
HAL Id: hal-01937136
https://hal.science/hal-01937136v1

Submitted on 27 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalizing the Metatheory of Logical Calculi and
Automatic Provers in Isabelle/HOL (Invited Talk)

Jasmin Christian Blanchette

To cite this version:
Jasmin Christian Blanchette. Formalizing the Metatheory of Logical Calculi and Automatic Provers
in Isabelle/HOL (Invited Talk). CPP 2019 - The 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs, Jan 2019, Cascais, Portugal. �10.1145/3293880.3294087�. �hal-
01937136�

https://hal.science/hal-01937136v1
https://hal.archives-ouvertes.fr


Formalizing the Metatheory of Logical Calculi
and Automatic Provers in Isabelle/HOL

(Invited Talk)
Jasmin Christian Blanchette
Theoretical Computer Science

Department of Computer Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

j.c.blanchette@vu.nl

Abstract
IsaFoL (Isabelle Formalization of Logic) is an undertaking
that aims at developing formal theories about logics, proof
systems, and automatic provers, using Isabelle/HOL. At the
heart of the project is the conviction that proof assistants
have become mature enough to actually help researchers
in automated reasoning when they develop new calculi and
tools. In this paper, I describe and reflect on three verification
subprojects to which I contributed: a first-order resolution
prover, an imperative SAT solver, and generalized term or-
ders for λ-free higher-order logic.
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1 Introduction
At programming language conferences such as POPL and
ICFP, submissions are often accompanied by formalizations.
Proof assistants are even used in the classroom to teach
language semantics and type systems [70, 80].
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Paradoxically, the automated reasoning community has
largely stood on the sidelines of these developments. Like the
shoemaker’s children who go barefoot, we reflexively turn
to “pen and paper”—by which we usually mean LATEX—to de-
fine our logics, specify our proof systems, and establish their
soundness and completeness. The automatic/interactive di-
vide of our community is part of the reason. Few automatic
prover developers have first-hand experience with a proof
assistant. Nevertheless, it stands to reason that the mem-
bers of the automated reasoning community should be early
adopters of proof assistants. If we cannot convince these
close colleagues of the value of tools called “theorem provers,”
how are we going to seduce mainstream mathematicians,
philosophers, and engineers?
The IsaFoL (Isabelle Formalization of Logic) effort1 aims

at changing this situation. This “coalition of the willing” was
inaugurated in 2015, initially as a Bitbucket repository that
would enable Mathias Fleury in Saarbrücken and Anders
Schlichtkrull in Copenhagen to carry out their respective
Ph.D. projects while avoiding duplicated work. Their fore-
sighted and well-funded bosses, Christoph Weidenbach and
Jørgen Villadsen, have made this project possible.
My motto for the project is “Coq at POPL, why not Isa-

belle at CADE?” But in fact, proof assistants, including Isa-
belle, have been represented at CADE and IJCAR for several
years, thanks to Tobias Nipkow, Lawrence Paulson, Chris-
tian Urban, and others. Moreover, René Thiemann, Christian
Sternagel, and their colleagues have been using Isabelle to
formalize term rewriting for over a decade. Their IsaFoR
library [98] directly inspired IsaFoL.2

Our main objective with IsaFoL is to develop libraries and
a methodology to support modern research in automated rea-
soning, especially about propositional and first-order logic.
Proof assistants can help when developing proofs, but also
when modifying them, to study generalizations and variants.
Reviewing becomes much easier when a formalization exists;

1https://bitbucket.org/isafol/isafol
2Font aficionados will notice the divergent preferences concerning serifs
and kernings. Pronunciation is also crucial: to avoid confusion, Japanophiles
should clearly articulate izaforu (IsaFoL) and izafō (IsaFoR).
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reviewers can then focus on checking the definitions and
theorem statements. Although my primary interest lies in
metatheory per se, once we have formal libraries, we can
build verified provers and proof checkers on top of them.
The project has grown to include contributions from re-

searchers and students in Amsterdam, Copenhagen, Gothen-
burg, Grenoble, Munich, Saarbrücken, and Zurich. Contrib-
utors include Heiko Becker, Alexander Bentkamp, Andreas
Halkjær From, Alexander Birch Jensen, Peter Lammich, John
Bruntse Larsen, Julius Michaelis, Tobias Nipkow, Nicolas
Peltier, Andrei Popescu, Simon Robillard, Sophie Tourret,
Dmitriy Traytel, and Petar Vukmirović. The IsaFoL reposi-
tory on Bitbucket is where much of the development takes
place. Once individual entries have become mature enough,
they tend to migrate to Isabelle’s Archive of Formal Proofs,
which is continuously tested and updated to work with the
most recent version of Isabelle. The maintenance burden
largely falls onto the Isabelle developers.
The use of Isabelle/HOL was initially motivated by per-

sonal preference, but it has turned out to be a fortunate
choice. Isar proofs [104], parameterizedmodules [4], (co)data-
types [10], the code generator [38], the Refinement Frame-
work [53], Imperative HOL [26], and the Sledgehammer
[76] and Nitpick [16] tools have all played important roles.
Higher-order logic’s lack of expressiveness is often cited as a
drawback of the system, but it has not been an issue for me
in this project. Using Isabelle has been an opportunity to “eat
my own dog food,” gaining insights into how the subsystems
I am responsible for—the (co)datatypes, Sledgehammer, and
Nitpick—could be improved.
In his invited SAS 2018 paper [73], Peter O’Hearn put

forward the notion that

in most research papers one gets a description of where
a project got to, but not how it got there. We get the
results of science and/or engineering, but not a picture
of how it developed. For the practice of doing science
and engineering I’ve always thought the issue of “how
it’s done” is an important one.

In this spirit, I describe three subprojects of IsaFoL to which
I have contributed: a first-order prover based on ordered
resolution (Section 2), an optimized SAT solver based on
conflict-driven clause learning (Section 3), and generalized
term orders for λ-free higher-order logic (Section 4). I reflect
on the motivation and rewards of such work, both scientific
andmetascientific, and use this opportunity to survey related
work, including the other IsaFoL entries (Section 5).

