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2 Universidad Politècnica de Cataluña, Carrer de Jordi Girona, 1, 3, 08034 Barcelona, Spain

Received: 23 February 2018 / Accepted: 11 September 2018

Abstract. The simulation of the behavior of the Human Brain is one of the most important challenges in com-
puting today. The main problem consists of finding efficient ways to manipulate and compute the huge volume
of data that this kind of simulations need, using the current technology. In this sense, this work is focused on
one of the main steps of such simulation, which consists of computing the Voltage on neurons’ morphology. This
is carried out using the Hines Algorithm and, although this algorithm is the optimum method in terms of num-
ber of operations, it is in need of non-trivial modifications to be efficiently parallelized on GPUs. We proposed
several optimizations to accelerate this algorithm on GPU-based architectures, exploring the limitations of
both, method and architecture, to be able to solve efficiently a high number of Hines systems (neurons). Each
of the optimizations are deeply analyzed and described. Two different approaches are studied, one for mono-
morphology simulations (batch of neurons with the same shape) and one for multi-morphology simulations
(batch of neurons where every neuron has a different shape). In mono-morphology simulations we obtain a good
performance using just a single kernel to compute all the neurons. However this turns out to be inefficient on
multi-morphology simulations. Unlike the previous scenario, in multi-morphology simulations a much more
complex implementation is necessary to obtain a good performance. In this case, we must execute more than
one single GPU kernel. In every execution (kernel call) one specific part of the batch of the neurons is solved.
These parts can be seen as multiple and independent tridiagonal systems. Although the present paper is focused
on the simulation of the behavior of the Human Brain, some of these techniques, in particular those related to
the solving of tridiagonal systems, can be also used for multiple oil and gas simulations. Our studies have proven
that the optimizations proposed in the present work can achieve high performance on those computations with
a high number of neurons, being our GPU implementations about 4· and 8· faster than the OpenMP multicore
implementation (16 cores), using one and two NVIDIA K80 GPUs respectively. Also, it is important to high-
light that these optimizations can continue scaling, even when dealing with a very high number of neurons.

1 Motivation

Today, we can find multiple initiatives that attempt to sim-
ulate the behavior of the Human Brain by computer [1–3].
This is one of the most important challenges in the recent
history of computing with a large number of practical appli-
cations. The main constraint is being able to simulate
efficiently a huge number of neurons using the current com-
puter technology. One of the most efficient ways in which
the scientific community attempts to simulate the behavior
of the Human Brain consists of computing the next three
major steps [4]: The computing of (1) the Voltage on
neuron morphology, (2) the synaptic elements in each of
the neurons and (3) the connectivity between the neurons.
In this work, we focus on the first step which is one of the
most time consuming steps of the simulation. Also, it is

strongly linked with the rest of steps. All these steps must
be carried out on each of the neurons. The Human Brain
is composed by about 11 billion of neurons, which are
completely different among them in size and shape.

The standard algorithm used to compute the Voltage on
neurons’ morphology is the Hines algorithm [5], which is
based on the Thomas algorithm [6], that solves tridiagonal
systems. Although the use of GPUs to compute the Thomas
algorithm has been deeply studied [7–11], the differences
among these two algorithms, Hines and Thomas, make
us impossible to use the last one, as this cannot deal with
the sparsity of the Hines matrix.

The solving of one Hines system can be also seen as a set
of independent and non-independent triangular systems,
which could be solved by using the Thomas algorithm.
Previous works [12] have explored the use of other algo-
rithms based on the Stone’s method [13]. Unlike Thomas
algorithm, this method is parallel. However, it is in need* Corresponding author: pedro.valero@bsc.es
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of a higher number of operations (20n log 2n) with respect
to the (8n) operations of the Thomas algorithm to solve one
single system of size n. Also, the use of parallel methods
presents some additional drawbacks to be dealt with. For
instance, it would be difficult to compute those neurons
that compromise a size bigger than the maximum number
of threads per CUDA block (1024) or shared memory
(48 KB).

