAF and the
MAP are simultaneously tracked. Results are shown with and
without the use of the offset estimation. It comes clearly that
the integrator term eliminates the offset error in the station-
ary state. The overshoot can reach 70% for MAF but with a
response time of 2 seconds approximately. This figure is to be
compared to Figure 14 where a weighting on the terminal state
has been added.

The first experimental validation of the parameterized
NMPC approach is shown in Figure 13. Note that the con-
troller is able to track both variables, which are equally
weighted. The constraints on the inputs are respected, and
some overshoots may come from the fact that measured dis-
turbances are not filtered, especially the engine speed. Note
the non-minimum phase behavior which forces the inputs
to take one direction before coming back to the right one.
Offset errors are eliminated by means of the integrator term
introduced in Equation (7). Moreover, the computation time
needed to perform the optimization routine never reaches
the sampling rate of 50 ms during the runtime execution,
which means that the proposed output feedback strategy is
real-time implementable.

In order to deal with overshoots and oscillations, the ter-
minal state was strongly weighted, as shown in Figure 14.
On the other hand, the system’s response time becomes a bit
slower. This is the classical trade-off between these require-
ments. Some other scenarios were tested by changing the
parameters of Table 1 without significant improvement on
the results.

4.2 NEDC Sequence

The second part of the experimental validation consists in
testing the present controller using the non-urban part of the
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Figure 14

Experimental results using a parameterized NMPC scheme,
with ρx = 1 000. Comparing to the previous scenario, over-
shoots are considerably reduced for both outputs (maximum of
5% for MAP) by weighting the terminal state at the price of the
slower response time (interval from 5 to 15 seconds for MAP
depending on the operational point of the engine). Moreover,
the steady-state error is correctly handled.
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Figure 15

Experimental results concerning the ECU under the extra-
urban part of the NEDC. Despite of a good tracking perfor-
mance in the first part of the scenario, especially for the MAF,
the tracking performance deteriorates on the high speed parts
of the cycle.

NEDC. Figure 15 shows the ECU’s tracking performance.
The MAF is correctly tracked until t = 210, where the
engine speed exceeds the 2100 RPM (Fig. 11). The same
deterioration at high speed is also noted on the MAP track-
ing performance. On the other hand, the NMPC approach
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Figure 16

Experimental results using the proposed parameterized NMPC
scheme with the standard parameters depicted in Table 1. Note
that both variables are correctly tracked, especially in the high-
speed part.

presented in Figure 16 clearly shows a more regular quality
in the tracking performance for both variables comparing
to the ECU’s, except in the last part at low speed and fuel,
where model uncertainties become too high to compensate.
Moreover, the slow dynamics of the engine speed profile of
the NEDC does not generate abrupt set-point variations, and
naturally filters oscillations and overshoots.

However, the present solution seems to be quite sensi-
tive to the fast set-point variations. This is probably due to
the fact that the updating rate is not fast enough to com-
pensate for model uncertainties. The computation time that
is needed to perform the computation is beyond the 10 ms
which means that a model with lower sampling period can
still be used with certainly best performance in terms of
tracking. Consequently, one may suggest that the current
performance can be viewed as a pessimistic estimation of
the best achievable performance with a high sampling rate
model.

5 CONCLUSION AND FUTURE WORKS

In this paper, an experimental validation of an output feed-
back based on a NMPC scheme was presented for a diesel
engine air path. First results show that the parameterized
NMPC solution together with a MHO are real-time imple-
mentable while constraints on the inputs are structurally
handled. The tracking performance is quite promising when
compared to the existing controller.

Nevertheless, the main contribution of the paper is the
fact that the present control scheme can work as a black-
box solution for diesel engines in general, dealing with more
sophisticated and faster models. The success of this NMPC
strategy on such a structure-free model would emphasize
our claim on the generic feature of the proposed approach
and its complete independence with respect to any structural
assumptions.

First simulation results using the proposed controller on
a fully sixth-order non linear model are quite promising and
will be reported in future communications.
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