N

N
N

HAL

open science

Hiphop.js: a language to orchestrate web applications

Colin Vidal, Gérard Berry, Manuel Serrano

» To cite this version:

Colin Vidal, Gérard Berry, Manuel Serrano. Hiphop.js: a language to orchestrate web ap-
plications. SAC: Symposium on Applied Computing, Apr 2018, Pau, France. pp.2193-2195,

10.1145/3167132.3167440 . hal-01937252

HAL Id: hal-01937252
https://hal.science/hal-01937252
Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01937252
https://hal.archives-ouvertes.fr

Hiphop.js: a language to orchestrate web applications

Colin Vidal
Université Nice Cote d’Azur
Inria Sophia Méditerranée
colin.vidal@inria.fr

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Orchestration languages;

KEYWORDS
Web Programming, Reactive Programming, Orchestration

ACM Reference Format:

Colin Vidal, Gérard Berry, and Manuel Serrano. 2018. Hiphop.js: a language
to orchestrate web applications. In SAC 2018: SAC 2018: Symposium on
Applied Computing , April 9-13, 2018, Pau, France. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3167132.3167440

1 INTRODUCTION

We are interested in web orchestration, which is the problem of
appropriately handling the asynchronous events appearing in pro-
gram executions. It is known be one of the major difficulties of web
programming (see callback hell [9, 11]).

High-level approaches to orchestrate web applications have been
developed in academia or industry. The Functional Reactive Program-
ming (FRP) concept [4] has been carried up to the web by Flapjax
[5, 10], which adopts a dataflow programming style: when a variable
is modified, any expression that references it is implicitly reevalu-
ated. Others techniques targeting GUI updates [1, 6, 8, 12] consist
in associating a state with a set of graphical elements and auto-
matically updating the graphics on changes. In JavaScript Promises
and async/await constructions [7] make it possible to chain asyn-
chronous actions in a specific sequential order. Working at a more
abstract level, these solutions avoid using callbacks.

Our goal is to go further with yet another solution based on
a new language called Hiphop.js. It is a JavaScript extension of
Esterel [2] based on three reactive control mechanisms: explicit con-
currency, synchronisation using synchronous signals, which makes
the handling of concurrent issues much easier, and preemption, i.e.
the explicit cancellation of an ongoing orchestration subactivity.
Hiphop.js suitably extends the core Esterel notions to deal with
web paradigms such as application structure dynamicity. Hiphop.js
follows a previous Scheme-based prototype [3], but takes different
approaches w.r.t. the interaction with the host language.

This paper gives an informal introduction to Hiphop.js through
a small example that compares the programming of a simple event-
aware program in both JavaScript and Hiphop.js.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC 2018, April 9-13, 2018, Pau, France

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5191-1/18/04.

https://doi.org/10.1145/3167132.3167440

Gérard Berry
Collége de France
gerard.berry@college-de-france.fr

2193

Manuel Serrano
Université Nice Cote d’Azur
Inria Sophia Méditerranée
manuel.serrano@inria.fr

2 SPECIFICATION OF THE EXAMPLE

We study the timer application of the 7 GUIs project ! where the
timer’s duration is represented by a slider, the current elapsed time
is displayed both by a gauge and as a number, and a Reset button
resets the timer.

When running the timer the gauge and numeric field are con-
stantly updated until the duration is reached. From then on, setting
a bigger duration immediately restarts the timer from the current
elapsed time. At any time, pressing Reset resets the elapsed time to
0 and restarts the timer.

3 IMPLEMENTATION

We compare the JavaScript and Hiphop.js timer implementations,
the latter introducing the Hiphop.js programming style and con-
structions.

The plain HTML GUI is common to JavaScript and Hiphop.js:

<div>Elapsed time: <meter id="meter"/></div>

<div>s</div>

Duration:
<input id="range" max="100"

onchange="setD(this.value)"/>

<button onclick="resetE()">Reset</button>

type="range"

3.1 JavaScript implementation
The JavaScript code is as follows:

var D=0, E=0,

window.onload

id=-1;
function() {
$("meter").value=E; $("meter").max=D;
$("elapsed").innerHTML=E; $("range").value=D;
3
function tick() {
if (E<D) {
E+=0.1; $("meter").value=E;
$("elapsed").innerHTML=E;

}

if (E==D) { clearTimeout(id); id=-1; }
3
function startIntervallfNeeded() {

if (id==-1 && E<D) id=setInterval(tick,

100);
3
function resetE() {
E=0; $("meter").value=E;
startIntervallfNeeded();

id=-1

clearTimeout (id);

3
function setD(value) {

D=value; $("meter").max=D;