Unlike the work presented in [12], where a relatively low
number of neurons (128) is computed using single precision
operations, in this work we are able to execute a very high
number of neurons (up to hundreds of thousands) using
double precision operations. We have used the Hines algo-
rithm, which is the optimum method in terms of number
of operations, avoiding high expensive computational oper-
ations, such as synchronizations and atomic accesses. Our
code is able to compute a high number of systems (neurons)
of any size in one call (CUDA kernel), using one thread per
Hines system instead of one CUDA block per system.
Although multiple works have explored the use of GPUs
to compute multiple independent problems in parallel
without transforming the data layout [14–17], the particu-
lar characteristics of the sparsity of the Hines matrices
force us to modify the data layout to efficiently exploit
the memory hierarchy of the GPUs (coalescing accesses to
GPU memory).

The present work extends the previously published work
[18] with additional contributions. This work includes a
complete new approach to deal with one of the most impor-
tant challenges in the simulation of the Human Brain, that
is, dealing with simulations which involve neurons with
different morphologies (multi-morphology simulations). To
deal with this particular scenario, we must compute parts
of the batch of neurons separately. These parts can be seen
as multiple and independent tridiagonal systems. While the
present paper is focused on the simulation of the behavior of
the Human Brain, some of these techniques, in particular
those related to the solving of tridiagonal systems, can be
also used for multiple oil and gas simulations.1

This article is structured as follows: Section 2 briefly
introduces the physical problem at hand and the general
numerical framework that has been selected to cope with
it: Hines algorithm. In Section 3 we present the specific
parallel features for the resolution of multiple Hines systems
for mono-morphology simulations, as well as the parallel
strategies envisaged to optimally enhance the performance.
Section 4 shows the strategies proposed for dealing with the
challenges presented in the multi-morphology simulations.
The state-of-the-art references and the differences between
these and the present work are presented in Section 5.
Finally, the conclusions are outlined in Section 6.

2 Hines algorithm

In this section, we describe the numerical framework behind
the computation of the Voltage on neurons morphology.
It follows the next general form:

C
oV
ot
þ I ¼ f

o

ox
g

oV
ox

� �
ð1Þ

where f and g are functions on x-dimension and the
current I and capacitance C [4] depend on the voltage V .
Discretizing the previous equation on a given morphology
we obtain a system that has to be solved every time-step.
This system must be solved at each point:

aiV nþ1
iþ1 þ diV nþ1

i þ biV nþ1
i�1 ¼ ri ð2Þ

where the coefficients of the matrix are defined as
follows:
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i Þ

ai and bi are constant in the time, and they are computed
once at start up. Otherwise, the diagonal (d) and right-
hand-side (rhs) coefficients are updated every time-step
when solving the system.

The discretization above explained is extended to
include branching, where the spatial domain (neuron
morphology) is composed of a series of one-dimension
sections that are joined at branch points according to the
neuron morphology.

For the sake of clarity, we illustrate a simple example of
a neuron morphology in Figure 1. It is important to note
that the graph formed by the neuron morphology is an
acyclic graph, i.e. it has no loops. The nodes are numbered
using a scheme that gives the matrix sparsity structure that
allows to solve the system in linear time.

To describe the sparsity of the matrix from the number-
ing used, we need an array (pii 2 [2:n]) which stores the
parent indexes of each node. The pattern of the matrix
which illustrates the morphology shown above is graphi-
cally illustrated in Figure 1.

The Hines matrices feature the following properties:
they are symmetric, the diagonal coefficients are all nonzero
and per each off-diagonal element, there is one off-diagonal
element in the corresponding row and column (see row/col-
umn 7, 12, 17 and 22 in Fig. 1).

