
HAL Id: hal-01937197
https://hal.science/hal-01937197v1

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JavaScript AOT compilation
Manuel Serrano

To cite this version:
Manuel Serrano. JavaScript AOT compilation. the 14th ACM SIGPLAN International Symposium
on Dynamic Languages, Nov 2018, Boston, France. �10.1145/3276945.3276950�. �hal-01937197�

https://hal.science/hal-01937197v1
https://hal.archives-ouvertes.fr

JavaScript AOT Compilation
Manuel Serrano

Inria/Université Côte d’Azur

Manuel.Serrano@inria.fr

Abstract
Static compilation, a.k.a., ahead-of-time (AOT) compilation,

is an alternative approach to JIT compilation that can com-

bine good speed and lightweight memory footprint, and that

can accommodate read-only memory constraints that are

imposed by some devices and some operating systems. Un-

fortunately the highly dynamic nature of JavaScript makes

it hard to compile statically and all existing AOT compilers

have either gave up on good performance or full language

support. We have designed and implemented an AOT com-

piler that aims at satisfying both. It supports full unrestricted

ECMAScript 5.1 plus many ECMAScript 2017 features and

the majority of benchmarks are within 50% of the perfor-

mance of one of the fastest JIT compilers.

ACM Reference format:
Manuel Serrano. 2018. JavaScript AOT Compilation. In Proceedings
of ACM SIGPLAN Dynamic Language Symposium, Boston, NY, USA,
November 6, 2018 (DLS’18), 14 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction
Nowadays, JavaScript is no longer con�ned to the program-

ming of web pages. It is also used for programming server-

side parts of web applications, compilers (Microso� 2013),

and there is a growing trend for using it for programming

internet-of-things (IoT) applications. All major industrial ac-

tors of the �eld are looking for, or are already providing, Java-

Script based development kits (IoT.js, Espruino, JerryScript,

Kinoma.js, …). In this application domain, JavaScript pro-

grams execute on small devices that have limited hardware

capacities, for instance only a few kilobytes of memory. Just-

in-time (JIT) compilation, which has proved to be so e�ective

for improving JavaScript performances (Chang et al. 2009;

Chevalier-Boisvert and Feeley 2015, 2016; Gal et al. 2009), is

unthinkable in these constrained environments. �ere would

be just not enough memory nor CPU capacity to execute

them at runtime. Furthermore memory write operations

on executable segments are sometimes impossible on the

devices, either because of the type of memory used (ROM

or FLASH) or simply because the operating system forbids

them (iOS for instance). Pure JavaScript interpreters are

then used, but this comes with a strong performance penalty,

especially when compared to assembly or C programs, that

limits the possible uses.

DLS’18, Boston, NY, USA
2018. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

When JIT compilation is not an option and when interpre-

tation is too slow, the alternative is static compilation, also

known as ahead-of-time (AOT) compilation. However, this

implementation technique seems not to �t the JavaScript

design whose unique combination of antagonistic features

such as functional programming support, high mutation

rates of applications, introspection, and dynamicity, makes

most known classical AOT compilation techniques ine�ec-

tive.

Indeed, JavaScript is hard to compile, much harder than

languages like C, Java, and even harder than Scheme and

ML two other close functional languages. �is is because

a JavaScript source code accepts many more possible inter-

pretations than other languages do (Gong et al. 2014). It

forces JavaScript compilers to adopt a defensive position by

generating target codes that can cope with all the possible,

even unlikely, interpretations.

Let us illustrate this problem with a running example.

It shows well-known JavaScript folklore, but readers unfa-

miliar with this language might �nd it helpful to grasp the

challenges that must be overcome to implement JavaScript

e�ciently. Let us consider the following statement:

while(i < a.length) sum += a[i++];

It seems innocuous, especially to C and Java programmers

that will see here nothing more than a mundane loop sum-

ming all the elements of an array. �e assembly code that

compilers are expected to generate, is easy to guess as a mere

isomorphic translation would already be e�cient.

With JavaScript, this is another story. Of course, as with

C and Java, the code fragment can be used to sum array

elements, but it can also be used di�erently, for instance for

summing the a�ributes of an arbitrary object as in:

var a = { length: 3; "1": 1, "3": 3, "2": 2 };

while(i < a.length) sum += a[i++];

�is is worrisome for the compiler that cannot assume that

the elements to sum are stored consecutively in memory. To

keep the thing relatively simple, let us assume that a is indeed

an array. �e problem posed to the compiler is still far from

simple. JavaScript supports sparse arrays, so a being an array

is not enough for assuming that the elements are aligned.

Even worse, because of the prototype chaining, it might well

be that some elements are stored in another object, as in:

Array.prototype["2"] = 28;

var a = [1,,3];

delete a[2];

while(i < a.length) sum += a[i++];

1

DLS’18, November 6, 2018, Boston, NY, USA Manuel Serrano

Since the element 2 is removed from a, the prototype chain is

followed when the element a[2] is fetched, which yield the

value 28. Obviously, with such data structures, the assembly

code generated for this JavaScript loop is unlikely to look

like a mere iteration over a couple of assembly instructions

that fetch and sum consecutive memory locations!

�e index i also deserves some a�ention as nothing im-

posed it to be an integer. For instance, it could well be a

�oating-point number or, more interestingly, a string, or any

other object that will then be converted into either a number

or a string at runtime. For the example, let us consider that i

is a string. In that case, the i++ expression �rst converts the

initial string into a number and then increments it.

Even more challenging, let us replace i++ with i+=1. In

JavaScript i++, i+=1, and i=i+1 are not all semantically equiva-

lent, when type conversions are involved. When i is a string,

i+=1 no longer adds the integer 1 but it appends a su�x ”1”

to the string. �is enables a yet another input data type to be

used with the program. For instance, the following program,

also adds 3 (0+1+2) to the sum variable

var i = "0"

var a = { length: "011", "0": 0, "01": 1, "011": 2 };

while(i < a.length) sum += a[i += 1];

Notice that it is still possible and correct, to use this version

of the loop, with a being an array and i being an integer!

Finally, notice that we have only studied the modi�cations of

the type and shape of variables i and a, but of course it might

be possible as well to use various types for the variable sum,

with other interesting challenges for the compiler.

�is example illustrates that in general compilers can as-

sume very li�le about JavaScript programs. �e situation

is worsened further by the raise as li�le errors as possible
principle that drives the design of the language. JavaScript

functions are not required to be called with the declared num-

ber of arguments, fetching an unbound property is permi�ed,

assigning undeclared variables is possible, etc.

All these di�culties seem to prevent classic static compil-

ers to deliver e�cient code for a language as dynamic and as

�exible as JavaScript. We do not share this point of view. We

think that by carefully combining classical analyses, by de-

veloping new ones when needed, and by cra�ing a compiler

where the results of the high-level analyses are propagated

up to the code generation, it is possible for AOT compilation

to be in the same range of performance as fast JIT compilers.

�is is what we a�empt to demonstrate with this study. Of

course, our ambition is not to produce a compiler strictly

as fast as the fastest industrial JavaScript implementations.

�is would require much more engineering strength than

what we can a�ord. Instead, we only aim at showing that

static compilation can have performances reasonably close

to those of fastest JavaScript implementations. Reasonably
close is of course a subjective notion, that everyone is free to

set for himself. For us, it means a compiler showing half the

performances of the fastest implementations. We will show

in Section 7 that this objective has been reached or is closed

to be reached for many benchmarks.

We have developed such a static compiler. It is named

Hopc. It supports the full unrestricted ECMAScript 5.1 and

many features of ECMAScript 6 (ECMA International 2015).

It passes all the ECMAScript 5.1 test262-51 (ECMA Interna-

tional 2016) test suite and many other compatibility tests

such as the Kangax test suite (Kangax 2018), the MDN ex-

amples, and most Nodejs tests. �is paper focuses on how it

uses type information to generate e�cient code. It is orga-

nized as follows. Section 2 presents the main structure of the

compiler. Sections 3-6 overview the typing analyses we have

developed and some parts of the code generator. Section 7

presents a performance evaluation and Section 8 presents

the related work.

2 AOT Compilation
�e syntax of a JavaScript program gives a general informa-

tion about its meaning, but it gives almost no clue about the

nature of the values it manipulates, as the while loop example

of Section 1 that has been used with all sorts of data. JIT

compilers wait until they receive the actual values to compile

a program. When they generate the target code, they know

both the static structure of the program and the dynamic

memory layout of the data. So, they are able to approach

the performance of compilers of more static languages that

know these two things statically.