All along, my primary metascientific motivation has been
to continue carrying out research at the intersection of in-
teractive and automatic proving, enabling me to remain in
the CADE orbit. After the Sledgehammer success story—
automatic provers at the service of interactive ones [76]—
I was stimulated by the thought of reversing the formula.
There is an undeniable self-referential thrill to the project.

Formalize logic in logic. Employ automatic provers to formalize
their own metatheory. But as the project advanced, I started
to appreciate its deeper value. The overwhelmingly positive
response at CADE, CPP, IJCAR, and JAR has convinced me
that this research program was overdue.

I am excited about recent developments, where flaws and
limitations revealed in formalization motivate new research.
We are gradually moving from carrying out case studies,
where the proof assistant aspect is predominant, to writ-
ing metatheory papers that only briefly mention the formal
development in their introduction.

2 A First-Order Ordered Resolution Prover
Nearly two decades after its publication, the Handbook of
Automated Reasoning [84] remains an invaluable resource
for researchers in the area. In 2014, I started formalizing its
Chapter 2, written by Bachmair and Ganzinger [3]. The first
four sections present the metatheory of ordered resolution
with selection, culminating in Section 4.3 with a refutation-
ally complete first-order prover, RP, based on this calculus.
At the time, I had little experience using Isabelle, so it was
fortunate that Traytel agreed to act as my mentor.
The chapter had been haunting me as a tsundoku for a

couple of years. Formalizing it meant I would finally have
to take it from my reading pile and read it thoroughly. But
there were also sound scientific reasons to choose this target
for formalization, as we remarked later [89, Section 1]:

The text is a standard introduction to superposition-like
calculi (together with Handbook Chapters 7 and 27). It
offers perhaps the most detailed treatment of the lifting
of a resolution-style calculus’s static completeness to a
saturation prover’s dynamic completeness. It introduces
a considerable amount of general infrastructure, includ-
ing different types of inference systems (sound, reduc-
tive, counterexample-reducing, etc.), theorem proving
processes, and an abstract notion of redundancy. The
resolution calculus, extended with a term order and lit-
eral selection, captures most of the insights underlying
ordered paramodulation and superposition.

Traytel and I made quick progress in two intense weeks,
reaching the crucial Section 4.3. This is where the resolution
calculus is lifted from ground (propositional) to nonground
(first-order) clausal logic and where the RP prover is intro-
duced and shown to be refutationally complete.
At the ground level, ordered resolution consists of the

single (n + 1)-ary inference rule(
Ci ∨Ai ∨ · · · ∨Ai

)n
i=1 ¬A1 ∨ · · · ∨ ¬An ∨ D

C1 ∨ · · · ∨Cn ∨ D

with multiple side conditions that restrict the search space.
This rule is refutationally complete, meaning that any un-
satisfiable set that is closed under applications of the rule
will contain the empty clause ⊥. Remarkably, replacing the
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subclause Ai ∨ · · · ∨Ai with a single literal Ai is enough to
make the rule incomplete [3].
A redundancy criterion identifies clauses and inferences

that can be ignored. For example, p(a) ∨ q(b) is made redun-
dant by p(a), which in turn is made redundant by p(x).
Next, Bachmair and Ganzinger introduce the concept of

a theorem proving process: a transition system that starts
with an initial clause set N0 and where each transition ▷
corresponds either to an inference or the removal of redun-
dant clauses. Under a fairness assumption, the calculus’s
completeness theorem characterizes the limit of a derivation
N0 ▷ N1 ▷ N2 ▷ · · · .
Section 4.3 is where the trouble starts. For nonground

clauses, the resolution rule takes the form(
Ci ∨Ai1 ∨ · · · ∨Aiki

)n
i=1 ¬A1 ∨ · · · ∨ ¬An ∨ D

(C1 ∨ · · · ∨Cn ∨ D)σ

where σ is the most general unifier of the set of constraints
{Ai1

?
= · · ·

?
= Aiki

?
= Ai | i ∈ {1, . . . ,n}}. Side conditions

block inferences where Aiσ is smaller than Ciσ or Dσ with
respect to a fixed order. A literal selection mechanism further
prunes the search space.
Traytel and I initially stopped here. By a stroke of good

fortune, Schlichtkrull decided to resume the proof two years
later. After months of labor, and with expert help fromWald-
mann, he reached the final qed. The resulting IJCAR 2018
paper [89] was well received by the reviewers, reaping a
“strong accept” and two “accepts.” One of them wrote:

The authors convinced me that their development is a
great tool for exploring/developing calculus extensions.
It will enable us to “extend/hack without fear.”

(The italics are mine throughout this paper.)
The RP prover is naturally formulated in Isabelle as an

inductive predicate. Bachmair and Ganzinger’s transition
rules correspond directly to introduction rules:

inductive { :: ′a state⇒ ′a state⇒ bool where
tautology_delete: Neg A ∈ C ∧ Pos A ∈ C =⇒
(N ∪ {C},P ,O) { (N ,P ,O)
| forward_subsume: D ∈ P ∪O ∧ subsumes D C =⇒
(N ∪ {C},P ,O) { (N ,P ,O)
| backward_subsume_P : D ∈ N ∧ ssubsumes D C =⇒
(N ,P ∪ {C},O) { (N ,P ,O)
| backward_subsume_O: D ∈ N ∧ ssubsumes D C =⇒
(N ,P ,O ∪ {C}) { (N ,P ,O)
| forward_reduce: D ∈ P ∪O ∧ reduces D C L =⇒
(N ∪ {C ⊎ {L}},P ,O) { (N ∪ {C},P ,O)
| backward_reduce_P : D ∈ N ∧ reduces D C L =⇒
(N ,P ∪ {C ⊎ {L}},O) { (N ,P ∪ {C},O)
| backward_reduce_O: D ∈ N ∧ reduces D C L =⇒
(N ,P ,O ∪ {C ⊎ {L}}) { (N ,P ∪ {C},O)
| clause_process: (N ∪ {C},P ,O) { (N ,P ∪ {C},O)
| inference_compute: (∅,P ∪ {C},O) {
(concl_of ‘ infers_between O C,P ,O ∪ {C})