Given the aforementioned properties, the Hines systems
(Ax = b) can be efficiently solved by using an algorithm
similar to Thomas algorithm for solving tri-diagonal
systems. This algorithm, called Hines algorithm, is almost
identical to the Thomas algorithm except by the sparsity
pattern given by the morphology of the neurons whose
pattern is stored by the p vector. An example of the sequen-
tial code used to implement the Hines algorithm is illus-
trated in pseudo-code in Algorithm 1.1 https://tridiagonal.com/oil-and-gas
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3 Implementation of batch mono-morphology
Hines on GPUs

Efficient memory management is critical to achieve a good
performance, but even much more on those architectures
based on high throughput and high memory latency, such
as GPUs. In this sense, we focus on presenting the different
data layouts proposed and analyze the impact of these on
the overall performance. Three different data layouts were
explored: Flat, Full-Interleaved and Block-Interleaved.
While the Flat data layout consists of storing all the elements
of each of the systems in contiguous memory locations, in the
Full-Interleaved data layout, we start by storing the first
elements of each of the systems in contiguous memory loca-
tions, after that we store the set of the second elements, and
so on until the last element. Similarly to the Full-Interleaved
data layout, the Block-Interleaved data layout divides the

set of systems into groups of systems of a given size (BS),
whose elements are stored in memory by using the strategy
followed by the Full-Interleaved approach.

For the sake of clarity, Figure 2 illustrates a simple
example composed by four different Hines systems of three
elements each. Please, note that we only illustrate one
vector per system in Figure 2, but in the real scenario we
would have four vectors per Hines system (Pseudocode 1)
on which the strategies above described are carried out.
As widely known, one of the most important requirements
to achieve a good performance on NVIDIA GPUs is to have
contiguous threads accessing contiguous memory locations

Fig. 1. Example of a neuron morphology and its numbering (left-top and bottom) and sparsity pattern corresponding to the
numbering followed (top-right) [19].

Size of the system

Set of vectors

Set of first elements

Set of second elements

Set of third elements

Second blockFirst block

Fig. 2. Example of the different data layouts proposed, Flat
(top), Full-Interleaved (center), Block-Interleaved (bottom) with
a BS equal to 2, for four Hines systems of three elements each.
Dotted lines represent the jumps in memory carried out by the
first thread/system.

Algorithm 1 Hines algorithm.

1 void solveHines(double*u, double *l, double *d,
2 double *rhs, int *p, int cellS ize)
3 // u ^ upper vector, l ^ lower vector
4 inti;
5 double factor;
6 // Backward Sweep
7 for i = cellS ize - 1 ^ 0 do
8 factor = u[i] / d[i];
9 d[p[i]] -= factor x l[i];
10 rhs[p[i]] -= factor x rhs[i];
11 end for
12 [0] d[/= [0] hs r
13 // Forward Sweep
14 for i = 1 ^ cellS ize - 1 do
15 rhs[i] -= l[i] x rhs[p[i]];
16 rhs[i] /= d[i];
17 end for
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(coalescing memory accesses). This is the main motivation
behind the proposal of the different data layouts.

Our GPU implementation consists of using one thread
per Hines system. As commented in Section 1, we decided
to explore this approach to avoid dealing with atomic
accesses and synchronizations, as well as to be able to
execute a very high number of neurons of any size. Using
the Flat data layout we cannot exploit coalescence; however
by interleaving (Full-Interleaved data layout) the elements
of the vectors (u, l, d, rhs and p in Pseudocode 1), contigu-
ous threads access to contiguous memory locations.
Although we exploit coalescence in memory accesses by
using this approach, the threads have to jump in memory
as many elements as the number of systems to access the
next element of the vector(s) (dotted lines in Fig. 2). This
could cause an inefficient use of the memory hierarchy. This
is why we study an additional approach, the called Block-
Interleaved data layout. Using this approach we reduce
the number of elements among consecutive elements of
the same system, and hence the jumps in memory are not
as big as in the previous approach (Full-Interleaved), while
keeping the coalesced memory accesses. Also, the use of the
Block-Interleaved data layout can take better advantage of
the growing importance of the bigger and bigger cache
memories in the memory hierarchy of the current and
upcoming GPU architectures.