We have accommodated the principle of JIT compilation

customization (Chambers and Ungar 1989) to AOT compila-

tion by generating two versions for each function: a generic

version that can cope with all the possible interpretations,

and an optimized customized version, specialized for speci�c

data representation. In order to decide which customized

versions to generate, Hopc extracts as much as possible in-

formation from the source code. Modular compilation, a.k.a.,
separate compilation, prevents it to always being able to

make such deductions. In that case, it speculates beforehand

on the data structures that are likely to be used by the ex-

ported functions. �e key principle of the speculation is

the following assumption. �e most likely data structure a
program will use is the one for which the compiler is able to
produce its best code.

�e intuition behind the speculation is that the best code

will be generated for stable, simple, and classical data struc-

tures that are used for implementing classical algorithms. In

other words, the data structures that are likely to correspond

to the programmer’s intentions. In the example of Section 1,

many data types and many usages are possible. However, the

most likely one is the iteration over a �at array of numbers.

�is is the principle that governs Hopc design.

Hopc uses many analyses and optimizations. Some are

simple adaptations to JavaScript of existing analyses. �ese

are not presented in this paper because already described in

the literature. For instance, the Scope Narrowing optimization

2

JavaScript AOT Compilation DLS’18, November 6, 2018, Boston, NY, USA

that is a pre-requisite to all other analyses is not presented

here because it is a direct adaptation of Scheme’s letrec

compilation (Ghuloum and Dybvig 2009; Waddell et al. 2005).

Others are new or adapted to �t JavaScript.

• Data-�ow Type Analysis performs a type analysis that

is used to establish the hint typing hypotheses. It

is based on the occurrence typing (Kent et al. 2016;

Tobin-Hochstadt and Felleisen 2010) but it is pres-

ented here to show that in spite of the JavaScript

highly dynamic nature, useful type information can

be computed statically.

• Hint Typing is the speculative type inference. It se-

lects the hypotheses under which the compiler is able

to deliver its best code, and from these hypotheses, it

deduces types that let the compiler decide which spe-

cialized versions to generate. Hint types are unsound

as they do not denote super sets of all the possible

values variables can hold at runtime, neither they ab-

stract all possible correct program executions. When

they do not, the main negative consequence is a waste

of space caused by unused specialized code versions.

• Integer Range Analysis approximates statically integer

operations from the result of the hint typing analysis.

�e main originality of this contribution is not the

analysis itself that is based on (Logozzo and Venter

2010) but the way its results are used by the code gen-

erator to avoid boxing and tagging and to implement

array indices e�ciently.

Type information alone is not enough to generate fast code.

For that, the compilation chain has to include all sorts of

optimizations such as inline property caches, closure alloca-

tion, function inlining, data-�ow analysis, register allocation,

etc. Hopc includes many of them but it is out of the scope

of the present paper to describe them all. We have chosen

to only focus on the code generation for array accesses (Sec-

tion 6) because it is a di�cult and characteristic problem

posed by the JavaScript compilation and also because arrays

are ubiquitous in JavaScript programs.

3 Data-�ow Type Analysis
Types improve the quality of the generated code by enabling

the compiler to eliminate runtime tests and to use e�cient

data representations. In Hopc, types are collected using four

di�erent analyses, each re�ning the information collected

by the others. �e �st analysis is a data-�ow type analysis.
It is based on the occurrence typing (Kent et al. 2016; Tobin-

Hochstadt and Felleisen 2010).

�e Data-Flow Type Analysis distinguishes variable dec-

larations and variable references. It assigns a potentially

di�erent type to each occurrence of the same variable. For

that, it follows the execution �ow and gathers the explicit

and implicit type information the program contains. Let us

illustrate its behavior on the following de�nition:

1 function toString(o) {

2 if(typeof o == "string") return o;

3 if(typeof o == "number") return o + "";

4 if("toString" in o) return o.toString();

5 return toString(JSON.stringify(o));

6 }

�e variable o is explicitly checked on line 2. In the positive

branch the type string is associated to the variable. For a

similar reason it is associated the type number on line 3. On

line 4, it is only checked if toString is a property of o. �is

implies that in the following execution �ow o is of type object

(line 4 and 5), as the operator in requires its right-and-side

argument to be an object, and raises an error otherwise. We

call this an implicit type check.

3.1 Typing algorithm
For the sake of simplicity, we present a simpli�ed version of

the algorithm actually implemented in Hopc. We consider

only a subset of the actual source language, where throw,

break, and continue are omi�ed and where return is considered

always in tail position. Under these assumptions, the typing

algorithm can be presented as a set of inference rules. �e

language we consider is:

value v ::= nil | bool | ...
expr e ::= v | x | e(e) | e[e] | new e | function(x) {s}
stmt s ::= x=e | s;s | if(e) {s} else {s}

| while(e) {s} | return e
type τ ::= > | nil | bool | object | ... | τ → τ

Γ is a type environment mapping variables to types. Each

program location is associated with one type environment.

A type judgment is of the form [Γ ` inst ⇒ 〈τ , Γ′〉]), mean-

ing that the instruction inst is of type τ and evaluating that

instruction modi�es the type environment into Γ′. As state-

ments are only evaluated for their side-e�ect, they produce

no value and their judgments are wri�en [Γ ` s ⇒ 〈⊥, Γ〉].
�e core typing rules are given in Figure 1. All types are

subtypes of the type any also noted >. ⊥ is a fake type des-

ignating the lack of precise type information. We denote

Γ1 t Γ2 the least upper bound of Γ1 and Γ2. Γ\{x} designates

the environment where the variable x is �ltered out. When

an expression e evaluates to a function, we denote e↓body its

body.

�e typing algorithm does not keep track of values stored

in objects. As such, the typing of the property access Prop-
erty is typed with >. Typing object properties has the poten-

tial of signi�cantly helping the compiler producing be�er

code. It will be studied in future work. Function calls are

split in two rules. Call is used when the called function is

known statically. �e type of the expression is the return

type of the function and the typing environment is extended

with that of the called function. Funcall is used otherwise.

�e type of the expression is unknown (⊥) and all mutated

variables are stripped of the typing environment. In our ac-

tual implementation, only the mutated global variables and

the mutated local variables that appeared free in at least one

3

DLS’18, November 6, 2018, Boston, NY, USA Manuel Serrano

Γ ` e ⇒ 〈τ , Γ′〉

Γ ` nil ⇒ 〈nil, Γ〉
(Nil)

Γ ` true ⇒ 〈bool, Γ〉
(True)

Γ ` false ⇒ 〈bool, Γ〉
(False)

x ∈ Dom(Γ)
Γ ` x ⇒ 〈Γ(x), Γ〉

(Var)

Γ ` e ⇒ 〈τ , Γ1 〉

Γ ` x=e ⇒ 〈τ , Γ1[x : τ]〉
(Assign)

Γ ` function(x) {s} ⇒ 〈⊥ → ⊥, Γ〉
(Abs)

Γ ` e2 ⇒ 〈τ2, Γ2 〉 Γ2 ` e1 ⇒ 〈τ1, Γ1 〉

Γ ` e1[e2] ⇒ 〈>, Γ1 〉
(Property)

Γ ` e ⇒ 〈τ , Γ1 〉

Γ ` return e ⇒ 〈⊥, Γ〉
(Return)

Γ ` e ⇒ 〈τ , Γ1 〉

Γ ` new e ⇒ 〈object, Γ1 〉
(New)

Γ ` s1 ⇒ 〈τ1, Γ1 〉 Γ1 ` s2 ⇒ 〈τ2, Γ2 〉

Γ ` s1;s2 ⇒ 〈⊥, Γ2 〉
(Seq)

Γ ` e1 ⇒ 〈⊥ → ⊥, Γ1 〉 Γ1 ` e2 ⇒ 〈τ2, Γ2 〉 Γ[x : τ2] ` e1↓body ⇒ 〈τ , Γ3 〉

Γ ` e1(e2) ⇒ 〈τ , Γ3 〉
(Call)

Γ t Γ2 ` e ⇒ 〈τ , Γ1 〉 Γ1 ` s ⇒ 〈⊥, Γ2 〉

Γ ` while(e) {s} ⇒ 〈⊥, Γ1 t Γ2 〉
(While)

Γ ` e1 ⇒ 〈τ1, Γ1 〉 τ1 , ⊥ → ⊥ Γ1 ` e2 ⇒ 〈τ2, Γ2 〉

Γ ` e1(e2) ⇒ 〈>, Γ2\{assiдVars }〉
(Funcall)

Γ ` e ⇒ 〈τ , Γ1 〉 Γ1 ` s1 ⇒ 〈⊥, Γ2 〉 Γ1 ` s2 ⇒ 〈⊥, Γ3 〉

Γ ` if(e) {s1} else {s2 } ⇒ 〈⊥, Γ2 t Γ3 〉
(If)

Figure 1. Data-�ow core typing rules.

function are removed from the typing environment. For both

calls, the potential side e�ects of the function expression and

the argument expression are propagated to the produced

type environment. Not accounted by the Call rule, when a

constant function is called, the types of the actual argument

values are accumulated. When a function is used as a refer-

ence, that is not in the syntactic position of a function in a

call, the type > is assigned to its argument.

