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OPERADS WITH COMPATIBLE CL-SHELLABLE
PARTITION POSETS ADMIT A

POINCARÉ–BIRKHOFF–WITT BASIS

JOAN BELLIER-MILLÈS, BÉRÉNICE DELCROIX-OGER, AND ERIC HOFFBECK

Abstract. In 2007, Vallette built a bridge across posets and operads by
proving that an operad is Koszul if and only if the associated partition
posets are Cohen-Macaulay. Both notions of being Koszul and being
Cohen–Macaulay admit different refinements: our goal here is to link
two of these refinements. We more precisely prove that any (basic-
set) operad whose associated posets admit isomorphism-compatible CL-
shellings admits a Poincaré–Birkhoff–Witt basis. Furthermore, we give
counter-examples to the converse.
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Introduction

The family of partitions of the sets {1, . . . , n} are partially ordered by
refinement. For example, we have {1, 3}{2}{4} ≤ {1, 3}{2, 4}. The small-
est partition is given by the collection {1} · · · {n} and the largest partition
is given by the single set {1, . . . , n}. This family of partially ordered sets
(posets for short) can be built from the operad Com encoding commutative
algebras, and the homology of the simplicial set associated with this family
of partition posets is isomorphic to the homology associated with the operad
Com (see [Fre04] and references within). More generally, Vallette shows in
[Val07] that a family of partition type posets can be associated with any
(basic-set) operad in the category of sets, and he proves the equivalence
between two homological properties: the Koszul property of the operad and
the Cohen-Macaulay property of its associated partition posets.

The goal of this article is to show how to relate two refinements of these
properties. On the one hand, the Koszul property is usually hard to prove,
and one useful criterion is the existence of a Poincaré–Birkhoff–Witt (PBW
for short) basis, which is a basis of the operad satisfying some combinatorial
properties. On the other hand, the Cohen–Macaulay property of a poset is
implied by the shellability of this poset. And the shellability itself has many
refinements, for instance EL-shellability, CL-shellability (which is equivalent
to the existence of a recursive atom ordering) or the totally semi-modular
property (see [Wac07] for a general survey).

A natural question to ask is therefore to find a link between combinatorial
conditions living in two very different worlds. Unlike the Koszul property
which is purely homological, a PBW basis is a combinatorial data subject to
a compatibility condition relative to the operadic composition. The differ-
ent refinements of shellability are given by conditions on each poset of the
family defined by Vallette in [Val07]. In order to get a strong link between
one of these notions with the existence of a PBW basis, we need to add a
compatibility hypothesis.

Our main theorem states that if the posets associated with a basic-set
operad are CL-shellable and satisfy a compatibility hypothesis, then the
operad has a PBW basis. This provides a new method for proving that an
operad admits a PBW basis, and therefore to show that an operad is Koszul.
As in the work [Val07], these results are valid over any field k or over Z.
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Moreover, let us remark that we work in the context of weight graded
operads, and it applies to weight graded associative algebras. It was not the
case of the results of [Val07] which apply to connected operads. We obtain
the new notion of A-partitions associated with an associative algebra A and
a way to get a PBW basis by means of a CL-labelling satisfying the previous
compatibility hypothesis.

The converse direction is more complicated. First we give the example
of an algebra admitting a lexicographic PBW basis and whose associated
posets are not isomorphism compatible CL-shellable. Then we give another
stronger example of an algebra such that any (lexicographic or not) PBW
basis cannot be linked with an isomorphism compatible CL-shelling. The
shellability of a poset is a weaker notion than the CL-shellability. It is
therefore natural to ask whether the existence of a PBW basis could be
related to the shellability of the poset associated to a basic-set operad with
a compatibility hypothesis. Further work is needed to answer this question.

Outline of the paper. In the first part of the paper, we make some recol-
lections on operads. Then we describe (following [Val07]) the poset associ-
ated to a shuffle operad and the compatibility condition we will require later
on. We finally state and prove our main theorem and give a counter-example
for the converse direction.

Acknowledgements. The authors would like to thank Bruno Vallette for
his careful reading of a first version of this article and his numerous com-
ments. Moreover, we’d like to thank Rafael González, Josh Hallam and Yei-
son Quiceno for pointing out an error concerning a potential EL-labelling
on the poset associated with the operad Perm in an earlier version of the
article. We have removed the problematic part from this version.

Notation. Let k be the ring Z or any field of characteristic 0. All k-
modules are assumed to be projective. We mainly work with the categories
Set (whose objects are sets and morphisms are all maps between them)
and Vect (whose objects are k-vector spaces and morphisms are all k-linear
maps between them). We denote by Bij the category of non-empty finite
sets (with bijections between them as morphisms) and by Ord the category
of non-empty finite ordered sets (with order-preserving bijections between
them as morphisms).

1. Operads and associated constructions

This section is devoted to operads and related constructions. After some
recollections on operads and shuffle operads, we present the link between
PBW basis and the Koszulness of an operad. Finally, we give definitions
related to the normalised bar construction.
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1.1. Recollections on operads. When talking about operads, we follow
essentially the notations of the book of Loday and Vallette [LV12]. We
are interested in operads in Set, usually denoted by P̃, and their linearised
version P = k〈P̃〉 in Vect. The operads we consider are symmetric operads,
but we will also need their shuffle versions, introduced by Dotsenko and
Khoroshkin in [DK10], following ideas of [Hof10].

1.1.1. Operads and shuffle operads. Recall that an S-module P = {P(n)}n∈N
in Vect is a collection of k-vector spaces P(n) endowed with an action of the
symmetric group Sn. On S-modules, we define the monoidal product

(P ◦Q)(n) =
⊕
k≥0
P(k)⊗Sk

 ⊕
i1+···+Ik=n

IndSn
Si1×···×Sik

(Q(i1)⊗ · · · ⊗ Q(ik))

 .
A symmetric operad is an S-module P = {P(n)}n∈N endowed with a com-
position map and a unit map which make it into a monoid in the category
of S-modules.

Remark 1.1. There is an analog definition for operads in the category Set.

We will also sometimes consider more generally an operad as a contravari-
ant functor P from Bij to Vect satisfying similar axioms; this allows us to
consider P(I) for I any finite set, and we then recover P(n) of the first
definition as P({1, . . . , n}).

Definition 1.2. The category of N-graded modules consists of contravariant
functors from Ord to Vect. When we restrict to the sets {1, . . . , n}, it
coincides with the category of collections {P(n)}n∈N, where each P(n) is a
k-vector space. It can be equipped with a monoidal product called shuffle
product and defined by

(P ◦sh Q)(I) =
⊕
k

P(k)⊗

 ⊕
f :I→{1,...,k}

Q(f−1(1))⊗ · · · ⊗ Q(f−1(k))

 ,
where f ranges over shuffle surjections, that is surjections such that we have
min f−1(i) < min f−1(j) whenever i < j. A shuffle operad can be then
defined similarly as a N-graded module P = {P(n)}n≥0 with a composition
map and a unit map which make it into a monoid in this monoidal category
of N-graded modules.