We faced various difficulties when formalizing Section 4.3.
It did not help that the text contains dozens of small mis-
takes. Even the statement of the nonground resolution rule
suffers from typos and ambiguities. While we agree with the
reviewer who wrote that “most of us unconsciously auto-
correct it, and read it with the intended meaning,” on several
occasions we found ourselves blindly trusting the text, only
to be disappointed later.
Reasoning about the (n + 1)-premise resolution rule was

particularly tedious. Ellipsis is a convenient pen-and-paper
device that lacks a counterpart in proof assistants. We ended
up keeping the clausesCi and atomsAi = {Ai1, . . . ,Aiki } in
parallel lists. Ideally, the first n premises of the rule would be
regarded as a multiset; there is no need to consider n! infer-
ences all yielding the same clause. However, there is no such
things as “parallel multisets,” and our attempts at storing
tuples (Ci ,Ai ) in multisets only made matters worse.
Another general difficulty with the chapter was that it is

not always clear which hypotheses apply where. The text
both presents a general framework and applies it, but de-
pendencies are not tracked precisely, and many lemmas are
never invoked explicitly. It was a challenge to understand
the informal proof well enough to organize the modules and
state the definitions and lemmas precisely and correctly.

Finally, some of the arguments are incomplete or mislead-
ing. The proof of Lemma 4.11 relies on the observation that
“D ′ cannot be deleted by backward reduction or backward
subsumption.” However, in principle,D ′ could be deleted due
to the presence of a more general clause D ′′, which in turn
could be deleted due to D ′′′, and so on. The key missing ob-
servation is that this process can be iterated at most finitely
many times, generalization being a well-founded relation.
With the module hierarchy, definitions, and key lemma

statements in place, carrying out the proofs was mostly
straightforward. We relied heavily on Sledgehammer to dis-
charge the proof obligations.
We did find a significant mistake in the chapter. Theo-

rem 4.13 states that RP is refutationally complete, but this
does not hold due to the improper treatment of inferences
containing duplicate premises. Remarkably, we discovered
the mistake several months after reaching the final qed,
while reviewing our definitions. We had inadvertently “auto-
corrected” Bachmair and Ganzinger’s definition of RP.

Formalization helps track assumptions and dependencies
precisely. It helps us answer questions such as, “Is Lemma 3.13
actually needed, and if so, where?” Indeed, such a question
recently arose in the course of Bentkamp’s research on su-
perposition [8]. He wanted to understand why the literal
selection function SM is defined so that “(ii) SM (C) = S(C), if
C is not in K .” He quickly got two replies. Waldmann wrote:

As far as I can see, SM is really only needed for ground
instances, and then case (ii) is irrelevant. I guess they
just wanted to define SM as a total function.
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Thanks to Isabelle, Schlichtkrull could be more confident:
I tried to change the definition in the formalization to
return the empty multiset if C is not in K . With this
definition the above properties also hold, and the proof
goes through.

This anecdote nicely illustrates how formal proofs help gen-
erate knowledge and understanding. Here, they helped Bent-
kamp “extend/hack without fear.”
The second half of Bachmair and Ganzinger’s chapter,

starting with Section 5, focuses on variations, such as non-
standard clauses and hyperresolution. Most of these are not
implemented in modern provers, and we did not attempt to
formalize this material. Instead, Schlichtkrull, Traytel, and I
further refined the abstract prover RP to obtain an executable
functional program. This work is described in a paper in-
cluded in these proceedings [88].

We started by defining the inductive predicate RPw, which
resembles RP but adds a timestamp to clauses and a weight
function. Bachmair and Ganzinger [3, p. 44] mention this
idea in a footnote, but they require the weight function to be
monotone in both the timestamp and the clause size, claiming
that this is necessary to ensure fairness. Although it often
makes sense to prefer smaller clauses, our proof reveals that
this is not necessary to ensure fairness.
Next, we defined RPd as a deterministic functional pro-

gram. RPd simply calls the auxiliary function RPd_step re-
peatedly until a final state (with N = P = ∅) is reached.
RPd_step is a function of about 40 lines of code that is loosely
modeled after Vampire’s main loop [101]. To introduce this
possibly nonterminating function in Isabelle, we defined RPd
by means of an option monad, using the partial_function
command [49], so that it returns a value of the form Some R
if the computation terminates and None otherwise.

Finally, wemadeRPd executable by connecting it to IsaFoR,
which provides first-order terms [97] and operations on
them, such as unification and the Knuth–Bendix order. We
invoked Isabelle’s code generator [38] to export the prover to
Standard ML. The resulting program, RPx, consists of about
1000 lines of functional ML code, including dependencies.

After working hard to obtain an executable prover, we
evaluated it on a representative subset of 1000 TPTP bench-
marks against two leading provers, E [91] and Vampire [101],
as well as Metis [45], which is written in Standard ML. The
table below gives the number of problems solved (proved or
disproved) by each prover [88]:

Vampire E Metis RPx

833 770 527 353
Although our prover cannot yet challenge the state of the art,
its performance is respectable and could be improved further
using refinement. In his presentations, Natarajan Shankar
often stresses the view that

algorithm = inference + strategy + indexing

Indeed, the performance of an automatic proof procedure
comes largely from three sources: the calculus, the heuris-
tics, and the data structures. RPx implements an excellent
calculus, but mediocre heuristics and data structures. In the
next section, we will look at a verification project that takes
these two aspects seriously.
The work on formalizing RP and RPx opens exciting per-

spectives. First, it paves the way for the formalization of
superposition-based provers. Peltier [78] took us by surprise
when he announced, in 2016, his Isabelle formalization of
the superposition calculus. Based on his work, it should be
possible to define an SP prover analogous to RP, but which
could reason efficiently about equality, implementing most
of the simplification rules and heuristics described in, for
example, the E paper [91]. Verifying data structures such as
discrimination trees, feature-vector indices, and fingerprint
indices would pose interesting challenges. In unpublished
work, Vukmirović has verified the underlying principles of
fingerprints [92] for λ-free higher-order logic [102] using
Isabelle.
Another perspective is to improve Bachmair and Ganz-

inger’s framework. In unpublished work, Waldmann, Tour-
ret, Robillard, and I have conceived, with pen and paper, a
framework that captures abstractly the lifting from a ground
calculus’s completeness result to a nonground RP-like prover.
An Isabelle formalization is underway, which should culmi-
nate with a streamlined proof of Bachmair and Ganzinger’s
Theorem 4.13. The framework will also support infinitary in-
ferences; these are useful for automating higher-order logic,
where the unification procedure may yield an infinite stream
of incomparable unifiers.
Around 2012, Vampire was extended with a SAT solver,

using a novel architecture called AVATAR [101]. The empiri-
cal results were sensational, but a fundamental question was
left unanswered: is AVATAR refutationally complete? The
literature contains contradictory, erroneous definitions of
the architecture [12, 81, 101], but following discussions with
Giles Reger and his colleagues, I believe I have reached a
precise definition, for which refutational completeness holds,
while isolating a few potential sources of incompleteness in
Vampire. Furthermore, Vukmirović and I have shown that la-
beled splitting [32], as implemented in SPASS, can be seen as
an instance of a slightly generalized AVATAR. I hope to estab-
lish all of this formally in Isabelle, using the new framework
by Waldmann et al. described above.

3 A CDCL SAT Solver
As part of a 2015 M.Sc. internship in Saarbrücken, Fleury
started formalizing Weidenbach’s textbook draft, tentatively
called Automated Reasoning—the Art of Generic Problem Solv-
ing. He continued as a Ph.D. student, focusing largely on
SAT solving and the conflict-driven clause learning (CDCL)
calculus implemented in most modern SAT solvers.
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Inconveniently for us, there already existed several veri-
fied CDCL-based solvers [59, 61, 62, 72, 94]. We found a niche
by emphasizing the stepwise refinement methodology and
the connection between calculi variants, and by considering
some aspects that had not been the focus of formalization
before: clause forgetting, solver restarts, and incremental
solving. We hoped this would suffice to get our submission
accepted at IJCAR 2016; little did we expect to receive the
best paper award. In the jury’s words, our paper [15]
formalizes a modern SAT solver via a chain of refine-
ments in a proof assistant, contributing to the program
of formalizing highly-technical research in the field of
automated reasoning using tools developed in this field.
We considered both the abstract CDCL calculus described

by Nieuwenhuis, Oliveras, and Tinelli [69] and a refined
implementation-oriented calculus proposed by Weidenbach
[103]. The calculi are represented by inductive predicates
on state tuples, roughly along the lines of the RP prover
described in the previous section.

The proofs are largely elementary, relying on basic results
about multisets and well-founded relations. We generally
found Nieuwenhuis et al.’s arguments easy to follow, with
the notable exception of a gap in their termination proof.
Weidenbach’s concise proofs were often more challenging
to formalize. To give a flavor of his text, I quote a passage
that argues why it is impossible for the same clause to be
derived, or “learned,” twice:

By contradiction. Assume CDCL learns the same clause
twice, i.e., it reaches a state (M,N ,U ,D ∨L)where Jump
is applicable and D ∨L ∈ N ⊎ U . More precisely, the
state has the form (Kn · · ·K2K

†
1M2K

†M1,N ,U ,D ∨L)
where the Ki , i > 1 are propagated literals that do not
occur complemented in D, as otherwise D cannot be of
level i . Furthermore, one of the Ki is the complement
of L. But now, because D ∨L is false in Kn · · ·K2K

†
1M2

K†M1 and D ∨L ∈ N ⊎ U instead of deciding K†1 the
literal L should be propagated by a reasonable strat-
egy. A contradiction. Note that none of the Ki can be
annotated with D ∨L.

Fleury needed over 700 lines of Isabelle to capture this para-
graph. By changing the argument, he was later able to reduce
the formal proof down to 250 lines. The key was to exploit
invariance: by first establishing a strong invariant on SAT
solver states (namely, that all unit propagations have been
performed before deciding a new literal), he could easily
perform the key step of the argument (“the literal L should
be propagated by a reasonable strategy”) without having to
refer to earlier states or transitions.
Although Fleury did not discover any significant flaw

in the metatheory of CDCL (which would have been most
surprising), he did find a critical mistake in an extension,
described in Weidenbach’s draft, of CDCL with the branch-
and-bound principle. He came up with a counterexample

that invalidates the main correctness theorem, whose proof
confused partial and total models. Interestingly, he later no-
ticed the same flaw in a SAT 2009 paper by Larrosa et al. [57];
the issue is silently repaired in a subsequent article [58].

As a proof of concept, Fleury implemented a deterministic
SAT solver and extracted functional Standard ML code from
it, preserving the formal guarantees established about CDCL:
soundness, completeness, and termination. The resulting
program was very inefficient; it could solve none of the 2009
SAT Competition problems in reasonable time.
This was good enough for me but not for Fleury. With

Lammich’s help, he proceeded to specify the two-watched-
literal (2WL) scheme and other imperative data structures
[66], gradually departing fromWeidenbach’s draft. This work
is described in a JAR article [13] and a CPP 2018 paper [33].
The 2WL scheme makes it possible to efficiently identify

candidate clauses for unit propagation and conflict detection,
which are the core CDCL operations. In each clause, the
solver distinguishes two watched literals—literals that can
possibly influence their clauses’ truth value in the solver’s
current state. The solver maintains the “2WL invariant” for
each clause. Unfortunately, the literature is imprecise about
the nature of this invariant and about when it is required to
hold. Fleury quickly found himself studying MiniSat’s source
code [31], and eventually came up with a precise formula-
tion. He specified 2WL as an abstract calculus, following
Weidenbach’s draft, and proved that its transitions preserve
the 2WL invariant. To get an executable program, he refined
the calculus in several correctness-preserving steps. The re-
finement methodology enabled him to inherit invariants,
correctness, and termination from previous layers.