3.1 Implementation based on Shared Memory

Unlike the previous approaches, here we explore the use of
shared memory for our target application. The shared mem-
ory is much faster than the global memory, but it presents
some important constraints to deal with. This memory is
useful when the same data can be reused either by the same
thread or by other thread of the same block of threads
(CUDA block). Also, it is small (up to 48 KB in the archi-
tecture used) and its use hinders the exchange among
blocks of threads by the CUDA scheduler to overlap
accesses to global memory with computation.

As we can see in Pseudocode 1, in our problem the
elements of the vectors a, d, b, rhs and p are reused in the
Forward Sweep after computing the Backward Sweep.
However, the granularity used (1 thread per system) and
the limit of the shared memory (48 KB) prevent from storing
all the vectors in shared memory. To be able to use shared
memory we have to use the Block-Interleaved data layout.
The number of systems to be grouped (BS) is imposed by

the size of the shared memory. In order to address the limita-
tion of shared memory, we only store the rhs vector, as this is
the vector on which more accesses are carried out. In this
sense, the more systems are packed in shared memory, the
more accesses to shared memory are carried out.

3.2 Performance analysis

For the experiments, we have used a heterogeneous node2

composed of 2· Intel Xeon E5-2630v3 (Haswell) with 8 cores
and 20 MB L3 cache each, and 2· K80 NVIDIA GPU
(Kepler) with a total of 4992 cores and 24 GB GDDR5 of
global memory each. Each K80 is composed of 2· logic
GPUs similar to K40. This node is a Linux (Red Hat
4.4.716) machine, on which we have used the next configu-
ration (compilers version and flags): gcc 4.4.7, nvcc
(CUDA) 7.5, -O3, -fopenmp, -arch=sm_37. The code eval-
uated in this section is available in a public access
repository.3

To evaluate the different implementations described in
the previous section, we have used real configurations
(neurons’ morphologies).4 In particular, six different neu-
rons were used, which can be divided into six different
categories regarding their sizes and number of branches.
More details are described in Table 1. We have considered
these six different morphologies, as a wide range of the neu-
rons fall into the chosen morphologies.

In this Section, five different implementations are
analyzed. One is based on OpenMP Multicore using the
Flat data layout (Sect. 3), which makes use of an OpenMP
pragma (#pragma omp for) on the top of the for loop which
goes over the different independent Hines systems to dis-
tribute blocks of systems over the available cores. The rest
of implementations are based on GPU. Basically, we have
one implementation per each of the data layout described:
Flat, Full-Interleaved and Block-Interleaved. Additionally,
we study the use of shared memory (Block-Shared) over
Block-Interleaved. There are multiple different configura-
tions regarding the block-size (BS) and CUDA block for
the last two scenarios (Block-Interleaved and Block-
Shared). For sake of clarity we focus on one of the possible

Table 1. Summary of the neurons used.

Name Size #Branches Code name Neuron ID

small-low 76 7 299-DG-IN-Neuron2 NMO_00076
small-high 76 29 202-2-19nj NMO_00076
medium-low 305 30 59D-40X NMO_00302
medium-high 319 157 Culture-9-5 NMO_00319
big-low 695 66 28-2-2 NMO_00695
big-high 691 341 HSE-fluoro02 NMO_00691

2 MinoTauro, https://www.bsc.es/ca/innovation-and-services/
supercomputers-and-facilities/minotauro
3 BSC-GitLab, https://pm.bsc.es/gitlab/imartin1/cuHines-
Batch
4 http://www.neuromorpho.org/
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test cases to evaluate these two approaches. The benefit
shown for these two implementations is similar to the rest
of test-cases.

