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We study the avalanche and extreme statistics of the
global velocity of a crack front, propagating slowly
along a weak heterogeneous interface of a transparent
PMMA block. The different loading conditions used
(imposed constant velocity or creep relaxation) lead
to a broad range of average crack front velocities.
Our high-resolution and large data set allows to
characterize in detail the observed intermittent
crackling dynamics. We specifically measure the
size S, the duration D, as well as the maximum
amplitude Vmax of the global avalanches, defined as
bursts in the interfacial crack global velocity time
series. Those quantities characterizing the crackling
dynamics follow robust power-law distributions, with
scaling exponents in agreement with the values
predicted and obtained in numerical simulations of
the critical depinning of a long-range elastic string,
slowly driven in a random medium. Nevertheless, our
experimental results also set the limit of such model
which cannot reproduce the power-law distribution
of the maximum amplitudes of avalanches of a
given duration - reminiscent of the underlying fat-tail
statistics of the local crack front velocities.
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1. Introduction
The mechanical response of heterogeneous materials submitted to simple loading can present a
complex behavior, in the form of collective excitations, bursts, with very broad size distributions
usually following power-laws, separated by periods of rest, also broadly distributed [1]. This
complexity culminates for instance, when considering faults dynamics during earthquakes,
where slowly accumulated energy during the very slow motion of tectonic plates is suddenly
released and dissipated by failure and frictional processes. The corresponding intermittent
“crackling noises" [2] recorded by seismologists have indeed specific statistical characteristics,
with for instance the famous scale-free Gutenberg-Richter law [3], relating the magnitude and
total number of earthquakes, as well as, temporal correlations with aftershocks sequences
following Omori’s scaling law [4].

Such physical behavior is a common feature of numerous systems covering a broad range
of scales, when compressing, or elongating laboratory heterogeneous samples like paper [5–7],
wood [8], rocks [9], porous materials [10] and artificial rocks made of sintered polystyrene
beads [11], or weakly sintered plexiglas plates [12–16]. Nevertheless, this phenomenology is not
limited to the physical processes of deformation and rupture of disordered materials. Indeed,
such intermittent avalanche dynamics can be observed for very different heterogeneous systems,
slowly driven in out-of-equilibrium conditions, with for instance, the magnetic response of a
disordered ferromagnet, also known as “Barkhausen Noise" [17,18], the vortex lines motion in
superconductors [19], the fluid imbibition in porous and fractured media [20–23], the motion of
contact lines over substrates with wetting heterogeneities [24], but also the yielding of amorphous
materials [25–27] and single crystals [28–30] or even in the biological activity of neuronal networks
[31,32] and cell migration [33].

Understanding the morphology and dynamics of interfaces slowly driven in disordered media
has thus become a real challenge over the last thirty years. The common point of the so-called
“Disordered Elastic Systems" [34] is the competition between the medium heterogeneities, which
deform the fronts, while the elasticity of the system tends to maintain an orderly structure, and
to smooth the interfaces. Those competing forces act at different spatial and temporal scales,
leading indeed to complex structural and dynamical properties of the interfaces, with self-
affine roughening morphologies and intermittent scale-free burst dynamics. Since the very first
theoretical descriptions of the propagation of interfaces in random media [35,36], much progress
has been achieved in last years, both theoretically and experimentally.

From a theoretical perspective, the detailed description of these systems is difficult and
requires sophisticated approaches from nonlinear statistical physics [37,38]. Nevertheless, their
critical-like scaling behavior could be interpreted in terms of non-equilibrium phase transitions
[42], separating quiescent and active phases. Close to such dynamical phase transitions, the
temporal fluctuations of an activity signal (as for instance, an interfacial velocity) acting as an
order parameter display power-law scaling avalanches [1]. Statistical analyses and functional
renormalization group calculations have succeeded to predict avalanche scaling exponents,
within the mean field approximation and even beyond [38–41], and suggest to classify those
systems displaying avalanche dynamics into “universality classes", characterized by their critical
scaling exponents, directly related to the spatial dimension and the interaction range of the
system, but a-priori independent of the microscopic material properties.