In particular, given two elements p and q in a shuffle operad, the possible
partial compositions are not just given by the ◦i’s as for symmetric operads
but by the ◦i,w’s where w is a shuffle of the entries of p and q such that the
first element of q comes immediately after the (i− 1)-th element of p. Such
a w is then called a pointed shuffle.

Definition 1.3. We denote by Op the category of symmetric operads (in
Set or Vect) and by OpSh the category of shuffle operads.
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There is a forgetful functor from Op to OpSh, which we denote by (−)sh.
This functor forgets the action of the symmetric groups but it retains the
whole structure of a symmetric operad. Recall that a symmetric operad
P and its associated shuffle operad Psh have the same underlying k-vector
space.

We denote by T (E) the free operad in Set (respectively in Vect) on the
S-module E in Set (respectively in Vect). We use the same notation in both
categories, the category where E sits will make clear where T (E) sits.

As it is explained for example in Appendix A of [Fre17] (see also Section
5.6 in [LV12]), for an S-module E in Set, the component of arity n of the
free operad T (E) can be identified with the set of equivalence classes of
non-planar rooted trees, where vertices are labelled by elements of E and
leaves are labelled by the integers between 1 and n (the equivalence rela-
tion is equalizing the action of the symmetric group on E and the induced
action on the tree). The set T (E) is acted upon by the group Sn. For an
S-module E in Vect, a similar construction is possible, and labelled trees can
be thought of tensor products of elements of E arranged on a tree, some-
times called treewise tensors.

Similarly, the elements of the free shuffle operad Tsh(E) are given by
rooted planar trees, with vertices labelled by elements of E and leaves la-
belled by the integers between 1 and the arity of the tree, in such a way
that above each vertex, the inputs are in increasing order from left to right
(if the input is a vertex, the associated integer is the smallest label of the
leaves above it). We refer to Section 8.2 in [LV12] for more details.

1.1.2. Linear basis and weight grading. For a k-linear basis BE of an S-
module E in Vect, a basis denoted by BT (E) of T (E) is given by all shuffle
trees labelled by elements of BE (see [Hof10, 3.1]). The operad T (E)sh has
the same basis, which is stable under shuffle composition.

When E is an S-module and R ⊂ T (E), we consider the quotient operad
T (E)/(R) of the free operad on E by the ideal generated by the set of
relations R.

The free operad is naturally endowed with a weight grading counting the
number of vertices in the tree representation. When the S-module R is
homogeneous for this weight grading, we obtain that the quotient operad
T (E)/(R) is also weight graded. We assume that we are in this situation.
Moreover, we suppose that E is minimal in the sense that there exists no
relation of weight 1 in R.

We are mainly interested in the two following situations:
• Connected operads: E(n) = 0 for n = 0 and n = 1.
• Associative algebras: E(n) = 0 for n 6= 1.
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In this article, we restrict ourselves to finite sets (or finite-dimensional
spaces) of generators E.

In the case of associative algebras, we denote by T (E) the free associative
algebra on E, which is also the tensor algebra on E. Elements in weight d
are given by T (E)(d) = E⊗d.

1.2. PBW bases and Koszulness. Let BE be a k-linear basis of an S-
module E (in Vect) and BT (E) is the associated (monomial) basis of T (E).

In the following, we assume that BE is partially ordered, in a way com-
patible with the arity:

µ < ν if µ ∈ BE(k) and ν ∈ BE(l) with k < l.
Let us extend this order to BT (E) in a way compatible with the shuffle

composition, that is: for α, α′ ∈ BT (E)(m) and β, β′ ∈ BT (E)(n),{
α ≤ α′
β ≤ β′ ⇒ ∀i, ∀w pointed shuffle, α ◦i,w β ≤ α′ ◦i,w β′.(1)

Examples of suitable orders can be found in [Hof10] or [DK10].

Definition 1.4. A Poincaré-Birkhoff-Witt basis (PBW basis for short) for
P = T (E)/(R) is a subset BP of BT (E) such that

• 1 ∈ BP ,
• BE ⊂ BP ,
• BP represents a basis of the K-module P,

and satisfying the following conditions:
(1) for α, β ∈ BP and w a pointed shuffle of the composition α ◦i β,

either α ◦i,w β ∈ BP , or α ◦i,w β =
∑
γ cγγ, where the γ’s are in BP

and satisfy γ < α ◦i,w β in the ordered basis of T (E);
(2) a treewise tensor α based on a tree τ is in BP if and only if for every

internal edge e of τ , the restricted treewise tensor α|τe
is in BP . (The

subtree τe of τ is the maximal subtree of τ having only the internal
edge e.)

Remark 1.5. Note that in this definition, we do not need the order on BE
nor the order on BT (E) to be total. Intuitively, it is enough to be able to
write generating relations of P = T (E)/(R) as one element being equal to
a linear combination of smaller ones. For instance it is the case when the
relations in the presentation of the associated shuffle operad is given by a
convergent rewriting system in the monomial basis of T (E) (which makes
sense not only in the set-theoretical context but also in the linear context,
see [GHM14] Section 3). The normal forms for such a rewriting system are
the minimal elements for the associated order and provide us with a PBW
basis of the operad. In such a case, the elements in BE do not need to be
comparable.

Theorem 1.6. An operad equipped with a partially ordered PBW basis is
Koszul.
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Proof. The proof of the usual criterion [Hof10, Theorem 2.5.1] for a totally
ordered PBW basis can still be applied when the PBW basis is only par-
tially ordered. Indeed, any partial order can be extended to a total order.
Choosing such a total order, the conditions of a PBW basis will then re-
main true for this extended order. They allow us to construct a filtration of
subcomplexes, even if the total order might not be compatible with pointed
shuffle compositions. The total order is only needed so that the stages of
the filtration remain as in the usual case and so that the spectral argument
can be applied. �

1.3. Normalised reduced bar construction. Let P be an operad. We
denote by N (P) the normalised bar construction of P [Fre04, Section 4]
or [LV12, 3.1.2], which can be defined as the nerve of the simplicial bar
construction. Following these references, we denote by Nl(P) the S-module
represented by non-degenerate l-levelled trees. A representing element in the
normalised bar construction writes (ν1

1 ; ν2
1 , . . . , ν

2
k1

; . . . ; νl1, . . . , νlkl
), where

each tuple (νj1, . . . , ν
j
kj

) is not only made up of identities. An example of a
non-degenerate 3-levelled tree is represented in Figure 1.