First, we evaluate the Multicore, Flat and Full-
Interleaved for 256, 2560, 25 600 and 256 000 mediumhigh
(Tab. 1) neurons (Fig. 3). On those test cases that do not
compromise a high number of neurons (256 and 2560),
Multicore obtains better performance than the GPU-based
implementations. This is mainly because of the parallelism
of these tests, which is not enough to saturate GPU and this
cannot reduce the impact of the high latency by overlap-
ping execution and memory accesses. The use of multicore
(16 cores and 2 sockets) supposes a speedup (over sequen-
tial execution) about 2 for 256 neurons and about 6 for
256 000 neurons. As shown, Flat is not able to scale, even
on those test-cases that involve a high number of neurons,
being even slower than multicore execution, achieving a
maximum speedup of about 2. This is because of the mem-
ory access pattern which cannot exploit coalescing (contigu-
ous threads access to contiguous memory locations). On the
other hand, Full-Interleaved turns out as the best choice,
being faster than Multicore and Flat, when dealing with a
high number of neurons (25 600 and 256 000). Unlike Flat,
Full-Interleaved takes advantage of coalescing when access-
ing to global memory. As expected, this has an impressive
impact on performance, being Full-Interleaved about
20· and 25· faster than sequential code when computing
25 600 and 256 000 neurons respectively on one K80
GPU. The use of multiple GPUs is only beneficial on those
test cases with an enough computational load where a
high number of neurons must be computed (25 600 and
256 000 neurons), with an extra benefit close to the ideal
scaling (about 1.9· faster than using one K80 GPU).

As it is not possible to have control on the CUDA sched-
uler, we have explored a high number of different combina-
tions regarding block-size (BS) for the Block-Interleaved
approach (Sect. 3). For the sake of clarity, and given the

huge number of different possible test-cases, we have
focused on one particular scenario. It consists of computing
256 000 medium-high neurons using different block sizes
(BS) and fixing the size of the CUDA block (number of
threads per block). This is a characteristic case among the
tests carried out, as the features (sizes and number of
branches) of the morphology used is in between of the other
two morphologies. As shown in Figure 4a, some of the cases
are slightly better than the Full-Interleaved approach, being
about a 2% faster.

Next we analyze the performance of the Block-Shared
implementation. We focus on the same scenario used for
the Block-Interleaved. Figure 4b graphically illustrates the
performance achieved by the Block-Shared and the other
approaches. Although using shared memory is better than
the performance achieved by the Flat approach, it is much
smaller than the Full-Interleaved counterpart. For this
particular scenario (medium-high morphology), a very low
number of systems saturate the capacity of the shared
memory (48 KB). Also, the data reuse is low using one-
thread per Hines system. These drawbacks do not allow
to achieve a better performance when the shared memory
is used.

Finally, we evaluate the impact on performance of the
particularities of each of the morphologies (Tab. 1). The
performance achieved by the Flat is not included as it
was proven to be very inefficient. As shown in Figure 5,
both approaches, Multicore and Full-Interleaved, show a
similar trend in performance independently of the neurons’
morphology. In particular, the peak speedup achieved on
the different morphologies does not vary significantly
(47·–55·).

After comparing the performance achieved by Multicore
and GPU, now we focus on evaluating the efficiency of our
GPU implementation. To do that, we make use of nvprof.5

We do not obtain very different results depending on the
input (number and shape of neurons). In all cases, we
obtain more than 99% efficiency (sm_efficiency), as well
as a bandwidth (Global Load Throughput) close to
160 GB/s, being the theoretical peak equal to 240 GB/s
and the effective about the bandwidth achieved by our
implementation. As most of the GPU applications, our
implementation is memory bound and this is reflected by
a low occupancy (about 24%).

3.3 Remarks

Block-Interleaved is positioned as the fastest approach
against the others when dealing with a high number of
neurons. However this implementation is difficult to tune.
It is not possible to know the best configuration in advance.
In contrast, Full-Interleaved is almost as fast as Block-
Interleaved and is not in need of being tuned a priori.
It is important to highlight that both approaches require
to modify the data layout by interleaving the elements of
the vectors. This preprocessing compromises an irrelevant
cost with respect to the whole process, as for our target
application (the simulation of the Human Brain), this is
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Fig. 3. Performance (speedup over sequential execution)
achieved by Multicore (16 cores, 2 sockets) and the GPU-based
approaches, Flat and Full-Interleaved (using different number of
GPUs), using medium-high neurons.