Uhttps://github.com/eugenkiss/7guis/wiki#time

https://doi.org/10.1145/3167132.3167440
https://doi.org/10.1145/3167132.3167440

startIntervalIfNeeded(); 3}

3.2 Hiphop.js implementation
Let us first ignore the Reset button with a BasicTimer:

MODULE BasicTimer {
IN duration(9@);
OUT elapsed;
EMIT elapsed(0);
LOOP {
IF (VAL(elapsed) < VAL(duration)) {
RUN(TimeoutMod (100));
EMIT elapsed(PREVAL(elapsed) + 0.1);
} ELSE {
PAUSE ;

}

All Hiphop.js keywords are capitalized. MODULE defines a module,
here the whole Hiphop.js program. IN and OUT declare the program
interface. A Hiphop.js program is executed as a succession of atomic
reactions, each handling input signals and possibly generating out-
put signals.

Contrary to JavaScript scattered callbacks, in Hiphop.js there is
a unique temporal code, which is based on classical sequencing and
looping, signal emission, and temporal statements. Each statement
has a temporal duration in term of reactions. EMIT emits an signal
and terminates immediately, i.e. passes control in sequence in the
very same reaction. LOOP immediately starts its body and restarts
it immediately when it terminates. PAUSE pauses for one reaction.

Let us now explain how BasicTimer executes. At initial reaction,
LOOP starts its body that emits the elapsed signal with value 0. The
IF test is then evaluated. If the value of elapsed is less than that of
duration, the TimeoutMod module is ran. As presented in Section 7
this will terminate the reaction, and after 1/100 will resume with
the elapsed emission. Otherwise, the reaction terminates.

Adding Reset is achieved by another temporal statement called
LOOPEACH placed around the unmodified BasicTimer module:

MODULE Timer {
IN duration (@),
OUT elapsed;
LOOPEACH(NOW(reset)) {
RUN(BasicTimer);

reset;

}

LOOPEACH immediately starts the BasicTimer. From then on, when-
ever Reset is pressed, this timer is killed whichever state it was in,
and a new timer is immediately restarted afresh. The advantage of
temporal programming to modularly describe behavior becomes
obvious: no internal state manipulation of BasicTimer needs to be
performed by the user.

4 EXTENSION OF THE SPECIFICATION

The differences between Hiphop.js and JavaScript are more visi-
ble as the orchestration problem gets more complex. Let us add a
new functionality to the previous specification: the timer can be

2194

suspended when it is running. In that case, the elapsed time is no
longer incremented until the timer is resumed. The duration slider
and Reset button remain active during suspension. In the GUI, we
add a Suspend button that toggles the timer between the normal
and suspended mode. The Suspend button turns to orange during
suspension.

5 EXTENDED IMPLEMENTATION
The GUI is extended with a Suspend button:

<button id="susp" onclick="susp()">Suspd</button>

5.1 New JavaScript implementation
Events triggered by the Suspend button are handled by:
function susp() {
if (isSusp) {
isSusp = false;

$("susp").style.backgroundColor="transparent";
startIntervalIfNeeded();

} else {
isSusp = true;
$("susp").style.backgroundColor="orange";

clearTimeout (id); id =

= -1 1%

A new global variable isSusp is used to keep the current state of
the suspension. The previous code needs adaptions:

function resetE() {
if (isSusp) {
isSusp false;
$("susp").style.backgroundColor
"transparent"; }
E=0; $("meter").value=E;
clearTimeout (id); id=-1;
startIntervallfNeeded();

}
function setD(value) {
D=value; $("meter").max=D;

if (!isSusp) startIntervalIfNeeded(); }

The orchestration becomes more complex to understand; the whole
program has been modified in a non-local way by adding isSusp,
patching existing functions, and adding another function.

5.2 New Hiphop.js implementation
The new Hiphop.js SuspendableTimer is as follows:

MODULE SuspendableTimer {
IN duration(@), reset, suspend;
OUT elapsed, suspendColor;
LOOPEACH (NOW(reset)) {
FORK {
SUSPEND TOGGLE (NOW(suspend)) {
RUN(BasicTimer);
}
} PAR {
EMIT suspendColor ("transparent");
LOOP {
AWAIT (NOW(suspend));

EMIT suspendColor ("orange");
AWAIT (NOW(suspend));
EMIT suspendColor ("transparent");

}

The code is now made of two parallel arms for controlling the
JavaScript timer and for coloring the Suspend button. Since both
arms are included in the LOOPEACH, they will be both simultaneously
killed and restarted when reset occurs.

Between resets, both arms work in lockstep, i.e. conceptually
synchronously. The suspend input signal is broadcast. The first arm
automatically suspends and resumes the timer as specified, while
propagating its termination. The second arm toggles the button
color.