3
��

1
��

4
��

5
~~

2
��

6
��

3 ν3
1
��

ν3
2
��

ν3
3

xx
2 ν2

1

&&

ν2
2

��
1 ν1

1

��

Figure 1. Non-degenerate 3-levelled tree

When the operad is weight-graded, we get that the normalised bar con-
struction also is. Moreover, we assume that the operad P is presented by
T (E)/(R) and is weight-graded by P(1) = E. In this case, we define the
sub-S-module N (E) of N (P) by

N (E) :=
⊕
d≥0
Nd(P)(d).

Elements in N (E) can be described by levelled trees having exactly one
generator different from the identity at each level. We write ν1 ◦i1 ν2 ◦i2
· · · ◦il−1 ν

l := (· · · (ν1 ◦i1 ν2)◦i2 · · · )◦il−1 ν
l for such an element. The notation

ν ◦i µ means here that µ is put at the ith entry of ν just one level above.
For example, in the two cases we are interested in, we get the following
descriptions.
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• When P is a connected binary operad, that is E(n) = {0} for n 6= 2,
we get that

N (E) := I ⊕
⊕
d≥1
Nd(P)(d+ 1),

where N (P)(d) is the Sd-module of arity d elements in N (P).
• When E is concentrated in arity 1 (that is, when P is an associative
algebra), N (P) is nothing but the usual normalised bar construction
of an associative algebra and we get N (E) ∼= T (E).

2. Posets

We recall in this section some definitions on posets and on the CL-
shellability of a poset. We also recall how to associate a partition type poset
with an operad and provide examples. We finally present the definition of
CL-labellings compatible with isomorphisms of subposets.

2.1. Shellability of a poset. We recall in this subsection basic definitions
of poset topology, following [Wac07].

Definition 2.1. A poset (Π, ≤) is a set Π equipped with a partial order
relation ≤.

Definition 2.2. A poset Π is said to be bounded if it has a top element 1̂
and a bottom element 0̂.

For elements x < y in a poset Π, if there exists no z such that x < z < y,
then we say that y covers x. The covering relation is denoted by x ≺ y.

Definition 2.3. A maximal chain is a chain which is not strictly contained
in another chain. It is thus a chain x0 ≺ · · · ≺ xm, with x0 (resp. xm)
a minimal (resp. maximal) element in the poset. The length of a chain
x0 < · · · < xm is m. A poset Π is pure if all its maximal chains have the
same length, which is then the height l(Π) of the poset. A pure and bounded
poset is graded.

For a bounded poset Π, we consider the following definitions.

Definition 2.4. A pure poset is Cohen–Macaulay if all its reduced homology
groups, but the top ones, vanish.

Different notions refine the notion of Cohen–Macaulayness. One of them
is the notion of CL-shellability.

Definition 2.5. To every maximal chain r of [0̂, x] and to every interval
[x, y], we can associate the closed rooted interval

[x, y]r := {z ∈ r} ∪ {z ∈ [x, y]}.

We can now define the notion of chain-edge labelling. The reason for using
a poset Λ to label chains will appear clearly in the definition of CL-labelling.
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Definition 2.6. We denote by ME(Π) the set of pairs (c, x ≺ y) consisting
of a maximal chain c of Π and an edge x ≺ y along that chain. A chain-edge
labelling of Π is a map λ : ME(Π) → Λ, where Λ is some poset, satisfying:
if two maximal chains coincide along their bottom d edges (for some integer
d), then their labels also coincide along these edges.

Remark 2.7. Let [x, y]r be a rooted interval of Π and λ : ME(Π) → Λ
be a chain-edge labelling of Π. The map λ induces a chain-edge labelling
λx, yr : ME([x, y]) → Λ. Moreover, we can associate with a maximal chain
c = (x0 ≺ · · · ≺ xm) in [x, y] a tuple of symbols in Λ given by(

λrx, y((c, x0 ≺ x1)), . . . , λrx, y((c, xm−1 ≺ xm))
)
.

Definition 2.8. Let Π be a poset. A chain-lexicographic labelling (CL-
labelling, for short) of Π is a chain-edge labelling λ : ME(Π) → Λ such
that in each closed rooted interval [x, y]r of Π, there is a unique maximal
chain whose associated labels in Λ by λx, yr forms a strictly increasing chain
in Λ. Moreover, this strictly increasing chain, seen as a tuple, precedes lexi-
cographically all the tuples associated with other maximal chains of [x, y]r.
A poset that admits a CL-labelling is said to be CL-shellable.

It is a well-known result that any pure CL-shellable poset is Cohen–
Macaulay, but the converse is not true.

2.2. Poset associated with an operad. Let P̃ be a set operad. In [Val07],
Vallette defines the notion of P̃-partitions and he puts a partial order on
the set of P̃-partitions. He obtains what he calls the operadic partition poset
ΠP̃ . In order to recover a well-known order on some examples, we consider
in this article the reverse order as the one given in [Val07].

We recall the definitions from [Val07, 3.1]. Let I ⊂ [n] := {1, . . . , n} be
a subset.

Definition 2.9. A P̃-partition of I is a collection λ = {B1, . . . , Br} with
Bk belongs to P̃(Ik) for {I1, . . . , Ir} a partition of I.

An element B ∈ P̃(I) writes ν × (x1, . . . , xn). It is equal to the orbit of
an element ν×(x1, . . . , xn) ∈ P̃n×I, where I is the set of ordered sequences
of elements of I, each element appearing once, under the diagonal action of
the symmetric group Sn.

We recall the partial order defined on P̃-partitions:

Definition 2.10. The partial order on the P̃-partitions of I is given by

λ = {B1, . . . , Br} ≤ ω = {C1, . . . , Cs},

where Bk belongs to P̃(Ik) and Cl to P̃(Jl) if for any l ∈ {1, . . . , s}, there
exists a tuple {pl1, . . . , pls(l)} ⊂ {1, . . . , r} such that

{
Ipl

1
, . . . , Ipl

s(l)

}
is a
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partition of Jl and if there exists an element νl in P̃s(l) such that

Cl = γ

(
νl ×

(
Bpl

1
, . . . , Bpl

s(l)

))
.

Definition 2.11. We say that the set operad P̃ is basic-set when for all ν1,
. . . , νk in P̃, the composition map P̃ → P̃, ν 7→ γ(ν, ν1, · · · , νk) is injective.

From now on, we assume that the operad P̃ is basic-set. This condition is
necessary to define isomorphisms of subposets and to prove Theorem 2.17.
For these reasons, we need this assumption in Section 3.