Thanks to experimental efforts to design model systems [12,21,43,44], where the structure and
dynamics of interfaces could be directly observed and tracked very accurately both in space and
time at the microscopic scale of the disorder, recent studies have been able to reconcile theoretical
predictions and experimental observations. Specifically, it has been shown that both the structure
and dynamics of planar cracks could be described quantitatively, at scales larger than the disorder,
within the framework of a “critical depinining transition" [15,16,45–48].

In the present work, we describe novel experimental results obtained for such a model system,
that allows to access the structure and the dynamics of an interfacial crack, propagating along
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a weak disordered interface, locally at the scale of the heterogeneities. Usually, such spatial
resolution is difficult to obtain, and the avalanche dynamics is typically studied only through
the temporal evolution of a global, spatially-averaged quantity - also called “Crackling Noise". In
contrast, our experimental set-up allows to bridge this gap, from local to global dynamics [49].

We present here an analysis of the avalanche and extreme statistics of the global velocity of a
planar crack front, propagating slowly along a weak heterogeneous interface within a polymethyl
methacrylate (PMMA) block. This global velocity is obtained from the spatial average of the front
velocity measured at local microscopic scales, below the scale of heterogeneities. The originality of
our study is indeed to analyze the crackling dynamics at a global scale, characterizing the statistics
of global avalanches, extracted from the spatially-averaged crack front speed, while most of our
previous studies on crack front avalanches have focused on local bursts, e.g. clusters of high local
crack front velocity [12–14]. Moreover, in contrast with the more recent works reported in [15,16]
(that focused on the avalanche shape and on the waiting time between subsequent avalanches,
respectively), different loading conditions were used here. We thus could obtain a very high-
resolution large data set, with in particular a broad range of average crack front velocities,
spanning close to five decades, allowing us to characterize in detail the crackling dynamics.
Indeed, we quantify the avalanche crack front dynamics by measuring the size and duration of
global bursts in this crackling noise signal, e.g. the global crack front velocity. We show that our
results are in quantitative agreement with previous theoretical and numerical results [15,46,48],
with power-law exponents characterizing the size τ = 1.15± 0.15, and duration α= 1.32± 0.15

of those global avalanches, as well as their scaling 〈D|S〉 ∼ Sξ with ξ = 0.60± 0.15. We thus
confirm that the planar crack front avalanche dynamics at large scales can be well-described by
the critical depinning of a long-range elastic string in a 2D random medium.

Furthermore, we have computed the extreme statistics of the velocity fluctuations
corresponding to global avalanches. We find that the maximum avalanche velocity follows a
power-law tailed distribution P (Vmax)∼ V −εmax with an exponent ε= 1.34± 0.15. The average
maximum velocity also scales with the avalanche duration as 〈Vmax|D〉 ∼Dβ , with the exponent
β = 0.90± 0.20 that is also related by the scaling relation to the exponents of the avalanche
duration and maximum amplitude distribution, namely ε= 1 + (α− 1)/β. We notice that the
values of these exponents are different than those predicted from the mean-field theory of
interface depinning [52,53], but the scaling relation between them is still valid. We observe
nevertheless a quantitative agreement between the experimental values and those obtained from
numerical simulations of a long-range elastic interface slowly driven along a disordered plane,
beyond the mean-field approximation. However, there are also fundamental differences when
comparing the scaling functions for the distribution of maximal velocities within avalanches of
fixed duration. Albeit the mean values are in agreement with simulations, we find that maximal
velocities are broadly varying with a tail-distribution that is similar to that of the local crack front
velocity distribution and in particular its fat-tail P (v)∼ v−η with η∼ 2.8. This is not captured by
the interfacial model which gives an exponential tail. Therefore, it can question the validity of the
elastic line approach to describe the crack front dynamics at small scales close to the disorder, for
which, a percolation-like approach [54,55] might be more relevant.