�e If rule types separately its two branches. �e type

environment it produces is the least upper bound of the type

environments computed for the two branches. To compute

it, when two types are not strictly equal, they are merged

into the type>. �e peculiarity of the While rule comes from

the handling of the side e�ects that might occur when eval-

uating the test and the body, as illustrated by the following

examples:

1 x = 4; while(x < 10) { x = "20"; }

2 x = 4; while(x = "20", false) { x = true }

When entering the �rst while, the variable x is known to be

an integer, a�er one iteration, its type has changed to string.

A�er executing the second while the variable x is a string, as

the body is never evaluated.

3.2 Collecting types
We now consider an extension of the core language

expr e ::= ... | typeof e | e instanceof e | e == e | e in e

that enables the typing algorithm to infer types from the

program control-�ow by using the additional rules given in

Figure 2.

�e rules Typeof, TypeofTrue, and TypeofFalse are used

for typing conditional expressions whose tests compare a

variable value to a type name. �ese rules use the additional

function TName that maps a type to its external type name

(for instance, in JavaScript the bool type is named boolean).

�e rule Typeof types the then branch of the conditional state-

ment with an environment where the variable x is known

to be of type τ . It applies when no precise type information

is known about the variable. When the type of x is known

then either TypeofTrue or TypeofFalse applies and only the

live branch is typed.

�e instanceof typing shares similarities with typeof. In

the then branch of a test, the variable is known to be an

object. Additionally the rule also assigns the type function

to its right-hand-side expression, as it is required to be a

function. �is is visible in the VInstOfV rule. A similar

reasoning is used for the Call rule, where the variable x is

known to be a function in the rest of the evaluation, and for

the in rule where x is known to be an object.

�e other rules (Binop, SLength, and SIndexOf) are straight-

forward. Although not presented here, the compiler uses

many other similar rules for typing known library functions

and other operators.

3.3 Control �ow breaks
�e occurrence typing has been introduced in the context of

the Scheme programming language, which is an expression-

based functional language. JavaScript is statement-based

and this demands to adapt the occurrence typing to cope

with the control �ow operators the language provides. Let

us consider the following example:

1 function f() {

2 function h(x) {

3 if(x > 0) throw x;

4 errno = 3;

5 }

6 errno = undefined;

7 h(10);

8 ... errno ...

9 }

According to the rules given in Figure 1, the variable errno is

assigned the type undefined line 6. Following the call line 7,

it is unconditionally assigned the type number line 4, which is

wrong because the line is executed only when x is negative

or null. By consequence, it is incorrectly considered of type

number line 8. Fixing that problem can be solved simply by

merely considering that all instructions that follow potential

4

JavaScript AOT Compilation DLS’18, November 6, 2018, Boston, NY, USA

Γ ` e ⇒ 〈τ , Γ′〉

Γ ` x ⇒ 〈γ , Γ〉 γ = ⊥ ∨ γ = > Γ[x : τ] ` s1 ⇒ 〈⊥, Γ2 〉 Γ ` s2 ⇒ 〈⊥, Γ3 〉

Γ ` if(x == typeof T Name(τ)) {s1} else {s2 } ⇒ 〈⊥, Γ2 t Γ3 〉
(Typeof)

Γ ` x ⇒ 〈τ , Γ〉 Γ ` s1 ⇒ 〈⊥, Γ2 〉

Γ ` if(x == typeof T Name(τ)) {s1} else {s2 } ⇒ 〈⊥, Γ2 〉
(TypeofTrue)

Γ ` x ⇒ 〈γ , Γ〉 γ , τ ∧ γ , ⊥ ∧ γ , > Γ ` s2 ⇒ 〈⊥, Γ2 〉

Γ ` if(x == typeof T Name(τ)) {s1} else {s2 } ⇒ 〈⊥, Γ2 〉
(TypeofFalse)

Γ ` x ⇒ 〈τ1, Γ〉 Γ ` e ⇒ 〈τ2, Γ2 〉

Γ2[x : object] ` s1 ⇒ 〈⊥, Γ3 〉 Γ2 ` s2 ⇒ 〈⊥, Γ4 〉

Γ ` if(x instanceof e) {s1} else {s2 } ⇒ 〈⊥, Γ3 t Γ4 〉
(VInstOf)

Γ ` x1 ⇒ 〈τ1, Γ〉 Γ ` x2 ⇒ 〈τ2, Γ2 〉

Γ2[x1 : object, x2 : ⊥ → ⊥] ` s1 ⇒ 〈⊥, Γ3 〉 Γ2[x2 : ⊥ → ⊥] ` s2 ⇒ 〈⊥, Γ4 〉

Γ ` if(x1 instanceof x2) {s1} else {s2 } ⇒ 〈⊥, Γ3 t Γ4 〉
(VInstOfV)

Γ ` x ⇒ 〈⊥ → τ , Γ〉 Γ ` e2 ⇒ 〈>, Γ2 〉

Γ ` x(e2) ⇒ 〈τ , Γ2[x : ⊥ → τ]〉
(Call)

Γ ` e1 ⇒ 〈string, Γ1 〉 Γ1 ` e2 ⇒ 〈τ , Γ2 〉

Γ ` e1["indexOf"](e2) ⇒ 〈number, Γ2 〉
(SIndexOf)

Γ ` e ⇒ 〈τ1, Γ1 〉

Γ ` e in x ⇒ 〈bool, Γ1[x : object]〉
(In)

Γ ` e1 ⇒ 〈τ1, Γ1 〉 Γ1 ` e2 ⇒ 〈τ2, Γ2 〉

Γ ` e1 == e2 ⇒ 〈bool, Γ2 〉
(Binop)

Γ ` e ⇒ 〈string, Γ1 〉

Γ ` e["length"] ⇒ 〈number, Γ1 〉
(SLength)

Figure 2. Optional data-�ow typing rules.

control breaks are optional. �at is, from the typing point of

view, it is enough to consider the function h equivalent to:

function h(x) {

if(x > 0) throw x;

if(fake) errno = 3;

}

To implement this solution, we extend the language as fol-

lows:

statements s ::= ... | break | continue | throw e

and we add a new parameter to the typing rules. It accounts

for the presence of breaks in the control �ow. It is true if

an instruction may break or return. It is f alse otherwise.

Type judgments become Γ ` inst ⇒ 〈τ ,κ, Γ′〉. Figure 3 we

add three rules for the new statements (Break, Cont, and

Throw). We modify the ,Return rule as we no longer impose

it to be terminal and we split the Seq rule in two. If the

�rst statement of a sequence does not break, its typing is

unchanged. If it breaks, the sequence is typed as a conditional

instruction, meaning that the resulting typing environment

is the merge of those of the two sub-statements (rule SeqBrk).

Provided with these additional rules, the data-�ow typing

can cope with the full JavaScript language.

3.4 Wrap up
A�er the data-�ow analysis completes, the compiler executes

another traversal of the tree to assign precise types, i.e., types

that are neither > or ⊥, to local variables and formal param-

eters for which the analysis has proved that a single type

is preserved at all initialization and assignment locations.

�is yields a decorated AST of the program where types are

added to variable declarations and variable references.

4 Hint Typing
�e data-�ow type analysis collects types for all occurrences

of all variables and formal parameters but it looses track

of values when: i) functions are exported, ii) functions are

used as closures, iii) values are stored in data structures. �e

hint typing helps in these situations. It re�nes the inferred

types, and restarts the whole typing process with these more

precise pieces of information. A �x point iteration proceeds

until no new type is collected.

�e hint typing consists in traversing the program, scan-

ning variables references in order to allocate heuristic types,

or hints, to variable occurrences that the data-�ow typing

has not been able to determine precisely. Hints are assigned

according to the syntactic contexts of the references and to

the types already collected. Once hints have been collected,

the most likely type of each yet untyped function parame-

ter is elected and the function de�nition is duplicated for

the specialized typed arguments. �e initial calls for which

the argument types match are replaced with calls to the

specialized function.

Let us illustrate this principle with the reverse function be-

low that reverses the elements of an array-like data structure.