As the considered operads are basic-set, the following proposition holds:

Proposition 2.12. Let λ and ω be P̃-partitions as in the definition above,
with λ ≤ ω. For any l ∈ {1, . . . , s}, the element νl is uniquely determined
once the order of the Bpl

k
’s is fixed.

It is now possible to consider a P̃-partition measuring the difference be-
tween λ and ω, by removing the νl’s which are identities. More precisely,
we define the P̃-partition δωλ of the subset

Dω
λ =

⋃
1≤l≤s
νl 6=id

{
min Ipl

1
, . . . , min Ipl

s(l)

}

of cardinal r′ ≤ r by

δωλ := {A1, . . . , As′} =
⋃

1≤l≤s
νl 6=id

{
νl × (min Ipl

1
, . . . , min Ipl

t(l)
)
}
.

Example 2.13. (1) When λ = (B1, . . . , Br) ≺ ω = (C1, . . . , Cs) is
a covering relation, we get that the P̃-partition δωλ is {A} where
A = ν × (x1, . . . , xt), for xj = min Ikj

for some kj and for ν ∈ P̃(t)
which cannot be written as a product of two non-trivial elements in
P̃.

(2) In the case where P̃ is an associative algebra, the P̃-partition δωλ is
always a set of cardinal 1.

Again, we assume that the set operad P̃ is presented by T (E)/(R) and
is endowed with the weight-grading given by P̃(1) = E.

The following proposition follows from the fact that P̃(0) = I:

Proposition 2.14. The partial order defined in [Val07] is an anti-symmetric
partial order.

An element ν in P̃ induces canonically an element ν̄ := ν × (1, . . . .n) in
ΠP̃ .
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Definition 2.15. We define the subposets Π(d)
P̃

, generated by elements in
P̃ of weight d, as follows:

Π(d)
P̃

:= {λ ∈ ΠP̃ ; ∃ν ∈ P̃(d) such that λ ≤ ν̄}.

Remark 2.16. When the operad P̃ admits a binary quadratic presentation,
the subposet Π(d)

P̃
coincides with what is called ΠP̃(d+ 1) in [Val07].

Using the fact that the operad P̃ is homogeneous, we get that the posets
Π(d)
P̃

are pure with minimal elements of the form {id×(1), . . . , id×(k)} and
maximal elements given by elements in P̃(d).

We can associate an analog partition poset to a shuffle operad in such
a way that ΠP̃

∼= ΠP̃sh
, where (−)sh is the forgetful functor from sym-

metric operads to shuffle operads. An element in ΠP̃sh
is a P̃sh-partition

of [n], that is a tuple (B1, . . . , Br, w), such that, for all j, Bj ∈ P̃sh(Ij),
where Ij = {i1 + · · · + ij−1 + 1, . . . , i1 + · · · + ij} for some ij ’s such that
i1 + · · ·+ ir = n, and w is a (i1, . . . , ir)-unshuffle in Sn satisfying w−1(i1 +
· · ·+ ij +1) < w−1(i1 + · · ·+ ij′+1) when 0 ≤ j < j′ < r. We have moreover
max Π(d)

P̃sh

∼= P̃(d). In what follows, we will use the notation ΠP̃ to denote
the partition poset ΠP̃

∼= ΠP̃sh
.

To every poset Π, we can associate an abstract simplicial complex ∆(Π)
called the order complex of Π. The vertices of ∆(Π) are the elements of Π
and the faces of ∆(Π) are the chains of Π. Theorem 7 of [Val07] extends to
the weight graded setting as follows.
Theorem 2.17. Let P̃ be a basic-set operad admitting a homogeneous pre-
sentation P̃ = T (E) /(R). We endow P̃ with the weight grading such that
P̃(1) = E. Then, for any d ∈ N, we have an isomorphism of presimplicial
S-modules between the order complex k

[
∆∗
(
Π(d)
P̃

)]
and the normalised bar

construction N∗(P)(d), where P is the linear operad associated with P̃.
Proof. The proof presented in [Val07] works in our setting. It is enough to
remark that the weight is preserved by the bijection. �

Remark 2.18. When restricted to maximal chains, this isomorphism identi-
fies maximal chains of Π(d)

P̃
with N (E)(d) (see Section 1.3 for a definition of

N (E)). In the following, we will only use this isomorphism of S-modules
between maximals chains in Π(d)

P and N (E)(d).
2.3. Main examples. We present here some basic examples.

2.3.1. Algebras. We consider an algebra on two generators a and b given by
the presentation

A := T (a, b)/(ab = ba).
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This algebra is basic-set and the presentation is quadratic (hence homoge-
neous). The associated partition posets Π(d)

A , whose maximal elements are
represented by elements in T (a, b) made up of tensor products of d elements
in {a, b}, are pure for all d ≥ 0.

The posets Π(d)
A for d = 1 and 2 are the following ones:

Π(1)
A : a

1

b Π(2)
A :

1

a b
a2

ba = ab
b2

As a second example, we consider the algebra
B := T (x, y)/(xx− xy, yx− yy).

This algebra is basic-set and the presentation is quadratic. For every d ≥ 0,
the poset Π(d)

B is pure. The posets Π(d)
B for d = 1 and 2 are the following

ones:
Π(1)
B : x

1

y Π(2)
B :

1

x y

xx = xy yx = yy

Remark 2.19. Using the fact that the algebra/operad is basic-set, we will
sometimes label edges rather than vertices by elements of the algebra/operad.
The previous example will be drawn as:

x y

x
yx

y

So that the reading of a chain from bottom to top gives an element in the
algebra read from right to left.

2.3.2. Operads. Let us consider the commutative operad Com. A presenta-
tion of this operad as a symmetric operad is

Com = T (µ)/ ((µ ◦ (id, µ)− µ ◦ (µ, id)).S3) ,
with µ in arity 2 invariant under the action of the symmetric group S2. It is a
basic-set operad, with a unique element denoted by en in every positive arity
n. The composition of operads is given by γ(ep, ek1 , . . . , ekp) = ek1+···+kp . A
presentation of Comsh is then

Comsh = Tsh(µ)/(µ ◦ (id⊗µ)− µ ◦ (µ⊗ id), µ ◦ (id⊗µ)− µ ◦1,(23) µ),

where we denote again by µ the image of µ by the functor (−)sh. The asso-
ciated partition posets are the usual partition posets, ordered by refinement,
i.e. two partitions on n elements A and B satisfy A ≤ B if and only if parts
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of A are included in parts of B. Figure 2 represents the partition poset in
arity 3 associated with the operad Com.