2. Experiments & Methods
We will first recall briefly the experimental set-up together with the samples preparation and
methods of analysis, described in detail in [14,56].

Our samples consist of two sand-blasted Plexiglas plates that are annealed together to create
a single block with a weak heterogeneous interface. Those plates have the following dimensions
(30, 14, 1) cm for the top (thicker and wider) one, and (30, 12, 0.4) cm for the bottom one. Before
annealing at a controlled temperature of 205 ◦C for 30− 50min, both plates are blasted on one
side with 50µm steel particles or 100µm glass beads. Such procedure roughens the Plexiglas
plates surfaces with a random topography which induces random toughness fluctuations at
microscopic scales (few tenths of microns) during the annealing procedure [12]. A cylindrical
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Figure 1. Left: Sketch of the experimental setup. Two initially sand-blasted and sintered PMMA plates create a weak

heterogeneous interface, where a fracture – initiated by lowering a cylindrical press bar onto the lower plate – propagates.

The fracture front is imaged from above by a high-resolution fast camera mounted on a microscope. Right: Typical fracture

front h(x, t′) extracted at some time t′ superimposed on the corresponding raw image, propagating from top to bottom.

The framed raw image corresponds to a tiny central part of the full sample.

press bar mounted on a motorized vertical translation stage imposes a normal displacement to the
thin plexiglas bottom plate, while the upper one is fixed to a rigid aluminum frame. Subsequently,
a fracture propagates along the weak heterogenous plane between the sintered plates, in mixed
mode I/II conditions, due to the unequal thickness of the two plates, and the loading asymmetry
conditions (see Appendix in [56] for more details). Different loading conditions have been used,
by either pushing the bottom plate at a constant velocity, constant velocity boundary conditions (F),
or by imposing a constant deflection d to the bottom plate, creep boundary conditions (R).

A high-resolution and fast digital camera mounted on a microscope images a small central
region of the crack front at the millimetre scale, as shown in Figure 1. The large width of the
bent PMMA plate (10 cm) ensures that this central region of interest is not influenced by finite
size effects. The sandblasting procedure – crucial to introduce toughness fluctuations along the
weak plane – leads moreover to a very good contrast between the cracked and uncracked part
of the sample, allowing to detect and extract rather easily the fracture font as shown in the
bottom panel of Figure 1. For a more detailed description of the front extraction and image
treatment, see [13]. The interfacial crack front propagation is captured with a high frame rate
(from 1 fps to 2000 fps) compared to the average crack front velocity (typically 2 orders of
magnitude faster), recording between 12 000 and 30 000 frames, using either a Photron Fastcam-
Ultima APX (512× 1024pixels) or a Pixelink Industrial Vision PL-A781 (2200× 3000pixels), at
a spatial resolution ∼ 1− 10µm/pixel. We have performed various experiments with different
loading conditions, leading to average crack front velocity spanning a very broad range (5 orders
of magnitude). Indeed, our experiments could last few seconds to several hours, whereas the
average distance of front propagation, is ∼ 500µm in all cases.

The spatially random toughness fluctuations (induced by the sandblasting procedure) along
the weak interface of the plexiglass block leads to a rough fracture front with complex self-affine
scaling properties [45,47], and an intermittent avalanche dynamics [12] In order to characterize
this jerky front propagation, we have developed an original procedure [12], based on the
measurement of the local waiting time fluctuations of the crack front during its propagation.
Such method has been successfully applied to quantify the avalanche dynamics of various
systems, such as fluid imbibition fronts [57,58] or biological cells migration [33]. Specifically,
we first computed the local front velocities v(x, y) from measurements of the local waiting
times wt(x, y) elapsed while the crack front was located at a given position (x, y), and defining
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Figure 2. The bottom panel displays a typical spatio-temporal local velocity field v(x, t) of the interfacial fracture during

a slow creep experiment, which reflects the intermittent dynamics over a broad range of scales. In the top panel, the

corresponding global velocity of the front VL(t) = 〈v(x, t)〉L, obtained from the local velocity field spatially averaged,

here, at the scale L of the system size (e.g. image size) The dashed line indicates the threshold Vc used to define the

global avalanches, of size S, duration D and of maximum velocity Vmax, as explained in inset. Here, the threshold is

equal to the total average front velocity. The size equals the area under connected points in VL(t) above the threshold

line. For a given avalanche, the duration is the time difference between the two subsequent intersections with the threshold

line. The maximum velocity is the peak value inside an avalanche minus the threshold velocity Vc.