5 nvprof -m achieved_occupancy,sm_efficiency,gld_through-
put, gst_throughput,gld_efficiency,gst_efficiency ./run
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carried out just once at the very beginning of the simula-
tion. Using Full-Interleaved we obtain a similar behavior
in terms of performance when different morphologies are
considered. This is particularly interesting to evaluate the
scalability and robustness of the implementation. As over-
view, while Multicore (16 cores and 2 sockets) gives us a
maximum speedup against sequential execution of about
6·, reporting a peak speedup of about 55·, using 2· K80
NVIDIA GPUs.

4 Implementation of batch multi-morphology
Hines on GPUS

In this section, we analyze the performance for the simula-
tion of the behavior of the Human Brain using different
morphologies (multi-morphology) in parallel. This study is
the most important contribution of the present work.
Although the simulations that involve mono-morphology
(the same neuron replicated) scenarios can also be useful,
in real world cases, the neurons are completely different
among them. First, we evaluate the optimizations above
described for this particular case. Figure 6 graphically illus-
trates the performance achieved for multi-morphology sim-
ulations using the strategies described in the previous
section for the mono-morphology approach. To do this,
we have used two different test cases. In both cases we
use the same size to evaluate only the influence on perfor-
mance for computing multi-morphology simulations. We
generate different Hines matrices with a different ratio
(% of branches with respect to the size of branches). For
the sake of comparison, we also include those cases for
mono-morphology simulations using the same morphology,
size and branches ratio for the batch of neurons (Mono in
Fig. 6). As shown (Fig. 6), when dealing with multi-
morphology cases, we found an important fall in perfor-
mance with respect to mono-morphology simulations. The
most important cause of this behavior is given by the lack

of coalescing memory accesses. When computing different
morphologies in parallel, the off-diagonal elements (see
Fig. 1 and Pseudocode 1) of these Hines matrices (neurons)
are located in different positions from one to other, which
makes difficult that consecutive CUDA threads of the same
CUDA block access to contiguous memory positions caus-
ing an important fall in performance.

To minimize this problem, we propose a different
approach which consists of computing each of the branch
levels separately. Each branch can be seen as a tridiagonal
system, so those branches of the same level could be com-
puted simultaneously in one CUDA kernel. For the sake
of clarity, Figure 7 shows a simple diagram with this idea.
In the rest of this section, we focus on the implementation
of a kernel, which makes use of some of the ideas previously
presented, but to solve tridiagonal systems instead of Hines
systems. At the end of this section, we evaluate the impact
of this idea for multi-morphology simulations.

4.1 Tridiagonal linear systems

The state-of-the-art method to solve tridiagonal systems is
the called Thomas algorithm [8], which a specialized
application of the Gaussian elimination that takes into
account the tridiagonal structure of the system. It consists
of two stages, commonly denoted as forward elimination
and backward substitution.

Given a linear Au = y system, where A is a tridiagonal
matrix:

A ¼

b1 c1 0

a2 b2 c2

: : :

: : :

an�1 bn�1 cn�1

an bn

2
666666666664

3
777777777775
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Fig. 4. (a) Performance (speedup over sequential execution) achieved by the Block-Interleaved approach for multiple BS (32, 64, 128,
256, 512) for a CUDA Block size equal to 128. (b) Performance (speedup over sequential execution) achieved by the Block-Shared
implementation, Flat, Full-Interleaved (Full-Inter) and Multicore (Multi) using 16 cores. The test-case consisted of computing 256 000
medium-high neurons, using one of the two logic GPUs in one K80 NVIDIA GPU.
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The forward stage eliminates the lower diagonal as
follows:

c
0

1 ¼
c1

b1
; c

0

1 ¼
c1

bi � c0i�1ai
for i ¼ 2; 3; . . . ; n� 1

y
0

1 ¼
y1

b1
; y

0

1 ¼
yi � y

0
i�1ai

bi � c0i�1ai
for i ¼ 2; 3; . . . ; n� 1

and then the backward stage recursively solves each row
in reverse order:

un ¼ y
0

n; ui ¼ y
0

i � c
0

iuiþ1 for i ¼ n � 1; n � 2; :::; 1:

Overall, the complexity of Thomas algorithm is optimal:
8n operations in 2n � 1 steps.