{1, 2, 3}

{1, 3}{2}{1, 2}{3} {2, 3}{1}

{1}{2}{3}

Figure 2. Partition poset in arity 3 associated with the op-
erad Com

Let us now consider the permutative operad Perm, introduced by Chapo-
ton in [Cha01]. A presentation of this operad as a symmetric operad is

Perm = T (µ.S2)/ ((µ ◦1 µ− µ ◦2 µ, µ ◦1 µ− (µ ◦2 µ).(23)) .S3) ,

where µ.S2 is in arity 2 and endowed with the regular action of S2. It
is a basic-set operad whose operations in arity n are the pointed versions
of the set {1, . . . , n}. Denoting by en,k, with 1 ≤ k ≤ n the elements of
Perm(n), the operadic composition is given by γ(ep,a⊗ek1,b1⊗· · ·⊗ekp,bp) =
ek1+···+kp,k1+···+ka−1+ba . A presentation of Permsh is then

Permsh = Tsh(µ, µτ )/(Rsh),

where

Rsh :=(µ ◦1 µ− µ ◦1,(23) µ, µ ◦1 µ− µ ◦2 µ, µ ◦1 µ− µ ◦2 µτ ,
µ ◦1,(23) µ

τ − µτ ◦2 µτ , µ ◦1,(23) µ
τ − µτ ◦1 µ, µ ◦1,(23) µ

τ − µτ ◦1 µτ ,
µτ ◦2 µ− µ ◦1 µτ , µτ ◦2 µ− µτ ◦1,(23) µ

τ , µτ ◦2 µ− µτ ◦1,(23) µ),

and µτ is the image of µ.(12) by the functor (−)sh.
The associated partition posets are the pointed partition posets studied by

Chapoton and Vallette in [CV06]. The underlying partitions are partitions
of {1, . . . , n}, with a distinguished element in every part and the order is
given by refinement, as in the usual partition case, with a compatibility of
distinguished elements (if an element x is distinguished in a permutation B,
it must also be in A finer than B to have A ≤ B). Figure 3 represents the
partition posets in arity 3 associated with the operad Perm.
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{1, 2, 3̄}

{1̄}{2, 3̄} {1̄, 2}{3̄} {1, 3̄}{2̄} {1, 2̄}{3̄}

{1̄}{2̄}{3̄}

{1̄, 2, 3}

{1̄}{2, 3̄}{1̄}{2̄, 3}{1̄, 3}{2̄} {1̄, 2}{3̄}

{1̄}{2̄}{3̄}

{1, 2̄, 3}

{1̄, 3}{2̄}{1̄}{2̄, 3} {1, 2̄}{3̄} {1, 3̄}{2̄}

{1̄}{2̄}{3̄}

Figure 3. Partition posets in arity 3 associated with the
operad Perm

2.4. CL-labelling and isomorphisms of subposets. For I and J finite
sets, any bijective map f : I → J induces a bijection

P̃(f) : P̃(I)→ P̃(J), νt × (x1, . . . , xt) 7→ νt × (f(x1), . . . , f(xt)).

Definition 2.20. Let Π1 and Π2 be two (pure) interval subposets of the
partition posets Π(d1)

P̃
and Π(d2)

P̃
respectively. For i ∈ {1, 2}, let

Ei :=
⋃

λ, ω∈Πi
λ≤ω

Dω
λ .
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{1, 2, 3, 4̄, 5, 6}

{1̄}{2, 3, 4̄, 5, 6} {1̄, 2, 5, 6}{3, 4̄} {1, 3, 4̄}{2̄, 5, 6} {1, 2̄, 5, 6}{3, 4̄}

{1̄}{2̄, 5, 6}{3, 4̄}

Figure 4. This poset is isomorphic to the first poset of Fig-
ure 3

(1) We say that the two subposets Π1 and Π2 are isomorphic if there
is an isomorphism g : Π1 → Π2 of posets and an increasing (for the
usual total order on N) bijection f : E1 → E2 such that for every
edge edge λ ≺ ω, we have

g(δωλ ) = P̃(f)(δωλ ).

(2) Assume that every poset Π(d)
P̃

is endowed with a CL-labelling. We

say that the CL-labellings on
{

Π(d)
P̃

}
d
are compatible with isomor-

phisms of subposets if when Π1 is a subposet of Π(d1)
P̃

isomorphic to

a subposet Π2 of Π(d2)
P̃

, the isomorphism induces a map on the labels
of the CL-labellings sending increasing chains to increasing chains,
non-increasing chains to non-increasing chains, and preserving the
preorder on chains.

Remark 2.21. The intervals drawn on Figure 3 are not isomorphic for our
definition, but for instance, the first one is isomorphic to the subposet of Π6
drawn on Figure 4.

3. Main theorem

In this section, we will consider operadic partition posets endowed with
compatible CL-labellings which make these posets CL-shellable.

3.1. From compatible CL-shellability to PBW bases. Let us consider
a basic-set operad P̃, of the form T (E)/(R) where R is quadratic, and its as-
sociated partition posets ΠP̃ . We suppose that these posets are CL-shellable
with CL-labellings being compatible with the subposet isomorphisms as de-
fined in the previous subsection.

We need the following definition to define a confluent rewriting system on
elements of T (E):
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Definition 3.1. We say that a maximal chain in a poset is adjacent to
an other one if it only differs from the first one by two edges. The poset
obtained by the set of differing edges between the two chains is then called
diamond.

The picture below depicts two adjacent chains. The diamond is the
coloured part.

x0 = y0

xi−1 = yi−1

xi = yi

xi+1 yi+1

xi+2 = yi+2

xn−1 = yn−1

xn = yn

Let us first describe a partial order on elements of T (E). This order will
be defined from the partial preorder on chains given by the lexicographic
order on CL-labellings. Denote by π : N (E)→ T (E) the map obtained by
forgetting the levels (see Section 1.3 for a definition of N (E)), and by · the
concatenation of chains in the poset ΠP̃ . We recall from Remark 2.18 that
maximal chains of Π(d)

P̃
coincide with N (E)(d).

Definition 3.2. We say that there is an exchange relation between the two
elements ã = ν1 ◦i1 ν2 ◦i2 · · · ◦il−1 ν

l and b̃ = µ1 ◦j1 µ2 ◦j2 · · · ◦jm−1 µ
m in

N (E) if
π(ã) = π(b̃)

and if there exists k ∈ J1, l − 1K such that
νs = µs and is = js for all s ∈ J1, lK\{k, k + 1}.

In particular, this implies that
l = m, νk = µk+1 and νk+1 = µk.