v(x, y) = r/wt(x, y), where r is the pixel resolution. Using the detected crack front position, h(x, t)
it is straightforward to obtain the spatio-temporal local velocity map v(x, t), and the total average
front velocity 〈v〉= 〈v(x, t)〉x,t of the fracture. Finally, from this local velocity field v(x, t), we
compute the spatially-averaged front velocity Vl(t) over a variable window size l ∈ (r, L), namely
as Vl(t) = 〈v(x, t)〉x0 where the brackets correspond to an average of the local velocity over the
abscissa x0 of a window of size l. We have systematically varied the scale l=L/N at which
we measure the global velocity Vl(t), obtaining finally N different crackling signals from one
experiment with a crack length L. This window size l is always larger than the correlation length
of the local velocities along the crack front, measured around 100 µm for our samples.

Figure 2 (top) shows the global velocity VL(t) for one typical creep experiment. This signal
is obtained from the spatio-temporal local velocity map v(x, t), spatially averaged at the scale L
of the recorded images. This grey scale map illustrates the intermittent crack front dynamics. In
particular, it has been shown previously that the front dynamics is governed by local avalanches –
connected clusters of high local velocity – with very large size and velocity fluctuations following
a fat-tail distribution P (v)∼ v−η , decaying with a power law exponent η∼ 2.7. Consequently,
the global crackling noise Vl(t) signal follows a non-Gaussian statistics and, by the generalized
central limit theorem, converges to a Levy-distribution [49] at large measuring scales l.

Here, we go further by studying the avalanche and extreme statistics of those global velocity
fluctuations Vl(t). Similar to earlier works [17,18,21,46], we introduce the concept of global
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avalanches in the crack velocity signal. Each avalanche is characterized by its size S, duration D′,
and maximum amplitude Vmax for a given threshold level Vc = 〈v〉+ C · σ, whereC is a constant
and σ corresponds to the standard deviation of the crack velocity signal Vl(t):

D′l = |tb − ta|, whenever


Vl(ta) = Vc
Vl(tb) = Vc
Vl(ta < t< tb)>Vc

(2.1)

Sl =

∫ tb
ta

(Vl(t)− Vc) dt (2.2)

Vl,max = max[Vl(t)]t∈(ta,tb) − Vc . (2.3)

The dimension of the global avalanche size S is a length, and it corresponds to the extra
displacement of the fracture front in comparison to the global advancement of the crack at the
velocity equals to the threshold value Vc, during the avalanche duration D′. In order to compare
the duration statistics from experiments with very different average velocity 〈v〉, we compute the
normalized duration D as D=D′/D0 , where D0 = r/〈v〉.

3. Avalanches and Extreme Values Statistics
Figure 3 shows the size and duration distribution P (S) and P (D) of the global avalanche for one
given fracture experiment. The avalanches were computed from crackling signals Vl(t) computed
at various scales l=L/N , withN = [1, 2, 4, 6, 8, 10, 12, 16, 20], while the threshold value was fixed
using C =−0.1. We observe power-law distributions with exponential cut-offs, both for the size

S (µm)
10

0
10

1
10

2
10

3

P
(S

)

10
-6

10
-4

10
-2

10
0

N = 1
N = 2
N = 4
N = 6
N = 8
N = 10
N = 12
N = 16
N = 20

D

10
0

10
1

10
2

10
3

P
(D

)

10
-6

10
-4

10
-2

10
0

Figure 3. Probability distributions functions of the size S and normalized duration D of global avalanches computed

from crackling noise signals measured at various length scales l=L/N , with N = [1, 2, 4, 6, 8, 10, 12, 16, 20], from a

single fracture experiment. The global avalanches are detected with a threshold level C =−0.1.