The next refinement step implements the rules of the 2WL
calculus in a more algorithmic fashion, using the nonde-
terministic programming language provided by Lammich’s
Refinement Framework [53]. The language is built on top of
a nondeterminism monad. To give a flavor of it, I present the
code of a function that implements four calculus rules:

definition PCUIalgo :: ′v lit × ′v clause→ state→ state
where

PCUIalgo LC S = do {
let (M,N ,U ,D,NP,UP,WS,Q) = S;
let (L,C) = LC;
L′← RES {L′ | L′ ∈ watchedC − {L}};
if L′ ∈ M then

RETURN S
else

if ∀L ∈ unwatchedC . −L ∈ M then
if −L′ ∈ M then

RETURN (M,N ,U ,C,NP,UP, ∅, ∅)
else

RETURN (L′C ·M,N ,U ,D,NP,UP,WS,
{−L′} ⊎Q)

else do {
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K ← RES {K | K ∈ unwatchedC ∧ −K < M};
(N ′,U ′) ← RES {(N ′,U ′) |

update_clss (N ,U )C L K (N ′,U ′)};
RETURN (M,N ′,U ′,D,NP,UP,WS,Q)
}

}

The subsequent refinement steps optimize the data struc-
tures and specify heuristics that reduce the nondeterminism,
following ideas from the SAT literature and actual imple-
mentations. Multisets give way to lists, and clauses are now
referenced by indices into a list of clauses instead of stored di-
rectly. For each literal L, the clauses that contain a watched L
are chained together in a linked list, called a watch list.
The Sepref tool [54], which is based on separation logic,

can be used to synthesize imperative code from a monadic
Isabelle program. It replaces the functional data structures by
imperative implementations, while leaving the algorithmic
structure unchanged. The resulting program, called IsaSAT,
is expressed using Imperative HOL’s heap monad [26]. Using
Isabelle’s code generator [38], we can extract a self-contained
program in imperative Standard ML.

Since the CPP 2018 publication, Fleury has improved Isa-
SAT further by implementing four optimizations: restarts,
forgetting, blocking literals, and machine integers.
Restarts is a technique that enables the solver to explore

another part of the search space. We can keep completeness
by gradually increasing the interval between restarts. Our
calculi included an optional Restart rule all along to allow
such behavior, but it was not implemented in the first IsaSAT.
Forgetting removes some learned clauses—consequences

of the initial problem clauses that are derived during solving.
Helpfully, the abstract CDCL calculus included a Forget rule
from the start. The main difficulty is that each clause now
needs to store a Boolean flag indicating whether it is deleted.
This requires adding a header to the clause data structure
for storing this and other useful information that guides the
heuristics, and adapting all the refinement proofs.

Blocking literals are literals stored directly in the watch list,
next to a pointer (or index) to the clause, that can be checked
directly without dereferencing the pointer. The information
is redundant, but it often saves a pointer dereference.

Machine (64-bit ) integers are large enough to store clause
indices and other numbers for all SAT problems arising in
practice, and they are more efficient than ML’s unbounded
integers. To use them without losing the formal guarantees
about the program, we generate two versions of the prover’s
body and connect them with code of the form

while ¬ done ∧ ¬ overflow do
⟨invoke the 64-bit version of the solver’s body⟩;

if ¬ done then
⟨convert the state from 64-bit to unbounded integers⟩;
while ¬ done do
⟨invoke the unbounded version of the solver’s body⟩

In a preliminary evaluation, Fleury ran IsaSAT against
four other solvers on a collection of 3313 benchmark prob-
lems, consisting of all the SAT Competition problems from
the 2009, 2011, 2013, 2014, 2016, and 2017 editions of the
SAT Competition and the 2015 edition of the SAT-Race. The
solvers Glucose [1] and CaDiCaL [11] represent the state
of the art; MiniSat [31] is a well-known reference solver;
and versat [72] is the only other efficient verified solver
we know of. Since IsaSAT does not implement preprocess-
ing techniques yet, CryptoMiniSat [95] was used to simplify
all problems before benchmarking. The tests were run with
a time limit of 30 minutes per problem. The table below
shows the number of solved problems, whether satisfiable
or unsatisfiable, for each system:

Glucose CaDiCaL MiniSat IsaSAT versat

1670 1645 1361 731 357
Given that competitive SAT solvers are extremely optimized
programs, these results are very encouraging. However, we
must bear in mind that it took two years of hard labor, and
tens of thousands of Isabelle lines, to get from 0 to 731. An ob-
vious avenue for future work would be to add optimizations
such as pre- and inprocessing [46].
A benefit of having a verified SAT solver is that it can

be employed as a backend in other verified tools. We have
started looking into extending IsaSAT with theory reasoning,
as in an SMT (satisfiability-modulo-theories) solver, with
the goal of integrating it in CeTA [24], a verified safety and
termination proof checker developed as part of IsaFoR.

4 Lambda-FreeHigher-Order TermsOrders
The last subproject has a different flavor from the other two,
in that the formalization arose as a side effect of carrying out
research in automated reasoning and not as an end in itself.
The Matryoshka project,3 which started in 2017 and funds
a collaboration between Amsterdam, Nancy, Saarbrücken,
and Stuttgart, aims at extending superposition provers and
SMT solvers with higher-order features. As a stepping stone
towards full higher-order logic, we started by focusing on
a λ-free fragment. Unlike in first-order logic, variables may
be applied, and function symbols may be given fewer argu-
ments than they can take. This language is sometimes called
“applicative first-order” in the term-rewriting community.