Cyclic Reduction (CR) [7, 8, 20, 21] is a parallel alterna-
tive to Thomas algorithm. It also consists of two phases
(reduction and substitution). In each intermediate step of
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the reduction phase, all even-indexed (i) equations
aixi�1 + bixi + cixi+1 = di are reduced. The values of ai,
bi, ci and di are updated in each step according to:

a0i ¼ �ai�1k1; b
0

i ¼ bi � ci�1k1 � aiþ1k2

c
0

i ¼ �ciþ1k2; y
0

i ¼ yi � yi�1k1 � yiþ1k2

k1 ¼
ai

bi�1
; k2 ¼

ci

biþ1
:

After log2 n steps, the system is reduced to a single equa-
tion that is solved directly. All odd-indexed unknowns xi are

then solved in the substitution phase by introducing the
already computed ui-1 and ui+1 values:

ui ¼
y
0
i � a

0
ixi�1 � c

0
ixiþ1

b
0

i

:

Overall, the CR algorithm needs 17n operations and
2log2 n � 1 steps. Figure 8a graphically illustrates its access
pattern.

Parallel Cyclic Reduction (PCR) [7, 8, 20, 21] is a
variant of CR, which only has substitution phase. For con-
venience, we consider cases where n = 2s, that involve
s = log2 n steps. Similarly to CR, a, b, c and y are updated
as follows, for j = 1,2,. . ., s and k = 2j�1:

a0i ¼ aiai; b0i ¼ bi þ aici�k þ biaiþk

c0i ¼ biciþ1; y0i ¼ bi þ aiyi�k þ biyiþk

ai ¼
�ai

bi�1
; bi ¼

�ci

bi

finally the solution is achieved as:

ui ¼
y
0
i

bi
:

Essentially, at each reduction stage, the current
system is transformed into two smaller systems and after
log2 n steps the original system is reduced to n indepen-
dent equations. Overall, the operation count of PCR is
12n log2 n. Figure 8b sketches the corresponding access
pattern.

We should highlight that, apart from their computa-
tional complexity, these algorithms differ in their data
access and synchronization patterns, which also have a
strong influence on their actual performance. For instance,
in the CR algorithm synchronizations are introduced at the
end of each step and its corresponding memory access pat-
tern may cause bank conflicts. PCR needs less steps and its
memory access pattern is more regular [20]. In fact, hybrid
combinations that try to exploit the best of each algorithm
have been explored [7, 8, 20–23]. CR-PCR reduces the sys-
tem to a certain size using the forward reduction phase of
CR and then solves the reduced (intermediate) system with
the PCR algorithm. Finally, it substitutes the solved
unknowns back into the original system using the backward
substitution phase of CR. Indeed, this is the method
implemented by the gtsvStridedBatch routine into the
cuSPARSE package [11], one of the implementations eval-
uated in this work.

There are more algorithms, apart of the ones above
mentioned, to deal with tridiagonal systems, such as those
based on Recursive Doubling [20], among others. However,
we have focused on those, which were proven to achieve a
better performance and were implemented in the reference
library [11].

4.1.1 Implementation of cuThomasBatch

In this section, we explore the different proposals about the
CUDA thread mapping on the data layouts above

 2

 4

 6

 8

 10

 12

 14

 16

 18

Mono (600-10%)

Mono (600-50%)

Multi (600-10%)

Multi (600-50%)

S
pe

ed
up

Fig. 6. Performance (speedup over sequential execution)
achieved for computing 25 600 neurons using mono-morpholo-
gies (Mono) and multi-morphologies (Multi) of the same size and
different percentages of branches (10% and 50%).