S and durationD. Interestingly, the distributions do not depend on the scale l at which the global
quantity Vl(t) is measured (as soon as l is larger than the correlation length scale of the local
crack front velocities around 100 µm). Nevertheless, obviously, the statistics drastically improves
as l decreases, since the number of crackling signals and thus the number of avalanches detected
increases. We have previously reported that the local dynamics of the fracture front does not
depend on the average front velocity, for either creep or constant velocity loading conditions [14].
Therefore, we expect a similar behavior for the global crackling noise signal Vl(t).



7

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

D

10
0

10
1

10
2

10
3

P
(D

)

10
-6

10
-4

10
-2

10
0

S (µm)
10

0
10

1
10

2
10

3

P
(S

)

10
-6

10
-4

10
-2

10
0

〈v〉 = 0.03 µm/s
(R)
〈v〉 = 0.15 µm/s
(R)
〈v〉 = 1.36 µm/s
(F)
〈v〉 = 10.1 µm/s
(F)
〈v〉 = 141 µm/s
(F)

Figure 4. Probability distributions functions of the size S and normalized durationD of global avalanches detected for five

different experiments, performed in different conditions leading to very different average crack front velocity, from around

0.02 to 150 µm/s. The global velocity is measured at a length scale l=L/16 and for a threshold level with C =−0.1.

In Figure 4, we represent the probability distribution functions of the size S and normalized
duration D of global avalanches, detected for the global velocity of the crack front, measured
at a length scale l=L/N , with N = 16 for a threshold level C =−0.1 for 5 experiments with
very different average velocities, from around 0.02 to 150 µm/s (obtained in different loading
conditions). Indeed, we can observe that those distributions – power-law up to an exponential
cut-off – do not depend on the average crack front velocity. Moreover, we have also checked that
we can obtain similar collapses for other values of N and C.

Therefore, we are then justified to accumulate statistics from all our experiments, with very
different average front velocities. Moreover, we can also increase the statistics by computing, for
each experiment, N = 16 different crackling noise signals, averaged velocity Vl(t) measured at
length scales l=L/16, as done previously in Fig. 4. This is valuable in order to find reliable scaling
exponents and, to characterize precisely the distribution cut-offs and their dependence on the
threshold value, which is exactly the goal of the analysis shown in the following figures. Indeed,
we display the size and duration distributions of the global avalanches, changing systematically
the threshold values C ≡ [−0.3,−0.1, 0, 0.2, 0.5, 0.8, 1.2], in Figure 5. In the top-left figure, it is
clear that the size distributions of the global avalanches P (S) can be well fitted by a power law
with an exponential cutoff S∗ (represented by dashed black lines). For the range of thresholds
used, we observe that the power-law exponent doesn’t evolve, while the cut-off S∗decreases
systematically as the threshold increases: S∗ = 128c−1.9r with the normalized threshold velocity
cr = Vc/〈v〉= 1 + Cσ/〈v〉. A similar scaling behavior is observed for the avalanches duration
distributions (top-right) with the cut-off D∗ = 68c−3.0r . Therefore, we could use the values of
those cut-offs to collapse the various distributions P (S) and P (D) allowing to extract reliable
power-law exponents as shown at the bottom of Fig. 5,

P (S)∼ S−τ , with τ = 1.15± 0.15, (3.1)

P (D)∼D−α, with α= 1.32± 0.15. (3.2)

Moreover, we also show (inset, bottom right figure 5) that the average avalanche duration of the
global avalanches scales with the avalanche size as,

〈D|S〉 ∼ Sξ , with ξ = 0.60± 0.15 (3.3)
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Figure 5. Distributions of avalanche sizes S (Top Left) and normalized durations D (Top Right), for various threshold

values C ≡ [−0.3,−0.1, 0, 0.2, 0.5, 0.8, 1.2], where the crackling noise signals have been measured at a scale l=