�e example also de�nes two other functions, areverse that

calls reverse with an array, and oreverse that calls it with an

object. �is polymorphic use confuses the data-�ow analysis

that merges the two types, array and object, into a single any

type. �e source code below shows the function de�nitions

and the types inferred by the data-�ow typing, expressed

using the TypeScript syntax:

function reverse(a:any):any {

for(let i:int = 0; i < a.length/2; i++) {

let v = a[a.length-1-i];

a[a.length-1-i] = a[i]; a[i] = v;

}

5

DLS’18, November 6, 2018, Boston, NY, USA Manuel Serrano

Γ ` e ⇒ 〈τ , κ , Γ′〉

Γ ` break ⇒ 〈⊥, true , Γ〉
(Break)

Γ ` continue ⇒ 〈⊥, true , Γ〉
(Cont)

Γ ` e ⇒ 〈τ , κ , Γ1 〉

Γ ` return e ⇒ 〈⊥, true , Γ〉
(Return)

Γ ` s1 ⇒ 〈τ1, f alse , Γ1 〉 Γ1 ` s2 ⇒ 〈τ2, κ2, Γ2 〉

Γ ` s1;s2 ⇒ 〈⊥, κ2, Γ2 〉
(Seq)

Γ ` s1 ⇒ 〈τ1, true , Γ1 〉 Γ1 ` s2 ⇒ 〈τ2, κ2, Γ2 〉

Γ ` s1;s2 ⇒ 〈⊥, true , Γ1 t Γ2 〉
(SeqBrk)

Γ ` e ⇒ 〈τ , κ , Γ1 〉

Γ ` throw e ⇒ 〈⊥, true , Γ〉
(Throw)

Figure 3. Typing rules with breaking control �ow operators.

}

const areverse = ():any => reverse(a[23,56,3]);

const oreverse = ():any => reverse({length:2,"0":1,"1":45});

In the function reverse, the expression a.length/2 reveals

that the variable a is likely to be an array or a string, as

these are the two widely used JavaScript primitive types

that have a length property. �is suspicion is strengthened

by the expression a[i] that suggested an indexed access.

Array type is even more suspected as strings are generally

not accessed character by character but rather using API

methods or regular expressions. �e hypothesis of a being a

string is de�nitively invalidated by the expression a[i]=v as

JavaScript strings are immutable. Using that reasoning, the

hint typing allows us to transform this program into:

function reverse$$A(a:array):array {

for(let i:int = 0; i < aLen(a)/2; i++) {

let v = aRef(a, aLen(a)-1-i);

aSet(a, aLen(a)-1-i, aRef(a, i)); aSet(a, i, v);

}

}

function reverse$$(a:any):any {

for(let i:int = 0; i < a.length/2; i++) {

let v = a[a.length-1-i];

a[a.length-1-i] = a[i]; a[i] = v;

}

}

const reverse = (a:any):any =>

a instanceof Array ? reverse$$A(a) : reverse$$(a);

const areverse = ():array => reverse$$A(a[23, 56, 3]);

const oreverse = ():any => reverse$$({length:2,"0":1,"1":45})

At the price of a code growth, the new code is faster be-

cause the array accesses have been specialized. �is en-

ables two additional optimizations: an array bound checking

optimization (Section 5) and the inlining of array accesses

(Section 6).

Hints and type likelihood are computed with rules of the

form:

[[instx]] → H(x , h1,w1), ..., H(x , hn ,wn)

which reads as follows: for each occurrence of the instruc-

tion instx involving the variable x , x could have the type h1

with weight w1, …, and type hn with weight wn . When all

hints have been computed, a type likelihood is computed

for all yet untyped formal parameters. �e most likely type

is selected and the function is duplicated accordingly. Two

rules supplements this overly simple heuristic. In case of

equally likely types, the ordering array < string < object ap-

plies. When a parameter is i) wri�en in the function and

ii) hinted as being potentially an object and either null or

undefined, no specialization takes place because the compiler

will not be able to use the parameter type annotation to

generate be�er code.

Figure 4 shows a signi�cant sample of the rules used by

the compiler, where the notation T (e) designates the type

of e . �e rules apply to a version of the language extended

with binary operators, increment, and switch statements.

expr e ::= ... | e+e | e<e | x++
stmt s ::= ... | switch(e) {case e1 : ...caseen : ...}

Rules 1, 2, and 3 handle property accesses. Rule 2 and 3

re�ne rule 1 by observing that when the property name is

an integer or the string ”length”, the accessed data structure

is likely to be an array or a string. Rules 3 and 4 handle

property assignments. �e weights are chosen to rule out

the string type. �e rules 6-9 are examples of the numerous

rules that handle unary and binary operators. Rule 10 is

more interesting. It says that if all the case expressions of a

switch are of a certain type τ , the tested expression is then

likely to be of that type τ . When two rules apply for the

same expression, the hints and weights are summed up. For

example, for the expression x++ % y, the two rulesH(x, int, 1),
H(y, int, 1) apply. Let us show how these rules apply to the

reverse function.

[[a["length"]]] by rule (1) ⇒ H(a, object, 1)

[[a["length"]]] by rule (3) ⇒ H(a, object, 1),

H(a, array, 2), H(a, string, 2)

[[a[i]]] by rule (1) ⇒ H(a, object, 2),

H(a, array, 2), H(a, string, 2)

[[a[i]]] by rule (2) ⇒ H(a, object, 2),

H(a, array, 4), H(a, string, 4)

[[a[i]=v]] by rule (4) ⇒ H(a, object, 4),

H(a, array, 4), H(a, string, 4)

[[a[i]=v]] by rule (5) ⇒ H(a, object, 4),

H(a, array, 7), H(a, string, 4)

...

�is establishes that array is the most likely type for the

variable a and the compiler will then generate e�cient spe-

cialized code for that type.

6

JavaScript AOT Compilation DLS’18, November 6, 2018, Boston, NY, USA

(1) [[x[e]]] → H(x , object, 1)

(2) [[x[e]]] ∧ T (e) = int → H(x , array, 2), H(x , string, 2)

(3) [[x["length"]]] → H(x , array, 2), H(x , string, 2)

(4) [[x[e]=e]] → H(x , object, 2)

(5) [[x[e]=e]] ∧ T (e) = int → H(x , array, 3)

(6) [[x<<y]] → H(x , int, 1), H(y, int, 1)

(7) [[x%y]] → H(x , int, 1), H(y, int, 1)

(8) [[x+e]] ∧ T (e) = num → H(x , num, 1)

(9) [[x++]] → H(x , int, 1)

(10) [[switch(x){case e1:...case en:}]] ∧ ∀i ∈ [1..n] T (ei) = τ → H(x , τ , 1)

Figure 4. Hint typing rules.

4.1 Conclusion and further comments
Once hints are computed and functions duplicated, the AST

is cleaned up. �e function specialization makes it possible to

resolve statically some type checks and to remove dead-code.

For some programs, it also happens that the generic function

de�nition is never used and then removed from the tree.

When these simpli�cations are applied, the whole typing

process restarts. Each iteration improves the opportunities

of discovering and re�ning new types. In the current version

of the compiler, the granularity of the code duplication is

the function but it might be worth investigating �ner grain

duplication, for instance for duplicating loops. Currently,

speed is traded for size because functions are duplicated only

once, which ensures the computation termination.

�e hint typing stage delivers a decorated AST. Variable

declarations and references hold more precise types than the

data-�ow analysis alone could have discovered. �is AST

is suitable for the last type analysis that follows. �e hint

typing is an incarnation of the assumption motivating this

study: it is a tool the compiler uses to estimate the quality of

the di�erent versions it may generate for a same function.

5 Range Analysis
�e data-�ow typing and the hint typing work hand in hand

to improve the precision of the types they collect but they

are unable to produce re�ned annotations for numeric types.

For that, the compiler relies on a range analysis. It is a cen-

tral element toward good performances as the JavaScript

speci�cation exposes only double IEEE 754 numbers, whose

performance do not compete with those of �x integer values.

�e range analysis annotates precisely the AST so that the

code generator can map some numerical values into integer

hardware registers and omit over�ow checks.

�e range analysis computes for each integer expression

an approximation of the possible values it may evaluate to,

represented as an interval. When the analysis completes, a

tree traversal maps the general numerical types integer and

number to precise types such as index (an integer in the range

[0, 232−2]), length (i.e., [0, 232−1]), uint32, etc. Applied to the

reverse$$A function, the analysis establishes the following

intervals:

function reverse$$A(a) {

for(let i[0,0] = 0; i < aLen(a)/2[0,(232−1)/2]; i++[0,232−2]) {

...

}

}

which enables the compiler to map the variable i to an uint32

integer in the generated code. �is also enables the expres-

sion i++ to be executed without over�ow detection and it

enables fast array accesses, as shown in Section 6.

�e range analysis handles only integer variables (for the

data-�ow typing and the hint typing, integer values are mere

unbounded exact numbers, without range restriction). All

other variables are considered as potentially holding in�nite

values, approximated with the interval [−∞,∞].
�e range analysis is based on RATA, a typed analyzer

for JavaScript (Logozzo and Venter 2010) but it departs from

the previous work by relying on a new technique for in-

suring convergence. For the sake of conciseness we brie�y

present main analysis, as it is fairly standard, and we focus

on the convergence operator, usually named widening opera-
tor in the abstract interpretation community, as it is a crucial

element of the overall quality of the analysis.