Example 3.3. Consider a binary generator µ. There is an exchange relation
between ã = µ ◦2 µ ◦1 µ and b̃ = µ ◦1 µ ◦3 µ. Pictorially, we have

ã =

1 2 3 4

µ

µ

µ

and b̃ =

1 2 3 4

µ

µ

µ
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Consider two trees a and b in T (E). Let us first remark that if there are
two adjacent (maximal) chains ã and b̃ such that a = π(ã) and b = π(b̃),
then the diamond between ã and b̃ comes from one quadratic relation in the
operad or from an exchange relation (this second case appears if and only
if a = b). We will deal with the first type of diamond to define an order on
T (E).

Definition 3.4. For any two elements a 6= b in T (E), we define alb if there
exist two adjacent chains ã = r · (g ≺ x ≺ h) · s and b̃ = r · (g ≺ y ≺ h) · s
such that:

• a = π(ã) and b = π(b̃),
• the CL-labelling given by λg, hr (see Remark 2.7) of the chain (g ≺
x ≺ h) is the unique increasing chain (minimal in the lexicographic
order) in this interval.

Lemma 3.5. This binary relation is anti-symmetric as soon as the par-
tition posets ΠP̃ admit CL-labellings compatible with the isomorphisms of
subposets.

Proof. Let a and b be two distinct elements in T (E). If there exist two pairs
of adjacent chains (ã, b̃) and (ā, b̄), with every first component projecting
to a and second component projecting to b, then the associated diamonds
correspond to the same relation in R. (Indeed, elements in π−1(a) only
differ from each other by a sequence of exchange relations.) The diamonds
form therefore two isomorphic subposets of ΠP̃ . The compatibility between
CL-labellings implies that the lexicographic order on CL-labellings of two
adjacent chains ã and b̃ does not depend on the pair of lifting of a and
b: it allows us to define the previous binary relation on such a and b in
T (E). It is anti-symmetric since the increasing chain is always minimal in
the lexicographic order. �

Lemma 3.6. Assume that the partition posets ΠP̃ admit CL-labellings com-
patible with the isomorphisms of subposets. The reflexive and transitive clo-
sure of the relation l, denoted by ≤, satisfies that

(2) a < b =⇒ min ({ã|π(ã) = a}) <lex min
({
b̃|π(b̃) = b

})
,

where
• the relation <lex is the order on chains given by the lexicographic
order on the associated CL-labelling,
• the minimum is taken according to this order,
• only maximal chains are considered.

Hence, ≤ is a well-defined partial order.

Proof. By the transitivity of <lex, it is enough to prove the implication (2)
for al b. We use a reductio ad absurdum. Let us consider that there exist
two elements a 6= b in T (E) satisfying al b and that there exists a maximal
chain b̃ projecting to b smaller than any chain ã projecting to a. As a l b,
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the two trees only differs by a (set) quadratic relation, say µ1 ◦iµ2 = ν1 ◦j ν2

with µ1 ◦i µ2 a subtree of a and ν1 ◦j ν2 a subtree of b. We construct a
maximal chain b̂ such that π(b̂) = b as follows: b̂ coincides with b̃ until the
level which contains ν2 (be aware that we read b̃ from the top level to the
bottom level), the next level is given by means of ν1 and the other levels
can be chosen without other condition than π(b̂) = b. Similarly, let â be the
maximal chain projecting to a defined by: â coincides with b̃ until the level
before the level which contains ν2, the next level is given by means of µ2,
the one after is given by means of µ1 and the other levels are chosen as for
b̂. We get the following picture.

b̃

b̂
â

q

Then, the exchange relations to go from b̃ to b̂ change the CL-labelling
only above the element q and the change of the CL-labelling corresponding
to the relation a < b modifies the label corresponding to the edge below
q. This would give a CL-labelling for â smaller than the CL-labelling of b̃,
which contradicts the second part of the hypotheses. Thus the first point of
the lemma holds.

As the lexicographic order is anti-symmetric, the binary relation ≤ on
T (E) also is. It is also reflexive and transitive by definition, hence the
result. �

Let us now give a characterisation for minimal elements in T (E) in terms
of their representatives inN (E). Recall that elements of T (E) have a unique
shuffle representation using rooted planar trees. We consider in the sequel
only the unique shuffle (planar) representation of the trees.

Assume that the partition posets ΠP̃ admit CL-labellings compatible with
the isomorphisms of subposets and let µ1 ◦i µ2 be a term in a quadratic re-
lation of P̃. By means of the isomorphisms of subposets, when this relation
appears as two consecutive levels in a maximal chain, the fact that the cor-
responding CL-labelling is increasing or not only depends on the quadratic
term. We first show the following lemma.

Lemma 3.7. Let a be a tree in T (E). Assume that the partition posets
ΠP̃ admit CL-labellings compatible with the isomorphisms of subposets and
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that the CL-labellings corresponding to every quadratic subtree in a are in-
creasing. Then there exists a maximal chain in π−1(a) ⊂ N (E) whose
CL-labelling is the minimal increasing chain.

Proof. We prove the result by induction on the height d of the maximal
chains in π−1(a).
Base cases: there is nothing to prove for d = 1 and the case d = 2 is

obvious.
Inductive step: assume that d ≥ 3. We suppose that the result holds for

all maximal chains of height < d. Let ã be in π−1(a). We write ã = â ◦i µ.
By the induction hypothesis, there exists a maximal chain â′ whose CL-
labellings is the minimal increasing chain and such that â′ ◦i µ ∈ π−1(a).
If the CL-labelling associated with â′ ◦i µ is not the increasing chain, we
write â′ = â′′ ◦j µ′. We know that the two last levels of â′ ◦i µ, given by µ′
and µ, do not correspond to a quadratic relation otherwise the associated
CL-labelling would be increasing by assumption on a and the CL-labelling
associated with â′ ◦i µ would be too.

We can therefore consider the exchange relation associated with these two
levels to get the levelled tree â′′ ◦i′ µ◦j′ µ′. The CL-labelling associated with
the two last levels is now increasing. If the CL-labelling associated with
â′′ ◦i′ µ is non-increasing, we continue similarly. Otherwise, we stop. We
finally get ā ◦k µ ◦l S̃ where S can be seen as a forest of intertwined levelled
trees coming from a forest S of trees in T (E).

By the induction hypothesis, for any tree b in the forest S, there exists a
levelled tree b̃ projecting to b by π and such that the associated CL-labelling
is increasing. It is possible to intertwine the levelled trees b̃ in order to get a
forest of intertwined levelled trees Ŝ associated with the same forest S as S̃
and such that the corresponding CL-labelling (rooted by ā◦kµ) is increasing.
Indeed, let us denote by Ŝ′ the forest of intertwined levelled trees defined as
follows: the first levels are given by the levelled tree b̃1 corresponding to a
first tree b1 in the forest S, then we put the levelled tree b̃2 corresponding
to a second tree b2 in S and so on. If the CL-labelling associated with the
first term of b̃2 and the last term of b̃1 is non-increasing, we make use of an
exchange relation in order to get an increasing CL-labelling. We continue
until we get an increasing CL-labelling. We do the same reasoning with the
second term in b̃2 and so on and so forth and for the other levelled trees b̃k.
We finally get the wanted forest of intertwined levelled trees Ŝ.