L/16 (where L is the system size), for various experiments with a broad range of average crack front velocities (thanks

to different loading conditions). Extracting the evolution of the exponential cut-off of each power-law distributions, S∗ and

D∗, for sizes and durations respectively (as shown in the top insets), we can collapse those distributions P (S) and

P (D), when plotting P (S)S∗τ or P (D)D∗α as a function of rescaled observables S/S∗ or D/D∗. The collapses

displayed on the bottom figures allow us to extract reliable scaling exponents τ = 1.15± 0.15 and α= 1.32± 0.15. In

the inset of the bottom right figure, we moreover show how the average avalanche duration scales with their average size,

〈D|S〉 ∼ Sξ with ξ= 0.60± 0.15.

Those scaling exponents for the avalanche size and duration distributions are in remarkable
agreement (within the rather large experimental error bars) with theoretical (using functional
renormalization group calculations) and numerical predictions considering an interface with a
long-range elasticity propagating in a random medium, giving τ = 1.25, α= 1.43, and ξ = 0.58

(see [15–17,46,48,50,51] and references therein). Moreover, it is important to notice that the values
of those exponents characterizing the scaling behavior of the global avalanches are different when
considering local crack front bursts [12,48]. Our new experimental results clearly confirm that
high local velocity clusters and global avalanches measured on crackling time series are different
observables with different statistical properties, as already reported in numerical simulations
[46,48], and in imbibition experiments [23,57,58]. Finally, we can also remark that those scaling
exponents are also different from those reported for a 3D crack front propagating in a bulk
artificial rock [59]. This could suggest that the fracture of 3D solids may not be simply reduced to a
2D depinning problem. However, the scaling exponents reported in [59] evolve with the driving
velocity, in strong contrast with our measurements, leading to robust scaling exponent values,
for different loading conditions, with very different average crack front velocities. Therefore, this
discrepancy might simply arise from the fact that the quasi-static assumption of the depinning
model is not satisfied in those experiments.

To further characterize the statistics of these avalanches, we also examine their maximum
amplitudes measured by Vmax, where we have renormalized the crackling noise signal by
the average crack front velocity value, i.e. Vl(t)/〈v〉, to compare experiments performed at
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very different average velocities. Figure 6 shows the distributions of the maximum amplitudes
of avalanches measured for the same data set analyzed previously (figure 5), e.g. 5 different
experiments with very different average crack front velocities, and for each experiments N = 16

different crackling noise signals (averaged velocity Vl(t), measured at length scales l=L/16)
were computed changing systematically the threshold values C ≡ [−0.3,−0.1, 0, 0.2, 0.5, 0.8, 1.2].
Strikingly, we observe that the distributions follow a power-law behavior with an exponential
cut-off, independent of the threshold C,

P (Vmax)∼ V −εmax, with ε= 1.34± 0.15. (3.4)

Moreover, in the inset of figure 6, we also show that the avalanche maximum velocities scales in
average with the avalanche duration as,

〈Vmax|D〉 ∼Dβ , with β = 0.90± 0.20 (3.5)

Finally, using a simple change of variables, P (Vmax) = P (D)|dD/dVmax| we can relate those
different scaling exponents, characterizing the statistics of the maximum amplitude of the global
avalanche and their duration, as, ε= 1 + (α− 1)/β. Based on our previous measurements of α
and β, we find ε' 1.35, which is consistent with our direct experimental measured value.
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Figure 6. Distributions of the avalanche maximum velocities Vmax for various threshold values C ≡
[−0.3,−0.1, 0, 0.2, 0.5, 0.8, 1.2], for the same velocities time series VL/16(t) studied in fig 5. The inset gives the

scaling of the average avalanche maximum velocities with the avalanche duration, 〈Vmax|D〉 ∼Dβ , with β ∼ 0.90.