As for the first Hiphop.js implementation, the code makes the
temporal behavior explicit, the syntactic nesting of temporal con-
struction explicitly specifying theirs lifetimes and priorities. States
are in the code, not in the data, and the BasicTimer code can be
directly reused without modification.

6 LINKING HIPHOP.JS AND JAVASCRIPT

This section explains the link between Hiphop.js and JavaScript. Let
us call stm the reactive machine compiled from SuspendableTimer
and describe its API. When Reset button is pressed, the GUI calls
the resetE JavaScript function. In Hiphop.js, we make this function
send the reset signal and trigger a reaction:

function resetE() {

stm.input("reset"); stm.react();

}

The input signals duration and suspend are respectively handled
by functions setD and susp in the same way.

Conversely, to transform signal output by Hiphop.js into JavaScript

actions, we associate Hiphop.js event listeners with output signals.
For instance, the following code updates the gauge and numeric

field:

stm.addEventListener ("elapsed", evt => {
$("meter").value evt.signalValue;

$("elapsed").innerHTML

evt.signalValue;

3

The other outputs are handled in the same way.

7 CONTROLLING ASYCHRONOUS ACTIONS

The EXEC Hiphop.js statement is used to launch and control exter-
nal actions whose execution spans several Hiphop.js reactions: a
XMLHTTPRequest, a setTimeout call, etc.

Here is the source code of the parametric TimeoutMod timer
submodule, parametrized by a number of milliseconds:

function TimeoutMod (nms) {
return MODULE {

let id;

EXEC id setTimeout (DONEREACT,
ONKILL clearTimeout (id)
ONSUSP clearTimeout (id)

ONRES id setTimeout (DONEREACT,

nms)

nms);

2195

}

The Hiphop.js “EXEC start-expr” statement executes the JavaScript
expression start-expr. Then, it pauses at each reaction, terminating
only when the action has completed. When EXEC starts, a JavaScript
function is automatically created, it is referred to as DONEREACT in
Hiphop.js. Its call will trigger both the termination of EXEC and
a new reaction. An EXEC statement also specifies three optional
side-effecting expressions: the ONKILL expression is automatically
evaluated when the EXEC statement is killed, for example here by
the “LOOPEACH(NOW(reset))” enclosing statement. The ONSUSP
expression is automatically evaluated when EXEC gets suspended,
and the ONRES statement when it gets resumed.

8 CONCLUSION

Callback-based orchestration of web applications in JavaScript is
known to be quite difficult and hasardous. Better solutions have
already been studied in academic and industrial contexts. In our
opinion, they are not yet fully satisfactory since they are either too
invasive (dataflow programming style), too specific (targetting only
the GUI updates), or still limited (promises and async/await).

The Hiphop.js language extends JavaScript with a reacher orches-
tration solution. Our approach has been to port Esterel concepts
and techniques to the web, basing orchestration of web applications
on dedicated temporal statements.

In our opinion, Hiphop.js has two important virtues. First, it
deals with events orchestration in a very behavioral and modular
way, promoting straight code reuse over deep modification of ex-
isting code. Second, being smoothly embedded into JavaScript and
interfaced with standard code, it does not impose a drastic technical
change to users.

REFERENCES

[1] T.V.C. Alan Jeffrey. Functional Reactive Programming with nothing but Promises:
Implementing Push/Pull FRP using JavaScript Promises. In Workshop on Reactive
and Event-based Languages and Systems, 2015.

G. Berry. The Foundations of Esterel. In Proof; language, and interaction, 2000.
G.Berry, C. Nicolas, and M. Serrano. Hiphop: a synchronous reactive extension for
Hop. In Iternational workshop on Programming language and systems technologies
for internet clients. ACM, 2011.

G. Cooper. FrTime: A language for reactive programs. Reference Manual PLT-
TR2009-frtime-v4.2.3, PLT Scheme Inc., 2009.

G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-by-
value language. In European Symposium on Programming, 2006.

[6] E. Czaplicki and S. Chong. Asynchronous functional reactive programming for
guis. In ACM SIGPLAN Notices, 2013.

[7] ECMA. ECMAScript language specification, 2015.

[8] Facebook. React. https://facebook.github.io/react/.

[9] K.Kambona and B. et al. An evaluation of reactive programming and promises for
structuring collaborative web applications. In Workshop on Dynamic Languages
and Applications, 2013.

[10] L. A. Meyerovich, A. Guha, and J. P. B. et al. Flapjax: a programming language
for ajax applications. In Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA, 2009.

[11] T. Mikkonen and A. Taivalsaari. Web applications: Spaghetti code for the 21st
century. 2007.

[12] B.Reynders, D. Devriese, and F. Piessens. Multi-tier functional reactive program-

ming for the web. In Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software, 2014.

https://facebook.github.io/react/

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryList_V1
 qi2base