Bentkamp developed, under Waldmann’s and my super-
vision, a refutationally complete superposition calculus for
λ-free higher-order logic and implemented it in a prototype
prover developed with Cruanes [8]. He wrote his proofs
directly in LATEX, which was possible only because he is ex-
tremely rigorous and could count on two experts to check
his proofs—namely, Waldmann and our colleague Tourret.
In principle, he could have started from Peltier’s Isabelle

3http://matryoshka.gforge.inria.fr/

http://matryoshka.gforge.inria.fr/
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formalization of superposition [78], but it seemed more dif-
ficult than working in LATEX, especially given that he was
more familiar with Waldmann’s informal proof, which has a
different structure from Peltier’s.
Superposition, like ordered resolution (Section 2), relies

on a well-founded term order. Together with Becker, Wald-
mann, and Wand, I designed two (families of) orders that
generalize the familiar Knuth–Bendix order (KBO) and re-
cursive path order (RPO). Becker formalized most of KBO
during an internship; I completed his work and proceeded
with RPO. This research was presented at FoSSaCS 2017 [22]
and CADE 2017 [6].
The term orders are comparatively simple mathematical

objects that lend themselves well to mechanization. I worked
directly in Isabelle to define them and state their desired prop-
erties, starting with the ground case. The following fragment
corresponds to my first attempt at defining a lexicographic
path order (LPO), a special case of RPO, on ground terms:

datatype ′c tm = F ′c (′c tm list)

context
fixes ≺c:: ′c ⇒ ′c ⇒ bool
assumes irreflp (≺c) and transp (≺c) and

f ≺c д ∨ д ≺c f ∨ f = д
begin

definition chksubs :: (′c tm⇒ ′c tm⇒ bool) where
chksubs R s t ←→
(case (s, t) of (F f ss, F д ts) ⇒
(∀s ′ ∈ ss. R s ′ t ∨ s ′ = t) ∧
(ss , [] ∧ ts , [] ∧ last ss = last ts −→
R (F f (butlast ss)) (F д (butlast ts))))

inductive ≺ :: ′c tm⇒ ′c tm⇒ bool where
s ≺ t ∨ s = t =⇒ s ≺ F f (ts@ [t]))
| s = F f ss ∧ t = F д ts ∧ s ≺ t =⇒
F f (ss@ [u]) ≺ F д (ts@ [u])
| s = F f ss ∧ t = F д ts ∧ f ≺c д ∧
chksubs (≺) s t =⇒ s ≺ t
| s = F f ss ∧ t = F f ts ∧ chksubs (≺) s t ∧
lexordp (≺) ss ts =⇒ s ≺ t

lemma irrefl: ¬ s ≺ s
lemma trans: s ≺ t ∧ t ≺ u =⇒ s ≺ u
lemma total: s ≺ t ∨ t ≺ s ∨ s = t
lemma compat_fun:
s ≺ t =⇒ F f (ss@ s · ss′) ≺ F f (ss@ t · ss′)

lemma compat_arg:
F f ss ≺ F д ts =⇒ F f (ss@ [s]) ≺ F д (ts@ [s])
. . .

end

The specification is very short and depends on no back-
ground theory beyond list operations (cons · , append @,
butlast, lexordp). It is a perfect match for my counterexample
generator Nitpick [16]. And indeed, the tool quickly finds

a counterexample to the irrefl conjecture: given a type ′c
with two distinct symbols f, g such that f ≺c g, we have
f (g f) ≺ f (g f). (Sadly, Nitpick’s rival Quickcheck [25] fails
with the error “No type arity tm :: full_exhaustive.”)

Using Nitpick, I was able to converge to an almost correct
design. A major flaw had escaped my attention, namely:
without arities or typing constraints, LPO is not well founded,
because it allows infinite descending chains such as

f b ≻ f a b ≻ f a a b ≻ f a a a b ≻ · · ·

This was noticed early on by Waldmann. Nitpick is helpless
here, because it is based on finite model finding. It can be
used to detect cycles but not acyclic divergence.

For the proofs, we drew our inspirationmostly fromBaader
and Nipkow’s textbook [2]. However, they cover only LPO
and not RPO. When formalizing RPO, I faced a chicken-and-
egg problem that took me several days to untangle. The issue
is related to the multiset order, which is used to define RPO.
There exist two main formulations of the multiset order:
Dershowitz–Manna [30] and Huet–Oppen [43]. They are
equivalent on partial orders. Since RPO is a partial order,
at first I chose Huet–Oppen, which we had used for KBO;
however, until we have proved irreflexivity and transitivity
of RPO, we cannot assume it is a partial order, so the choice
between the two multiset orders is crucial. Zantema [106]
was well aware of this, but I came across his work too late.
And regardless, I could not think clearly while under the
charm of the myth “Dershowitz–Manna = Huet–Oppen.”

As is often the case, once the main ideas were clarified, the
formal proofs were straightforward to develop. According to
generated logs, on some days I invoked Sledgehammer over
100 times. The first-order nature of most proof obligations
(with the notable exception of well-foundedness) was a good
match for automatic provers. The following Isar fragment,
where each subproof (highlighted in gray) was produced by
Sledgehammer, is fairly representative:

have arity_hd (head s) = 1
by (metis One_nat_def arity.wary_AppE
dual_order.order_iff_strict eSuc_enat
enat_defs(1,2) ileI1 linorder_not_le not_iless0
wary_st wt_gt_δ_if_superunary wt_s)

hence nargs_s: num_args s = 0
by (metis enat_ord_simps(2) less_one nargs_lt
one_enat_def )

have s = Hd (head s)
by (simp add: Hd_head_id nargs_s)

then obtain f where
f ∈ ground_heads (head s) and
wt_sym f + the_enat (δ ∗ arity_sym f ) = δ
using exists_wt_sym wt_s by fastforce

The first proof above relies on 12 lemmas. Developing such a
proof manually could easily have taken half an hour without
the help of Sledgehammer (to find the proof) or the metis
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proof method (to reconstruct it), and would have required
searching for lemmas or memorizing their names.