It is interesting that the mean-field theory of interface depinning predicted a different
exponent for the P (Vmax)∼ V −2max [52]. This is consistent with the other avalanche exponents
that also deviate from the mean-field predictions. Additionally, the distribution of maximum
amplitudes in avalanches of fixed durations was found to follow a scaling form P (Vmax|D) =

〈Vmax|D〉−1F (Vmax/〈Vmax|D〉), where the scaling function F(x) is determined analytically in
terms of Bessel functions [53]. We find that a similar scaling form also holds beyond the mean
field approximation, but with different expression for the scaling function F(x). Even though, it
is difficult to extract clearly this scaling function from experimental measurements, we were able
to compute F(x) from our large data set, obtained for different fracture experiments, driven at
slow velocities of a few tenth of µm/s.

Figure 7, shows in inset the distributions P (Vmax|D) of maximum velocities of avalanches of
various fixed durations (chosen within the scaling range of the 〈Vmax〉(D) relation shown in the
inset of fig. 6); Those distributions can be collapsed by plotting 〈Vmax|D〉P (Vmax|D) as a function
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Figure 7. Distributions of maximum amplitudes Vmax of global avalanches (detected with a clip levelC = 0) P (Vmax|D)

for various fixed durations D-ranges (inset). The main panel demonstrates that these distributions can be collapsed as

P (Vmax|D).〈Vmax|D〉=F (Vmax/〈Vmax|D〉). The scaling functionF(x) is well described by the distribution of the

corresponding local fracture front velocities P (v/〈v〉), displaying in particular a fat tail at large velocities P (v)∼ v−2.8.

of the maximum amplitude of the global avalanches renormalized by their average amplitude
Vmax/〈Vmax|D〉, as shown in the main panel. The resulting scaling function F (Vmax/〈Vmax|D〉)
exhibits a power-law tail describing the largest maximum velocities F(x)∼ x−2.8 , which - as
expected - is very different from the mean-field prediction [52]. Interestingly, this scaling function
and in particular its fat-tail, is similar to the distributions of the local front velocities P (v/〈v〉),
plotted with black circles in the main panel of Fig. 7, at the origin of the non-gaussian Levy
statistics of the global front velocity [49].

4. Numerical modeling of elastic interface depinning
Since the large scale avalanche dynamics of our planar crack seems to be well-described by the
behavior of a long-range elastic string in a 2D random medium [15,48], we propose now to
study the extremal statistics of the global avalanches, within the framework of such numerical
model. So, here, we consider a discretized version of this line model, using periodic boundary
conditions, with integer interface heights hi(t), i= 1 . . . L, where L is the system size, and the
lateral coordinates xi of the interface are given by xi = i. The total force acting on the interface
element i is Fi = Γ0

∑
j 6=i

hj−hi

|xj−xi|2 + η(xi, hi) + Fext, where the long-range elastic interactions

exhibit a 1/x2 decay along the interface, Fext is the external driving force, and η is quenched
spatially uncorrelated disorder describing toughness fluctuations of the disordered weak plane.

The crackling noise signal is given by V (t) = 1/L
∑
i vi(t), where vi = θ(Fi), with θ the

Heaviside step function; this implies that the local velocity at a given instant in time is either one
(the interface is advancing locally) or zero (the interface is locally pinned). The interface is driven
with a finite constant spatially averaged velocity 〈V 〉, by imposingFext =K(〈V 〉t− 〈h〉), whereK
describes the stiffness of the specimen-machine system and controls the cutoff avalanche size S∗

and durationD∗, and 〈h〉 is the average interface height. We show here results forL= 32768 and a
slow but finite driving velocity 〈V 〉= 4/32768. We have checked that other small 〈V 〉 values yield
similar results. To define global avalanches and their maximum amplitude, we set the threshold
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Figure 8. Main panel: Distributions P (Vmax) for various K, displaying a power law with ε= 1.4± 0.1, and a

K-dependent cutoff. Inset: Scaling of 〈Vmax〉 with D, displaying a power-law with β = 0.8± 0.1.

value to Vc = 〈V 〉; in what follows, we denote by Vmax the global maximum velocity of avalanches
from which the threshold value Vc has been subtracted.