5.1 �e Abstract Interpretation
�e range analysis is presented in Figure 5 as a set of typ-

ing rules, based on those of Section 3 where expressions

are extended to binary numerical operators and types are

extended with integer intervals. In addition to the previous

notations, 5 is a widening operator (see Section 5.2) and

we note Γ] {x < n} a new typing environment where the

variable x is constraint to be smaller than the value n (see

the IfRangeNum rule).

expr e ::= ... | e+e | e<e
type δ ::= ... | [int , int]

�e critical part of the analysis is the de�nitions of the

interval operations for binary and unary operators and for

tests, as explicitly used in the Plus rule and implicitly in

the IfRangeNum, and IfRangeVar rules. �ese operators

govern the whole analysis by specifying how to compute

approximations of integer operations. �ey are de�ned in

�gure 6.

7

DLS’18, November 6, 2018, Boston, NY, USA Manuel Serrano

Γ ` e ⇒ 〈δ , Γ′〉

Γ ` n ⇒ 〈[n, n], Γ〉
(Num)

x : δ ∈ Γ
Γ ` x ⇒ 〈δ , Γ〉

(Var)

Γ ` e1 ⇒ 〈δ1, Γ1 〉 Γ1 ` e2 ⇒ 〈δ2, Γ2 〉

Γ ` e1 + e2 ⇒ 〈5(δ1 ⊕ δ2), Γ2 〉
(Plus)

Γ ` e ⇒ 〈δ , Γ1 〉

Γ ` x=e ⇒ 〈δ , Γ1[x : δ]〉
(Assign)

Γ ` s1 ⇒ 〈δ1, Γ1 〉 Γ1 ` s2 ⇒ 〈δ2, Γ2 〉

Γ ` s1;s2 ⇒ 〈⊥, Γ2 〉
(Seq)

Γ t Γ2 ` e ⇒ 〈δ , Γ1 〉 Γ1 ` s ⇒ 〈⊥, Γ2 〉

Γ ` while(e) {s} ⇒ 〈⊥, Γ1 t Γ2 〉
(While)

Γ ` e ⇒ 〈δ , Γ1 〉 Γ1 ` s1 ⇒ 〈⊥, Γ2 〉 Γ1 ` s2 ⇒ 〈⊥, Γ3 〉

Γ ` if(e) {s1} else {s2 } ⇒ 〈⊥, Γ2 t Γ3 〉
(If)

Γ1] {x < n } ` s1 ⇒ 〈⊥, Γ2 〉 Γ1] {x ≥ n } ` s2 ⇒ 〈⊥, Γ3 〉

Γ ` if(x < n) {s1} else {s2 } ⇒ 〈⊥, Γ2 t Γ3 〉
(IfRangeNum)

x : [xl , xh], y : [yl , yh] Γ1] {x < yl }] {y > xh } ` s1 ⇒ 〈⊥, Γ2 〉 Γ1] {x ≥ yl }] {y ≤ xh } ` s2 ⇒ 〈⊥, Γ3 〉

Γ ` if(x < y) {s1} else {s2 } ⇒ 〈⊥, Γ2 t Γ3 〉
(IfRangeVar)

Figure 5. Interval analysis.

Let us consider the following conditional expression: if(x

< y) then else else, and let us assume that x and y are known

to be in the intervals [xl , xu] and [yl ,yu]. Some knowledge

can be deduced in both branches. In the then branch, x is

known to be smaller than y, which potentially narrows its

approximation. �e value x may hold is the interval obtained

by computing [xl , xu] ≺ [yl ,yu]. Interestingly, in the then
branch, the test also narrows the approximation of y, as it

is known to be greater or equal to x. �e same reasoning

applies to the else branch, where x is known to be in the

interval [xl , xu] � [yl ,yu] and y in [yl ,yu] � [xl , xu].

5.2 Widening and Stepping
�e range analysis relies on a widening operator to ensure

its convergence in an acceptable compilation time. For in-

stance, for the for loop of the reverse$$A function, it enables

to compute the �nal approximation interval [0, 232−2] of the

variable i in less than 2
32−2 steps! For that, instead of adding

1 to i at each iteration as the execution of the program will

do, the analysis adds larger and larger integer values. In the

range analysis, each time the instruction is analyzed, a larger

than before value is added. �is is designated as a delaying
strategy in (Cousot et al. 2007).

�e widening takes place a�er each abstract interpretation

of a numeric operation. Let us illustrate its principle with

the i increment. Let us assume that at one moment of the

analysis, the variable i is approximated by the interval [l,u].
�e constant is interpreted as [1, 1] and the interpretation of

the addition produces the interval [l+1,u+1]. �is interval is

then widened into [m,v]withm ≤ l andv ≥ u+1. Following

the conventions of the domain, we note [m,v] = 5[l+1,u+1].

�e widening operator we use relies on numerical scales

and a stepping process. Intervals are widened progressively,

that is step by step, using two di�erent scales for intervals

lower and upper bounds. �ese scales are established based

on the JavaScript speci�cation and on some remarkable inte-

ger values many programs use.

�e JavaScript speci�cation makes use of some special
integers. First, as numbers correspond to a double-precision

64-bit binary format IEEE 754 values, integers are restricted

to the interval [−2
53, 253]. Second, JavaScript de�nes array

lengths as integers in the range [0, 232 − 1], which implies

that the largest array index is smaller or equal to 2
32 − 2.

�ese integer values are included in our widening scale. We

also add a few numbers of our own. Hopc’s backend uses

two-bit tagged integers, so the largest integer value on a 32

bit machine is 2
30 − 1. We include that value in our widening

scale and for the negative values, we include -1 and -2, as

these numbers are frequently used for terminating decreas-

ing loops. In conclusion, we use the following scales:

upper bound steps: 0, int30, index, lenдth, int53,+∞

lower bound steps: 0,−1,−2,−int30,−int53,−∞

With the following notations: int30 = 2
30−1. index = 2

32−2,

lenдth = 2
32 − 1, and int53 = 2

53
.

We can now complete the explanation of the result of

the range abstract interpretation for the reverse$A function.

�e operator aLen returns an array length, then aLen(a) ∈

[0, lenдth]. We derive aLen(a)/2 ∈ [0, lenдth/2]. At each iter-

ation of the loop, the variable i is incremented and the inter-

val widened. It is then successively approximated by [0, 0],
[0, int30], and ends with [0, index], index being the smallest

value of the upper bound scale greater than lenдth/2.

5.3 Final word
Once the range analysis completes, the intervals are used to

assign precise integer types to expressions and variable dec-

larations. �ese types are used to improve the performance

of the generated code. Obviously, they enable type checks

removal but even more importantly, they enable numbers

to be untagged and unboxed. �is is presented in the next

section.

6 Implementation
Fast JavaScript compilers go beyond implementing well a

small core language. �ey also deploy a large arsenal of

complex optimizations and runtime techniques. Hopc imple-

ments some of them. Describing all of Hopc is beyond the

scope of this paper. Here, we only focus on the type analyses

it performs and how it is used to shape the generated code.

�is is illustrated by the code generated for iterating over

8

JavaScript AOT Compilation DLS’18, November 6, 2018, Boston, NY, USA

addition [l1,u1] ⊕ [l2,u2] = [l1 + l2,u1 + u2]

substraction [l1,u1] 	 [l2,u2] = [l1 − u2,u1 − l2]
multiplication [l1,u1] ⊗ [l2,u2] = [min(l1 ∗ l2,u1 ∗ u2, l1 ∗ u2, l2 ∗ u1),max(l1 ∗ l2,u1 ∗ u2, l1 ∗ u2, l2 ∗ u1)]

division [l1,u1] � [l2,u2] = [trunc(l1/u2), ceil(u1/l2)]
smaller than [l1,u1] ≺ [l2,u2] = i f u2 ≤ u1 then (i f u2 > l1 then [min(l1,u2 − 1),u2 − 1] else [l1, l1]) else [l1,u1]

smaller or equal [l1,u1] � [l2,u2] = i f u2 < u1 then (i f u2 ≥ l1 then [min(l1,u2),u2] else [l1, l1]) else [l1,u1]

Figure 6. Interval operators.

arrays, which is a recurrent JavaScript programming pa�ern

as arrays are ubiquitous in this language.