We conclude by saying that the CL-labelling associated with ā ◦k µ ◦l Ŝ
is increasing since the CL-labelling associated with the levelled tree corre-
sponding to µ and the first level of Ŝ is increasing by construction of S̃. �

We are now able to prove the following characterisation.

Lemma 3.8. An element in T (E) is minimal for the previously defined
order ≤ if and only if one of its representatives in N (E) is the minimal
increasing chain in the interval.
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Proof. ⇐: We first assume that some ã ∈ N (E) representing a ∈ T (E) is
the minimal increasing chain. Using Lemma 3.6, the element a is
minimal otherwise there would exist a chain smaller than ã, which
contradicts the hypotheses.

⇒: To prove the converse direction, we use a proof by contraposition. Let
a be an element in T (E) such that none of the representatives ã
in N (E) is the minimal increasing chain (for the CL-labelling). By
Lemma 3.7, we get that there exists (at least) one quadratic subtree
q in a and a quadratic tree r such that r l q. It follows that the
tree b obtained by means of a where the subtree q is replaced by r
satisfies bl a. This shows that a is not minimal.

�

Theorem 3.9. Let P̃ be a quadratic basic-set operad and let ΠP̃ be the
associated operadic partition posets. We assume that the posets

{
Π(d)
P̃

}
d

admit CL-labellings compatible with isomorphisms of subposets.
Then, the algebraic operad P = T (E)/(R) associated to P̃ admits a PBW

basis with a partial order, as defined in Definition 1.4.

Proof. We previously defined a partial order (see Lemma 3.6). This partial
order gives a rewriting system on T (E) by defining rewriting rules a→ b for
any covering relations a > b. Moreover the CL-compatibility ensures that
the rewriting rules are context-free, that is, if a→ b, then for every u and v in
T (E) and every pointed shuffles w,w′ we have u◦i,wa◦j,w′ v → u◦i,w b◦j,w′ v.
The obtained order is thus compatible with the shuffle composition.

As the lexicographic order is decreasing at every rewriting step and as
the number of generators (and thus of chains of a fixed weight) is finite, the
rewriting system is terminating.

Before studying confluence, let us observe the crucial fact that normal
forms in T (E) are exactly minimal elements for the previously defined par-
tial order ≤. Hence, according to Lemma 3.8, an element in T (E) is a
normal form if and only if one of its representatives in N (E) is the minimal
increasing chain in the interval.

We now show the confluence of critical pairs.
Let a be in T (E) be the source of a critical pair. It implies that a is

in weight 3 (as relations are quadratic in the operad) and that a can be
rewritten as two different elements a′0 and a′′0, which can be each further
rewritten into normal forms a′ and a′′ respectively (because of termination
of the rewriting system in T (E)).

Let us consider the partition poset Pa associated with the element a seen
as an element of the operad. Among all chains ã′ representing a′, one of
them is the minimal increasing one in Pa, as a′ cannot be further rewritten
in T (E). The same reasoning applies to a′′: some chain ã′′ representing a′′
is the minimal increasing one in Pa. Therefore a′ = a′′.

This proves the confluence of the critical pair of source a.
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Then we have a convergent rewriting system on T (E). The first point of
Definition 1.4 comes from the fact that the order is decreasing with rewriting
steps and the second point, from the fact that the operad is quadratic, hence
all rewriting steps come from rewriting steps on product of generators of the
operad. �

Remark 3.10. The result is different from the result of Quinn in [Qui13]
which studies posets and their incidence algebras, even if it looks similar
at first sight. Namely, starting with a poset, he shows that the poset is
LEX-shellable if and only if the incidence algebra is PBW for some specific
lexicographic order. There is no obvious link between our results, as the
associations between a poset and an algebraic object (algebra or operad)
differ in the two papers.

3.2. Example: Commutative and permutative case. We described
in Section 2.3.2 the partition posets associated with the operads Com and
Perm. Let us illustrate the previous main theorem with these posets.

First, let us start with partition posets associated with Com, i.e. usual
partition posets. A CL-labelling (EL-labelling in fact, i.e. CL-shellable, with
the label of a given edge being independent of the chain containing it) of
these posets was given in [Bjö80] by Björner, following an idea of Gessel. The
edge between the partitions (A1, . . . , Ap) and (A1, . . . , Âi, . . . , Âj , . . . , Ap,
Ai ∪Aj) is given by

δ = min(Ai) min(Aj)

and is labelled by max(min(Ai),min(Aj)).

Proposition 3.11. This labelling is compatible with isomorphisms of sub-
posets.

Proof. The condition on considered isomorphisms of subposets is given on la-
bellings by an increasing bijection f . We have therefore min(Ai) < min(Aj)
implies min(f(Ai)) < min(f(Aj)). It is equivalent to the property:

(3) max(min(f(Ai)),min(f(Aj))) = f(max(min(Ai),min(Aj))).

The labellings depend only on the minimal elements of the poset and any
subposet isomorphism preserves the order on minimal elements by definition:
the CL-labellings are thus compatible with isomorphisms of subposets. �

We can then apply Theorem 3.9 to get a PBW basis of the commutative
operad. Indeed, elements of the PBW basis are obtained as increasing chains
for the CL-labelling. They are thus obtained by merging the two parts
having the smallest minimal elements.

Corollary 3.12. The PBW basis associated to this CL-labelling is the basis
of binary left-side combs with entries labelled from left to right by 1, . . . , n.
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4. Study of the converse of the main theorem

In this section, we present two examples related to the converse direction
of Theorem 3.9. The second (counter)-example is the counter-example of
the theorem, that is a PBW algebra admitting no PBW basis which could be
associated with an isomorphism compatible CL-shelling. To make it more
accessible, we first introduce an example on which it is based.

4.1. First counter-example. Let us begin with a first example on algebras
which proves the complexity of the converse of Theorem 3.9. We consider
the algebra in sets on the generators a, b, c, d, e, f , . . . , l with relations
da = eb, fb = hc, gb = ic, kh = li and je = kf = lg.

Proposition 4.1. This algebra is basic-set.

Proof. Suppose that it is not the case and there exists two words u 6= v and
a letter x such that ux = vx. Without loss of generalities, we can assume
that u and v are of minimal length, let us say of length n for instance.