The main panel of Fig. 8 shows the scaling of the distributions P (Vmax) for all avalanches
detected for different values of the stiffness parameter K. We observe a clear power-law behavior
terminated at a K-dependent cut-off, with a power-law exponent ε= 1.4± 0.1, in quantitative
agreement with our experimental measurements. The inset of Fig. 8 shows the scaling of 〈Vmax〉
withD, displaying again a power-law relation similar to the experimental one with β = 0.8± 0.1.
This scaling exponent is slightly smaller but still, in very good agreement within the large error
bars with the one measured in our fracture experiments.
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Figure 9. The inset shows the distributions P (Vmax|D) at various fixed durations D-ranges. The main panel

demonstrates that these distribution can be collapsed, when plotting 〈Vmax|D〉P (Vmax|D) as a function of

Vmax/〈Vmax|D〉 in a semi-log scale. The scaling function has a clear exponential tail different from the power-law

behavior of the experimental data.
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We have also computed the distributions P (Vmax|D) of the maximum amplitudes of
avalanches for various fixed duration ranges D (taken within the scaling range of the
〈Vmax〉(D) relation), as shown in the inset of Fig. 9. The main panel of this figure
demonstrates that those distributions can be collapsed - as for our experimental data - by
representing F(Vmax/〈Vmax|D〉) = 〈Vmax|D〉P (Vmax|D) as a function of Vmax/〈Vmax|D〉, in
a semi-logarithmic plot. The resulting scaling function F exhibits a roughly exponential tail
describing the largest maximum velocities. As expected, this scaling function has a different shape
than the analytical prediction obtained within the mean-field approach [53]. Nevertheless, it is
important to notice that this scaling function F is also different from the experimental one which
displays a power-law tail instead of an exponential one.

Finally, considering the scaling form observed for the conditional distribution of maximal
velocities within avalanches of duration D, P (Vmax|D) = 〈Vmax|D〉−1F(Vmax/〈Vmax|D〉) and
the power-law distributions for the avalanche durations P (D)∼D−α, we can show that the
distribution of the maximum amplitudes of avalanches, P (Vmax) =

∫
dD P (Vmax|D)P (D), using

the change of integration variables y= Vmax/〈Vmax|D〉 ∼ Vmax/D
β , can be written as :

P (Vmax)∼ V −εmax

∫
dy yε−1F(y), with ε= 1 + (α− 1)/β (4.1)

Therefore, this formula shows that the scaling of P (Vmax) does not depend on the conditional
distribution P (Vmax|D) as long as the integral in eq. 4.1 converges; thus, it explains why we could
observe the same “universal" power-law distributions for the maximum velocities considering
all avalanches, P (Vmax)∼ V −εmax, between our experiments and numerical simulations (with a
quantitative agreement), despite different underlying conditional distributions P (Vmax|D).

5. Conclusion
We have presented an experimental study of the global, spatially averaged, velocity of an
interfacial crack propagating along a weak disorder plane in a transparent PMMA block. This
crackling noise signal is highly intermittent, with power-law distributed avalanches in size,
duration and maximum amplitudes. We confirm that the critical depinning of a long-range elastic
string propagating in a 2D disordered medium describes quantitatively the scaling behavior of
most of our experimental observables. However, we could also show that such model fails to
reproduce the power-law distribution of the maximum amplitude of avalanches at fixed duration,
which may be the signature of the fat-tail power-law statistics of the local crack front velocity.
A different approach describing material failure as a correlated percolation process considering
crack coalescence [54,55] could lead to such largely power-law distributed local velocity of the
crack front [12,14,49]. Therefore, our results suggest that different approaches may be needed to
fully describe the intermittent crack front dynamics, as for its complex self-affine morphology
[45,47,60]. While at larges scales, the long-range elastic line model appears very successful,
different approaches such as a percolation-like model [54,55] or thermally-activated processes
[61–63] could be more relevant to describe material failure at the local scale of the heterogeneities.
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