Remember that JavaScript primitive numbers are double-

precision 64-bit IEEE 754 values but array indexes and bit-

wise operations are speci�ed over 32-bit �x integers. Using

ad-hoc representations that �t hardware integer registers

for these numbers is crucial for performances. Hopc uses

the results of the previous type analyses (occurrence typing,

hint typing, and range analysis) to use the most e�cient

number representation, expression by expression. �at is, as

much as possible, it generates code that uses native unsigned

32-bit integers for representing indexes, native signed 32-

bit integers when values can be negative, and polymorphic

representations that use tagged integers and boxed �oating

point numbers otherwise. Let us consider the following

example, compiled for 32-bit platforms:

let i = 0; while(i < a.length) sum += a[i++];

and let us assume that the hint typing has specialized the

code for a being an array. �e occurrence typing proves that

i is an integer and the range analysis proves that it is in the

range [0..232 − 2] (because of the JavaScript length speci�-

cation). �e variable i can then be mapped to a hardware

register and the increment can be implemented as a simple

assembly instruction with no type check, no tagging/un-

tagging, and no over�ow check. �is is optimal but what

happens now if we make i polymorphic by assigning it a

value of a di�erent type as in:

let i = 0; while(i < a.length) sum += a[i++];

i = null;

At the point of the increment, i is still known to be an integer

in the range [0..232 − 2] but the variable is now polymor-

phic as it holds integers and the null value. So, it can no

longer be represented as a native unsigned 32-bit integer. Its

initial value is compiled as a polymorphic value: a tagged

integers where the two lower bits are used to encode the

integer type and the 30 higher bits are used to encode the

actual integer value. 30-bit values are not large enough to

encode all possible array indexes so the loop increment may

over�ow. �is must be tested. A�er the increment i may

either be a tagged 30-bit integer or a boxed double precision

number. An additional test is then also needed before each

increment to check which representation is used and to select

the proper addition operator. On a modern 32-bit platform,

we measured a factor of three between the execution times

of the two versions. Avoiding polymorphic representations

as much as possible is, performance wise, essential.

6.1 Integer Boxing/Unboxing
�e �rst step of the untagging algorithm consists in comput-

ing for each integer variablev (see Section 5),Rm(v) = [L..U],
the smallest range that is larger than all the ranges in R(v),
the set of the ranges of all the v occurrences. Rm(v) is the

smallest range that veri�es ∀[l ..u] ∈ R(v), L 6 l ∧ u 6 U .

�e second step associates precise types to all expressions,

using the following mapping:

(1) R(v) ∈ [0..232 − 1] 7→ uint32 untagged 32-bit value

(2) R(v) ∈ [−2
31 ..231 − 1] 7→ int32 untagged 32-bit value

(3) otherwise 7→ integer tagged value

A variable reference type might be more speci�c than its

declaration type, as in the example of the introduction. In

the loop, the variable i is known to be an uint32. It is declared

as an uint32 in the �rst version, but it is declared as an any

value in the second because of the null assignment.

�e third step of the algorithm consists in inserting type

coercions to switch from native representations to polymor-

phic representations and vice-versa. Values are tagged or

boxed when: i) they are stored in objects and arrays, ii) they

are stored in polymorphic variables, iii) they are arguments

to untyped or polymorphic function calls, iv they are muta-

ble and captured in a closure. �ey are untagged/unboxed

in the converse operations.

6.2 Arrays
�e combined use of the occurrence typing, hint typing,

range analysis, and numbers untagging enables Hopc to map

JavaScript numbers to 32-bit integers and to map simple op-

erations such as unary operators, binary operators, and array

accesses to simple assembly instructions. �is is illustrated

in this Section where it is studied how Hopc compiles loops

over arrays, which is challenging because of sparse arrays

and because arrays may dynamically grow and shrink. Ac-

cording to the optimistic assumption presented in Section 2,

the compiler favors �at and non-extended arrays, which

enables to generate e�cient code for common situations.

�e fast access of an object property relies on the hidden

classes technique (Deutsch and Schi�man 1984). �is is

e�cient for objects but this does not �t well arrays that are

9

DLS’18, November 6, 2018, Boston, NY, USA Manuel Serrano

accessed via integers instead of named properties. Hopc
uses another schema that favors fast accesses inside loops.

It supports e�ciently arrays that are �at and that are only

accessed via numerical properties.

Arrays are implemented as objects with 4 �elds: a properties

list for non numerical properties and for sparse array prop-

erties; a length that denotes the total number of numerical

elements (only those that are indexed by an integer in the

interval [0, 232 − 2]); an ilength that denotes the number of

elements of �at arrays; and a raw vector that contains the

elements of �at arrays. Arrays are created �at, with an empty

properties list. Arrays are un-�a�ened when an element is

removed or when a non contiguous element is added. Gen-

erally, arrays remain �at during their whole lifetime. When

executing a loop as:

function sum(a) {

let i = 0, sum = 0;

while(i < a.length) sum += a[i++];

return sum;

}

the values of the a�ributes ilength and vector are unlikely

to change. So, they can be preloaded before the loop and

used inside, where a mere guard checking that i is smaller

than ilength is enough. If during the loop, a changes, either

because an element is removed or added or because its length

is modi�ed, the ilength property is modi�ed accordingly,

which impacts the result of the guard for the next iteration.

Using C’s syntax, and eliding slightly, the generated code is

equivalent to:

obj_t sum(obj_t a) {

uint32_t i, ilen = a->ilength;

obj_t *v = a->vector, sum = JS_INT(0);

for(i = 0; i < a->length; i++) {

if(i < ilen) { // fast path, �at array
sum = JS_ADD(sum, v[i]);

} else { // slow path, complex array, update needed
sum = JS_ADD(sum, JS_GET_PROPERTY(a, i));

v = a->vector; ilen = a->ilength;

}

}

return sum;

}

Using unboxed representations for i and its increment, as

suggested in Section 6.1, the generated code loop is almost as

fast as an equivalent C loop. It only imposes a mere additional

comparison between two registers, one for the index that

varies during the loop, and the ilength array �eld. Notice

however that this almost optimal compilation only applies

when the loop involves no code that could potentially delete

array elements. In particular, the loop must not contain calls

to unknown functions. When this cannot be established

by the compiler only one an extra guard is needed before

each access inside the loop. �e performance evaluation

presented in Section 7 shows how well this principle applies.

�e combined use of the occurrence typing, hint typing,

range analysis, and numbers untagging is a central element

of the compilation process as it enables Hopc to map Java-

Script numbers to 32-bit integers and to map simple opera-

tions such as unary operators, binary operators, and array

accesses to simple assembly instructions.

7 Performance Evaluation
We have compared Hopc’s performance and other JavaScript

implementations, namely: Google’s V8 (6.2.414.54), Rhino
(1.7.7) the �rst historical AOT JavaScript compiler that gen-

erates JVM byte-code, JJS (9.0.4) the Adobe JavaScript com-

piler that generates JVM byte-code too, and JerryScript (1.0

c3c0bb8d), a JavaScript interpreter designed for IoT devices.

We have collected the execution times of popular Java-

Script tests coming from the Octane, SunSpider, and Jet-

Stream test suites. From these test sets, we have ruled out

�oating point intensive programs because Hopc does not

optimize �oating point numbers yet and then all these tests

are dominated by the garbage collection time. Hopc uses a

conservative Mark&Sweep garbage collector (Boehm and

Weiser 1988), which is a technique known not to be e�cient

for handling short living objects. Second we have eliminated

browser-only programs for obvious reasons. And �nally, we

have also eliminated very large tests (larger than 10.000 lines

of code in a single �le) as our compiler, which is meant for

separate compilation, cannot cope with such large source

�les (compilation times become excessively long, up to 30

minutes, on very large source �les). Each program has been

executed 30 times and we have computed the median and the

deviation of the execution wall clock times. Figure 7 presents

these results relatively to V8 performance that establishes

the baseline of our comparison. Benchmarks where executed

unmodi�ed but, when possible, the number of iterations was

con�gured so that a test runs in no less than 10 seconds.

Unsurprisingly JerryScript, the sole interpreter of our ex-

periment, is in between one and two orders of magnitude

slower than compilers. �is system has being designed for

running on tiny devices, it is optimized for space, not for

speed, contrarily to compilers that use the opportunity to

generate several versions of the same source code and to use

various memory caches to run faster.

On many tests V8 and Hopc are in the same range, sep-

arated by a factor of 2 or 3. In the best situations, Hopc
outperforms V8 signi�cantly (base64, fib, qsort, and splay).

�ese are integer and array intensive programs that fully

bene�t from the type analyses and tagging/untagging opti-

mization presented in Section 6. �e tests crypto, crypto-aes,

crypto-md5 are actually disguised �oating point numbers test.