In our two papers and the associated technical reports, we
presented informal versions of the Isabelle proofs, for human
consumption. This has been an opportunity to clean up and
restructure the Isabelle proofs, to emphasize the important
steps. We also used Nitpick to create examples to illustrate
fine points in the papers [6, Example 12; 22, Example 9].
Given two orders ≺1 and ≺2, we could ask the tool to generate
terms s, t such that s ≺1 t but s ≻2 t .

Proof assistants really come into their own when we start
modifying existing developments. Late in the project, we
asked ourselves, “Could we generalize definition so-and-so
in such-and-such a way?” After spending one hour with
Isabelle, I was convinced the answer was yes, and a few
hours later I was done repairing the proofs. There was very
little to change in the technical report, but I would have had
a hard time locating the passages that needed modifications
and convincing myself that I had found them all.

The two papers received a lukewarm welcome. The term
orders were not implemented in any termination tool, nor (at
the time) in a superposition prover, and some related work
was not treated. Nevertheless, the reviewers were ostensibly
impressed by the formalization, which probably saved the
submissions. I realize I may be preaching to the choir, but
let me quote two of the reviews:
Statements are very precise. Only necessary conditions
are made. In particular, orders are characterized by
9 properties, and for each main statement, the authors
discuss which of them are necessary.

[The submission] incorporates a comprehensible struc-
ture, precise assumptions and thorough proofs for all the
KBO’s essential properties. All the presented proofs (ir-
reflexivity, transitivity, subterm property, compatibility
with functions and arguments, stability under substitu-
tion, totality on ground terms, well-foundedness) have
been formalized within Isabelle/HOL and published as
part of the Archive of Formal Proofs. Together with
the careful presentation of these proofs within the sub-
mission, this establishes a high overall reliability of the
presented results.

Isabelle helped in other ways during the CADE rebuttal
phase. A reviewer had asked, “Doesn’t X2 follow from X1 by
taking x ≻2 y iff h(x) ≻1 h(y)?” Using Nitpick, we were able
to provide a simple counterexample.

Our λ-free higher-order RPO suffers for a theoretical blem-
ish: it does not satisfy compatibility with arguments, the re-
quirement that s ≺ t implies s u ≺ t u for all terms s, t ,u.
In fact, this requirement cannot be met while maintaining
the subterm property and coincidence with the standard
RPO on the first-order fragment of higher-order terms. In
2017, I challenged Bentkamp to design an RPO-like order
that satisfies compatibility with arguments, by giving up full

coincidence with the standard RPO. He succeeded brilliantly.
He even used Isabelle to design his new order, the embedding
path order (EPO) [7], and reports that proving the proper-
ties formally was easier than it would have been with pen
and paper. On the other hand, he struggled with my tool
Nitpick and ended up testing his conjectures by coding them
in Haskell and using Lazy SmallCheck [85].

At some point, I generalized our definition of KBO to use
ordinals instead of natural numbers, resulting in a transfi-
nite KBO (TKBO). For this work, I collaborated with Fleury
and Traytel. Using Isabelle’s new (co)datatype package [10],
we could define the syntactic ordinals—the ordinals below
ϵ0, representable in Cantor normal form—as the following
datatype of hereditarily finite multisets:

datatype hmultiset =
HMSet (hmultiset multiset)

The recursion through a nondatatype, multiset, would be
problematic in other systems, or in pre-2013 versions of
Isabelle/HOL. An ordinal α = ωα1 · c1 + · · · + ωαn · cn in
Cantor normal form is identified with the hereditarily finite
multiset

α = {

c1 copies︷      ︸︸      ︷
α1, . . . ,α1, . . . ,

cn copies︷      ︸︸      ︷
αn , . . . ,αn }

We used this opportunity to also introduce a type of nested
finite multisets and defined Dershowitz and Manna’s nested
multiset order on it [30]:

datatype ′a nmultiset =
Elem ′a
| MSet (′a nmultiset multiset)

This enabled us to finally give a positive answer to Paulson,
who in 2014 had asked on the Isabelle mailing list:

I wonder whether anybody is aware of a formalisation
(in any system) of the nested multiset ordering, as de-
scribed in the classic paper “Proving Termination With
Multiset Orderings”?
Using Isabelle’s Lifting and Transfer tools [44], we es-

tablished a bijection between hmultiset and the Elem-free
fragment of ′a nmultiset and exploited it to lift definitions
and properties. Notably, lifting the nested multiset order
gives the familiar < operator on ordinals. The order’s well-
foundedness proof can be transferred as well. Ordinal arith-
metic operations such as addition and multiplication can be
defined directly in terms of multiset operations.

Overall, we were able to quickly develop a versatile, prac-
tical library of syntactic ordinals, which we used not only for
our TKBO variant but also in a formal proof of Goodstein’s
theorem. This research was presented at FSCD 2017 [14].