• Let us first assume that un 6= vn. We presume that u = u1 . . . un and
v = v1 . . . vn. Then x must be the last letter of at least one relation,
otherwise ux = vx would imply u = v which is assume to be false.
Moreover, un 6= vn implies that x is in fact in at least two relations:
it is then b or c.

The relation interfering here can then be da = eb, fb = hc or
gb = ic. However there are no other relations using d so that its use
could not lead to a relation ux = vx.

Let us try to build u and v: if x = b, both relations fb = hc and
gb = ic must be used to avoid un = vn. For instance, let us say that
un = f and vn = g. When rewriting ux in vx, we should then use
a relation of the type ∗h = . . .. Iterating this reasoning, the only
possible word for ux is kfb and vx is lgb. However kf = lg: we get
a contradiction.

If x = c, the only possibility is ux = khc and vx = lic, but once
again kh = li.
• Let us now assume that un = vn. We can take u and v such that
the first and the last relation involve x. Then unx must be equal
to a αβ, α being the right element of a product belonging to some
relations. The possibilities are:
– unx = fb or hc: ux is then kfb or khc. It cannot be longer as

there are no relations of type αk. It is moreover not possible to
rewrite it in some γfb or γhc, with some γ different from k.

– unx = gb or ic: ux is then lgb or lic. It cannot be longer as
there are no relations of type αl. It is moreover not possible to
rewrite it in some γgb or γic, with some γ different from l.

This concludes the proof.
�
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Figure 5. Partition poset associated to the algebra

Let us choose any total order extending the following partial order on
generators d < e, i < g, f < h and j < k < l. We consider the following
orientation on relations, obtained from the lexicographic order extending
the order on generators:

eb→ da hc→ fb

gb→ ic kf → je

lg → je li→ kh.

The only critical pair of the rewriting system is lgb, which is conflu-
ent. The obtained rewriting system is convergent: the algebra is thus PBW
[GHM14, Section 3]. Let us consider the partition poset Π drawn on Figure
5, which is an interval of one partition poset associated with the algebra.
The edges are labelled by the generators on which the upper element must
be multiplied to obtain the lower element.

Lemma 4.2. The poset Π admits no CL-labelling such that the poset is CL-
shellable and minimal chains associated with the CL-labelling correspond to
PBW elements of the algebra, i.e. to normal forms in the previous rewriting
system.
Proof. We prove the lemma by reductio ad absurdum. Suppose that a CL-
labelling l of Π exists, such that the poset Π is CL-shellable and minimal
chains in the lexicographic order for the CL-labelling correspond to PBW el-
ements of the algebra. We denote by l the covering relation associated with
the poset Π. Then in the interval [A;W ], the orientation of the rewriting
system implies that the chain Al S lW must be the smallest one and in-
creasing, thus implies l(AlS) < l(AlU). Moreover, in the interval [A;X],
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•
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• •

α α′

β γ β′

γ′

Figure 6. Poset in which the PBW elements βα and β′α′

cannot correspond to minimal chains of any CL-labelling

the orientation of the rewriting system implies that the chain A l U l X
must be the smaller one and increasing, thus implies l(A l U) < l(A l S).
Remark that we do not need to specify to which maximal chains these edges
belong as if two maximal chains coincide along their bottom edge, then the
labels also coincide on this edge. We thus get a contradiction as we cannot
have l(Al S) < l(AlU) < l(Al S): such a CL-labelling cannot exist. �

Considering an algebra A, and an associated rewriting system R(A). For
the same reasons as detailed in the previous proof, every poset associated
with A containing the subposet in Figure 6, with βα and β′α′ normal forms
of R(A), cannot admit a CL-labelling such that the poset is CL-shellable and
minimal chains in the lexicographic order for the CL-labelling correspond to
normal forms of R(A).

Remark 4.3. In the previous counter-example, exchanging the order between
i and g enables to define a CL-shelling satisfying the wanted property.

4.2. Second counter-example. Using the idea of the first example, we
construct a counter-example for the converse of Theorem 3.9, i.e. given any
PBW basis associated with the algebra, there is no associated isomorphism
compatible CL-shelling.

We consider the algebra on 13 generators: a, b, d, e, f , h, i, j, k, l, n, o,
p, with relations given as follows.

ba = ed ea = fb

hb = id jb = kd

oi = pk ej = ph

le = ek = pi nf = oh = pj

Once again, we have the following proposition:

Proposition 4.4. This algebra is basic-set
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Figure 7. Second counter-example

Proof. We follow the strategy of the proof of Proposition 4.1.
The possible x for a relation ux = vx are a, b, d, e, f , h, i, j and k. The

possible associated words are:
• ending in a: lba and nea
• ending in b: lfb, pjb, ejb, ohb and phb
• ending in d: ohed, phed, oid, pid, pkd, ekd, lfed, pjed and lejed
• ending in e: lle
• ending in f : nf
• ending in h: lph and oh
• ending in i: oi and lpi
• ending in j: ej and pj
• ending in k: pk and ek.

These words are of maximal lengths (no letter can be added, which could
be involved in a relation) and none of these words can lead to a relation
ux = vx, with u 6= v. �

This algebra admits at least one PBW basis by considering the following
rewriting system, associated with any linear order extending b < l < e <
n < o < p < f , h < i, k < j:

ed→ be ek → le

fb→ ea id→ hb

jb→ kd oh→ nf

ph→ ej pi→ le

pj → nf pk → oi
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The lexicographic ordering ensures that the rewriting system is termi-
nating and the only critical pairs are pid and pjb which are confluent: this
system is convergent and define a PBW basis as defined in definition 1.4.

Lemma 4.5. The posets associated with this algebra admit no CL-labelling
such that the posets are CL-shellable, with a shelling compatible with poset
isomorphisms and minimal chains for the CL-labelling corresponding to PBW
elements of the algebra, for any kind of PBW basis. Equivalently, the con-
verse of Theorem 3.9 is false.

Proof. Let us consider the equations hb = id and jb = kd. There are four
possible orientations. We will prove that there are no orientation which
gives a PBW basis associated with minimal chains for a CL-shelling. Note
that the intervals [I;N ] and [A;G] (resp. [I;O] and [A;F ]) are isomorphic,
thus the labellings lb (resp. ld) of edges [I;L] and [A;C] (resp. [I;K] and
[A;D]) must be the same in any interval beginning with it.

• If hb → id and kd → jb or id → hb and jb → kd, one of the posets
implies lb < ld and the other one ld < lb, which is impossible.
• If hb→ id and jb→ kd, either oid or pkd is the normal form of the
poset [A;H]. This implies ea→ fb so that there is only one normal
form in [A;H]. The same reasoning in [I;P ] implies ba → ed. But
then the critical pair jba is not confluent: no PBW basis can satisfy
that. The case di→ bh and dk → bj is symmetric.

�
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