�ey perform many bitwise operations on 32-bit integers

and store them into arrays. On 32-bit platforms, Hopc repre-

sents these integers as �oating point numbers and allocate

10

JavaScript AOT Compilation DLS’18, November 6, 2018, Boston, NY, USA

jit AOT compilers interpreter
benchmark V8 Hopc jjs Rhino JerryScript

bague? 1.00 4.6% 0.99 0.5% 20.29 2.0% 142.50 0.0%

base64◦ 1.00 0.9% 0.59 3.7% 2.00 1.9% 7.07 0.7%

boyer† 1.00 1.1% 1.47 1.1% 8.10 24.9% 7.44 3.7%

crypto† 1.00 0.4% 7.31 0.3% 2.97 6.8% 25.60 8.4% 116.54 0.0%

crypto-aes∗ 1.00 0.4% 2.34 0.3% 4.56 2.4% 11.68 4.8% 86.88 0.0%

crypto-md5∗ 1.00 2.7% 6.51 0.3% 2.82 8.8% 7.69 2.5% 54.54 0.0%

deltablue† 1.00 0.4% 6.81 0.2% 6.78 4.2% 54.37 4.7% 290.85 0.0%

fannkuch� 1.00 0.1% 1.70 0.4% 1.80 19.6% 5.89 2.2% 98.10 0.0%

fib? 1.00 0.3% 0.66 0.2% 1.66 1.2% 2.76 0.6% 50.57 0.0%

maze? 1.00 0.6% 1.20 2.9%

puzzle? 1.00 1.7% 1.89 0.2% 2.17 1.2% 6.23 0.8%

qsort? 1.00 0.1% 0.91 0.2% 1.47 1.1%

richards† 1.00 0.3% 3.34 0.4% 2.59 2.0% 24.64 1.3% 156.71 0.0%

sieve? 1.00 0.3% 5.02 0.7%

splay† 1.00 16.0% 1.17 0.8% 2.59 5.9% 5.27 1.3%

tagcloud∗ 1.00 1.0% 3.45 0.8% 1.99 7.8% 5.80 5.9%

Figure 7. Results of 30 runs collected on an Intel core i7-3520M running Linux4.13/Debian con�gured for 32-bit executions.

Median of wall clock times relative to V8 performance and deviations divided by the mean. Smaller time is be�er. Benchmark

sources:
†

Octane,
∗

Jetstream,
◦

Sunspider,
?

Bglstone,
�

other sources.

them. �e execution time is then dominated by the garbage

collection (henceforth GC) time that represents more than

65% of the overall execution time and by double precision

operations that count for 15% of the execution.

�e test deltablue performs poorly with Hopc compared

to V8. It is an allocation intensive programs whose execu-

tion time is dominated by allocations of short living objects,

which is an allocation pa�ern the garbage collector does not

handle e�ciently. Improving on that aspect, is certainly a

subject for further studies (Blackburn and McKinley 2008).

�e test tagcloud uses the eval function to create a large

data structure. Independently of the signi�cant execution

time spent in the interpreter, this shows that even in the

presence of direct eval in the source, Hopc is still able to

generate decently e�cient code.

7.1 Hint Typing Performance
To evaluate the hint typing impact we have instrumented the

code generator to collect statistics about function invocations

(Figure 8). �e compiler instruments the generated code to

mark function calls with one of the following tag: typed,

untyped, hinted, unhinted, and dispatch. By comparing the

hinted calls, unhinted calls, and dispatch calls numbers we

can measure the e�ectiveness of the function specialization.

�e �rst observation is that for all tests where it applies

but crypto-md5, the hint typing successfully specializes func-

tion de�nitions. For some benchmarks such as maze the spe-

cialized functions are even invoked directly without going

through a dynamic dispatch. �is optimal situation happens

when the data-�ow analysis or the range analysis discover

that for a particular call site the specialized function call be

called directly. Other tests such crypto, sieve, or splay use

the dispatch function. �is correspond to situations where

the type analyses alone are not able to discover su�ciently

precise types.

�e hint typing gives poor results for the crypto-md5. It is

the only test that counts an important number of unhinted
calls. �is benchmark uses 32-bitwise operations extensively

that the hint typing successfully specializes. For instance,

for the function md5 ff de�ned as

function md5_ff(a, b, c, d, x, s, t) {

return md5_cmn((b & c) | ((˜b) & d), a, b, x, s, t);

}

the arguments b, c, and d are correctly specialized as int32

integers. However, this test also uses 32-bit literal constants

which can only be represented as �oating point numbers on

a 32-bit platform. �is causes type miss-matches between

the specialized functions and their actual parameters. Note

that this problem disappears on 64 bit platforms where 32-bit

are represented as exact integers.

�is experiment shows that although simple, the rules

presented in Section 4 are su�cient to guess correctly run-

time program behaviors and that there is no need to invent

more complex analyses to discover the best typing context

for a function de�nition.

8 Related Work
It is frequent that JavaScript variables are assigned values

of di�erent types and that functions are not called with the

declared number of arguments. �us, the typing approaches

11

DLS’18, November 6, 2018, Boston, NY, USA Manuel Serrano

benchmark typed calls untyped calls hinted calls unhinted calls dispatch calls
bague 1647×10

9
11 0 0 0

base64 22 0 0 0 0

boyer 400 143×10
6

401 1×10
3

1×10
3

crypto 14×10
6

3×10
6

46×10
6

165×10
3

46×10
6

crypto-aes 59×10
6

510×10
3

0 0 0

crypto-md5 126×10
6

0 161×10
6

160×10
6

128×10
6

deltablue 80×10
3

82×10
6

80×10
3

80×10
3

1

fannkuch 11 0 0 0 0

fib -206752951 0 0 0 0

maze 38×10
6

80×10
6

1×10
6

0 1×10
6

puzzle 39×10
6

61 0 0 0

qsort 66×10
6

39×10
6

0 0 0

richards 0 902×10
3

1 0 1

sieve 66×10
6

281×10
6

270×10
6

352×10
3

271×10
6

splay 0 2×10
6

71×10
6

0 71×10
6

tagcloud 0 0 2×10
3

0 2×10
3

Figure 8. Statistics of function invocations. Typed calls correspond to functions successfully typed by the data-�ow and range

type analyses. Hinted calls correspond to functions typed by the hint typing. Unhinted calls are functions invocations for

which the specialized version has not been selected at runtime. Dispatch calls are the number of hinted function invocations

that need a runtime type check.

that assign unique types to variable declarations (Ander-

son and et al. 2005; Lerner et al. 2013) are mildly e�ective

for real-life JavaScript programs. �e code specialization

enabled by the hint typing is not a�ected by this problem

as it chooses the types according to variable uses, not only

variable declarations.

�e �ow analysis presented in Section 3 follows a line

of research that uses abstract interpretation techniques for

assigning types to expressions (Jensen et al. 2009). In the

past, these analyses have been mostly used for designing

programming environment tools rather than included in

a compilation process. �is is the objective of the hybrid

type inference (Hacke� and Guo 2012). It consists in a static

type analysis designed for producing type information used

at runtime by a JIT compiler. It shares many similarities

with our approach, in particular because the static analysis

is unsound and seconded by runtime guards. �e system

maintains a dichotomy between static may-have-type and

must-have-type and types which could potentially be ob-

served and types that have already been observed at runtime.

We do not provide anything similar but we might accom-

modate this idea in the future. �is study also mentions

an integer over�ow detection but does not give any details.

It seems relatively simple and less precise than our range

analysis.

�e data-�ow type analysis is an occurrence typing anal-

ysis tailored for hint typing. It is simpler than the original

occurrence typing developed for the Scheme programming

language (Kent et al. 2016; Tobin-Hochstadt and Felleisen

2010) as it only handles simple types and simple type checks.

Although this seems precise enough for the needs of the

hint typing, it might be worth incorporating more precise

analyses in the future.

�ere is a whole line of research on JavaScript static anal-

ysis. �e main systems are TAJS (Andreasen and Møller

2014), Wala (Schäfer et al. 2013), and Safe (Park and Ryu

2015). �ese systems rely on complex abstract interpreta-

tions. �ey are able to deduce accurate information about

programs, but their complexity and execution times make

them unusable in practical compilers.

�e range analysis presented in Section 5 departs from

RATA, a typed analyzer for JavaScript (Logozzo and Venter

2010). First, our analysis uses the type information collected

by previous compilation stages. Second, we consider a dif-

ferent arithmetic la�ice as we target 32 bit machines for

which array length cannot be represented as 32 bit inte-

gers, if tagging is used. �en, we consider uint30/uint32 for

tagged/untagged representations, which have to be included

in the analysis. Last, the threshold we use for the delayed

widening is di�erent. We do not collect the constants found

in the program as this cannot cope with programs where the

loop upper bounds are computed values, for instance, an ar-

ray length. Instead we use a static scale based on pre-de�ned

values.

In the seminal description of polymorphic inline cache

(Hölzle et al. 1991) the authors mention a type prediction
mechanism used in SELF and Smalltalk compilers. In a 7-line

long paragraph they mention that the compilers predict that

the argument to + are predicted to be integer. �is obviously

relates to the hint typing but the lack of details of their

presentation makes is hard to compare the two approaches.