5 Related Work
IsaFoL consists of many more subprojects beyond those de-
scribed above. The first two listed below predate IsaFoL, but
they are very much in its spirit and are mentioned on its web
page. The entries are listed in rough chronological order:
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• equisatisfiability of sort encodings for first-order logic,
by Popescu and myself [17, 18];
• abstract soundness and completeness results for first-
order logics using coinductive methods, by Popescu,
Traytel, and myself [19–21];
• soundness and refutational completeness of first-order
unordered resolution, by Schlichtkrull [86, 87];
• soundness and refutational completeness of a general-
ization of the superposition calculus, by Peltier [78];
• soundness and completeness of resolution-based prime
implicate generation, by Peltier [77];
• metatheoretical results about a paraconsistent propo-
sitional logic, by Schlichtkrull and Villadsen [90, 99];
• soundness of a small-kernel first-order prover with
equality described in Harrison’s textbook [41], by Jen-
sen, Larsen, Schlichtkrull, and Villadsen [47, 48];
• correctness of an optimized tool chain for checking
SAT solver certificates, by Lammich [55, 56];
• various metatheoretical results about a wide range of
proof systems for classical propositional logic (sequent
calculus, natural deduction, Hilbert systems, and reso-
lution), by Michaelis and Nipkow [64, 65];
• extensions of Berghofer’s formalization [9] of a first-
order natural deduction calculus, by From [34];
• soundness of a substitutionless first-order proof sys-
tem, by From, Larsen, Schlichtkrull, and Villadsen [36];
• soundness and completeness of an epistemic logic with
countably many agents, by From [35];
• modernization of Ridge andMargetson’s formalization
[82, 83] of a sequent calculus for a term-free first-order
logic, by Villadsen, Schlichtkrull, and From [100].

Formalizing metatheoretical results about logic, proof sys-
tems, and reasoning tools is an attractive proposition for
many researchers in our field. Landmark achievements in
the 1980s and 1990s include Shankar’s proof of Gödel’s first
incompleteness theorem in Nqthm [93], Persson’s complete-
ness proof for intuitionistic predicate logic in ALF [79], and
Harrison’s formalization of basic first-order model theory in
HOL Light [39].

Following Shankar’s 1984 proof, Gödel’s first incomplete-
ness theorem has been formalized in Coq by O’Connor [71],
in HOL Light by Harrison (in unpublished work), and in
Isabelle/HOL by Paulson [74, 75]. Paulson also succeeded at
verifying the second incompleteness theorem.

The completeness theorem for first-order logic has been
mechanized many times in proof assistants. In Isabelle/HOL,
Berghofer [9] proved the completeness of a natural deduction
calculus, andMargetson and Ridge [82, 83] proved soundness,
completeness, and cut-elimination of a sequent calculus for
a term-free first-order logic. I refer to a recent article I wrote
with Popescu and Traytel [21] for a discussion of such work.

Term rewriting is another popular target of formalization.
The CoLoR library by Blanqui and Koprowski [23] and the

CiME3 toolkit by Contejean et al. [27], both in Coq, as well
as IsaFoR [98] in Isabelle, have explored this territory. They
include not only formalized metatheory but also verified
(non)termination and (non)confluence checkers built on it.

SAT solving also lends itself particularly well to formal-
ization. Marić [60, 61] verified a CDCL-based SAT solver in
Isabelle/HOL, including watched literals, as a purely func-
tional program. He also formalized the abstract CDCL calcu-
lus by Nieuwenhuis et al. and, together with Janičić [62], the
more implementation-oriented calculus by Krstić and Goel
[50]. As a milestone towards verified SMT solvers, Spasić
and Marić [96] formalized the simplex algorithm in Isabelle.
Thiemann extended this work to support incremental solv-
ing and provide unsatisfiable cores [63]. In Coq, Lescuyer
[59] formalized the CDCL calculus and the core of an SMT
solver. Another verification of a CDCL-based SAT solver,
including termination but excluding two watched literals, is
by Shankar and Vaucher [94] in PVS. Most of this work was
carried out by Vaucher during a brief internship. Finally, Oe
et al. [72] used Guru to specify and verify versat. The gen-
erated C program consists of 15 000 lines of code. Optimized
data structures are implemented, including the two-watched-
literal scheme. However, termination is not guaranteed, and
model soundness is established through a run-time check.
A pragmatic approach to obtain trustworthy unsatisfia-

bility judgments from a SAT solver is to have it produce a
certificate, which can be given to an independent checker.
An efficient format for this is DRAT [42]. The standard DRAT
checker [105] is an unverified C program, but verified check-
ers have now been developed by Cruz-Filipe et al. [28] and
Lammich [55] using ACL2, Coq, and Isabelle/HOL.
I alluded, in the introduction, to the self-referential thrill

of formalizing theorem provers. Barras [5] took this idea
to its logical extreme with his “Coq in Coq” Ph.D. project:
a verification in Coq of a type checker for the calculus of
inductive constructions underlying Coq. Analogously, Har-
rison [40] verified HOL Light’s inference kernel in HOL
Light. To circumvent the impossibility of defining higher-
order logic’s semantics in itself, he carried out two distinct
proofs: one where the formalized logic has no infinity ax-
iom, and one where HOL Light is extended with an axiom
to increase its strength. This formalization was ported to
HOL4 and extended by Kumar et al. [51] to include defini-
tional mechanisms and to exploit CakeML [52], a verified
ML environment. In another line of work, Davis built an
ACL2-style prover called Milawa [29]. The development con-
sists of a stack of provers, each used to verify the one above
it. Together with Davis, Myreen [68] connected Milawa to
a verified Lisp implementation [67] that was developed for
hosting Milawa. A noteworthy feature of the prover is its
switch command, which lets the user replace the inference
kernel by an arbitrary kernel that has been proved sound,
enabling powerful, highly optimized extensions that would
be impossible using a traditional LCF architecture [37].
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6 Conclusion
In this paper, I reported on some of the steps my colleagues
and I have taken to help drive the adoption of proof assistants
in the automated reasoning community. Far from following
a definite plan, at every turn we focused on topics that ap-
pealed to us and for which we could perceive clear value in
formalization. We have barely scratched the surface; a lot of
exciting work still awaits us.
Automated reasoning is near ideal territory for proof as-

sistants. Compared with other application areas, the proof
obligations are manageable, and little background theory
needs to be formalized before we can get started. Conve-
niently, researchers in the area are not afraid of logic, al-
though they often lack familiarity with proof assistants and
their higher-order formalisms.

Isabelle/HOL has been a very suitable vehicle for this kind
of work, and we will continue using it. It is comparatively
easy to use, has a simple but expressive logic, is based on a
trustworthy LCF-style inference kernel, and includes rich
libraries developed by a large, and growing, user base.
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