Samsung’s Sjs (Choi et al. 2015) is an AOT JavaScript

compiler. It relies on a type system and a type inference that

12

JavaScript AOT Compilation DLS’18, November 6, 2018, Boston, NY, USA

provide information that the rest of the compilation chain

uses to generate e�cient code. A recent paper (Chandra

et al. 2016) reports excellent execution times comparable to

those of V8 (Google 2018) but also much smaller memory

occupations. �ese execution times are be�er than those

we have reported in Section 7, but this is mitigated by Sjs
not considering full-�edged JavaScript as V8 or our compiler

do. Sjs limits properties polymorphism, it does not comply

with JavaScript prototype semantics, and more importantly,

it seems not to support introspection and dynamic features

such as computed �eld names and �eld deletions. Sjs cannot

run the standard JavaScript unmodi�ed. �is is why it is

not reported in Section 7. It is also unclear if it supports

separate compilation that we need for accommodating the

NPM module systems. �ese restrictions enable the type

system to report precise information and of course simplify

the code generation. �ey are probably imposed by the

nature of the type inference algorithm. Our approach does

not su�er from this limitation. However, it remains that Sjs
is an excellent preliminary result and a strong incentive for

pursuing investigations on the JavaScript static compilation.

It is also a sensitive approach as Sjs is designed for enabling

embedded JavaScript, a context in which programs are small,

closed, and where it is probably �ne not to support all the

language features.

Bolz et al. have proposed storage strategies (Bolz et al. 2013)

for optimizing the representations of homogeneously typed

collections. It consists in associating each collection with an

ad-hoc strategy that evolves over time when elements are

added. �is mechanism saves memory space and speeds up

data accesses. Experimental results show signi�cant bene�ts

for the Python programming language. Cli�ord and his col-

leagues have developed analog solutions for JavaScript (D.

et al. 2015). �ey have modi�ed the V8 JIT compiler to cope

with various storage representations for objects and arrays.

�ey combine homogeneous data representations for fast

storage and access and an allocation logging mechanism that

works hand in hand with the garbage collector to avoid allo-

cating extra unused space for objects. �ese previous studies

focus on the e�ciency of data representations. �e fast array

access array we have presented focuses on the e�ciency of

the loop control and data �ows. �ey are di�erent, they do

not follow the very same goal, but they are complementary.

Combining both could yield to fast accesses, fast loops, and

e�cient data storage.

9 Conclusion
�is paper presentsHopc, a new AOT compiler for JavaScript.

It relies on the observation that amongst all the possible

interpretations a JavaScript program may have, the most

likely is the one for which the compiler can deliver its best

code. We have derived this principle in a type analysis called

hint typing and in a code generator that uses �at untyped

number representations. We have implemented the hint

typing and the other analyses and optimizations it enables,

namely a range analysis and untagging optimization.

�e experimental report shows that Hopc approaches the

performance of the fast JIT compilers on several benchmarks.

Even if Hopc is still usually slower we think that this ex-

periment establishes that AOT compilation is a promising

approach for implementing languages as dynamic as Java-

Script, especially in application domains such as IoT where

many devices cannot use JIT compilers, either because they

have too limited capacities or because they only support

executable read-only memory, which makes JIT compilation

unusable.

References
C. Anderson and et al. 2005. Towards Type Inference for Javascript. In Pro-

ceedings of the 19th European Conference on Object-Oriented Programming
(ECOOP’05). Springer-Verlag, Heidelberg.

E. Andreasen and A. Møller. 2014. Determinacy in static analysis for j�ery.

In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014.

Stephen M. Blackburn and Kathryn S. McKinley. 2008. Immix: A Mark-

region Garbage Collector with Space E�ciency, Fast Collection, and

Mutator Performance. In Proceedings of the 29th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’08).
New York, NY, USA.

H.J. Boehm and M. Weiser. 1988. Garbage Collection in an Uncooperative

Environment. So�ware, Practice, and Experience 18, 9 (Sept. 1988).

C. F. Bolz, L. Diekmann, and L. Tra�. 2013. Storage Strategies for Collections

in Dynamically Typed Languages. In ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applications.

C. Chambers and D. Ungar. 1989. Customization: Optimizing Compiler

Technology for SELF, A Dynamically-Typed Object-Oriented Program-

ming Language. In Conference Proceedings on Programming Language
Design and Implementation (PLDI ’89). ACM, New York, NY, USA.

S. Chandra, C. S. Gordon, J-B. Jeannin, C. Schlesinger, M. Sridharan, F. Tip,

and Y. Choi. 2016. Type Inference for Static Compilation of JavaScript. In

Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA
2016). ACM, New York, NY, USA.

M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wimmer, B. Eich,

and M. Franz. 2009. Tracing for web 3.0: trace compilation for the

next generation web applications. In In Proceedings of the International
Conference on Virtual Execution Environments.

M. Chevalier-Boisvert and M. Feeley. 2015. Simple and E�ective Type

Check Removal through Lazy Basic Block Versioning. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic.

M. Chevalier-Boisvert and M. Feeley. 2016. Interprocedural Type Special-

ization of JavaScript Programs Without Type Analysis. In 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-22,
2016, Rome, Italy.

W. Choi, S. Chandra, G. Necula, and L. Sen. 2015. SJS: A Type System for

JavaScript with Fixed Object Layout. In Static Analysis - 22nd International
Symposium, SAS’15. Saint-Malo, France, 181–198.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.

Rival. 2007. Combination of Abstractions in the ASTRÉE Static Analyzer.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Cli�ord. D., H. Payer, M. Stanton, and B. Titzer. 2015. Memento Mori:

Dynamic Allocation-site-based Optimizations. In Proceedings of the 2015
ACM SIGPLAN International Symposium on Memory Management. New

York, NY, USA.

13

DLS’18, November 6, 2018, Boston, NY, USA Manuel Serrano

P. Deutsch and A. Schi�man. 1984. E�cient Implementation of the Smalltalk-

80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’84). ACM, NY, USA.

ECMA International. 2015. Standard ECMA-262 - ECMAScript Language
Speci�cation (6.0 ed.).

ECMA International. 2016. ECMAScript Test Suite (2 ed.). Technical Report

TR/104.

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. Haghighat, B.

Kaplan, G. Hoare, B. Zbarsky, J. Orendor�, J. Ruderman, E. Smith, R.

Reitmaier, M. Bebenita, M. Chang, and M. Franz. 2009. Trace-based

just-in-time type specialization for dynamic languages. In Proceedings
of the 2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009.

A. Ghuloum and K. Dybvig. 2009. Fixing Letrec (reloaded). In Workshop on
Scheme and Functional Programming. Cambridge, MA, USA.

L. Gong, M. Pradel, and K. Sen. 2014. JITPROF: Pinpointing JIT-unfriendly
JavaScript Code. Technical Report UCB/EECS-2014-144.

Google. 2018. V8 JavaScript Engine. h�p://developers.google.com/v8.

B. Hacke� and S-Y. Guo. 2012. Fast and Precise Hybrid Type Inference

for JavaScript. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’12). ACM,

New York, NY, USA.

U. Hölzle, C. Chambers, and D. Ungar. 1991. Optimizing Dynamically-

Typed Object-Oriented Languages With Polymorphic Inline Caches. In

Proceedings of the European Conference on Object-Oriented Programming
(ECOOP ’91). Springer-Verlag, London, UK, UK.

S H. Jensen, A. Møller, and P. �iemann. 2009. Type Analysis for JavaScript.

In Proceedings of the 16th International Symposium on Static Analysis
(SAS ’09). Springer-Verlag, Berlin, Heidelberg.

Kangax. 2018. ECMAScript Compatibility Table. h�ps://kangax.github.io/
compat-table/es6/.

A. M. Kent, D. Kempe, and S. Tobin-Hochstadt. 2016. Occurrence Typing

Modulo �eories. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’16). USA.

B. S. Lerner, J. Politz, J.G., A. Guha, and S. Krishnamurthi. 2013. TeJaS:

Retro��ing Type Systems for JavaScript. In Proceedings of the 9th Sym-
posium on Dynamic Languages (DLS ’13). ACM, NY, USA.

F. Logozzo and H. Venter. 2010. RATA: Rapid Atomic Type Analysis by

Abstract Interpretation - Application to JavaScript Optimization. In Com-
piler Construction, 19th International Conference, CC 2010, Held as Part of
the Joint European Conferences on �eory and Practice of So�ware, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings.

Microso�. 2013. TypeSscript, Language Speci�cation, version 0.9.5.

C. Park and S. Ryu. 2015. Scalable and Precise Static Analysis of JavaScript

Applications via Loop-Sensitivity. In 29th European Conference on Object-
Oriented Programming, ECOOP 2015, Prague, Czech Republic.

M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. 2013. Dynamic determinacy

analysis. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Sea�le, WA, USA, June 16-19, 2013.

S. Tobin-Hochstadt and M. Felleisen. 2010. Logical Types for Untyped Lan-

guages. In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming (ICFP ’10). ACM, New York, NY, USA.

O. Waddell, D. Sarkar, and K. Dybvig. 2005. Fixing Letrec: A Faithful

Yet E�cient Implementation of Scheme’s Recursive Binding Construct.

Higher-Order and Symbolic Computation 18, 3 (2005).

14