...

1 call to 
cuHinesBatch kernel

Mono−Morphology 
Approach

N
 N

eu
ro

ns
 (

H
in

es
 s

ys
te

m
s)

...

N
 B

ra
nc

he
s 

(T
ri

di
ag

on
al

 s
ys

te
m

s)

...

N
*2

 B
ra

nc
he

s 
(T

ri
di

ag
on

al
 s

ys
te

m
s)

1 call to 
cuThomasBatch kernel

1 call to 
cuThomasBatch kernel

2 LevelsApproach
Multi−Morphology 

Fig. 7. Mono-Morphology (left) and Multi-Morphology (right)
approaches.

P. Valero-Lara et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 63 (2018)8



described on pure-tridiagonal systems. In cuThomasBatch
we use a coarse-grain scheme where a set of tridiagonal sys-
tems is mapped onto a CUDA block so that each CUDA
thread fully solves a system. We decided to explore this
approach to avoid dealing with atomic accesses and syn-
chronizations, as well as to be able to execute a very high
number of tridiagonal systems of any size, without the lim-
itation imposed by the parallel methods. As above pre-
sented, using the Flat data layout we cannot exploit
coalescence when exploiting one thread per tridiagonal
system (coarse approach); however, by interleaving (Full-
Interleaved data layout) the elements of the vectors, con-
tiguous threads access to contiguous memory locations.
As previously described in Section 2, this approach does
not exploit efficiently the shared memory of the GPUs since
the memory required by each CUDA thread becomes too
large. Our GPU implementation (cuThomasBatch) is based
on this approach, Thomas algorithm on Full-Interleaved
data layout. On the other hand, previous studies have
explored the use of the fine-grain scheme based on CR-PCR
[7, 8, 20, 21] using the Flat data layout. In this case, each
tridiagonal system is distributed across the threads of a
CUDA block so that the shared memory of the GPU can
be used more effectively (both the matrix coefficients and
the right hand side of each tridiagonal system are hold on
the shared memory of the GPU). Nevertheless, computa-
tionally expensive operations, such as synchronizations
and atomic accesses are necessary. Also this approach satu-
rates the capacity of the GPU with a relatively low number
of tridiagonal systems. Even when the shared memory is
much faster than the global memory, it presents some
important constraints to deal with. This memory is useful
when the same data can be reused either by the same
thread or by other thread of the same block of threads
(CUDA block). Also, it is small (up to 48 KB in the archi-
tecture used) and its use hinders the exchange among
blocks of threads by the CUDA scheduler to overlap
accesses to global memory with computation. Our reference
implementation (the gtsvStridedBatch routine into the
cuSPARSE package [11]) is based on this approach,
CR-PCR on Flat data layout.

4.1.2 Performance analysis

To carry out the experiments, we have used one of the two
logic Kepler GPUs into one K80 NVIDIA GPU. We have
evaluated the performance of each of the approaches,
gtsvStridedBatch and cuThomasBatch, using both, single
and double precision operations. Two test cases were pro-
posed. The first one (Figs. 9a and 10) consists of computing
256, 2560, 25 600 and 256 000 ‘‘small’’ tridiagonal systems
of 64, 128, 256 and 512 elements each. Due to the memory
capacity of our platform, we consider another test case
(Figs. 9a and 11) for those systems with a bigger size
(a higher number of elements), 1024, 2048, 4096 and
8192. In this case we could compute up to a maximum of
20 000 systems in parallel. We have considered this testbed
to evaluate the scalability by increasing both, the size of the
systems and the number of systems, taking into account the
limitation of our platform. In particular, the size of the sys-
tems in the first test cases (64–512) can be fully executed by
one CUDA block using gtsvStridedBatch. Nevertheless,
those tests which need a higher size (1024 forward) must
be computed following other strategies as commented
before. Regarding the size of the tridiagonal systems, there
is no characteristic size, as it depends on the nature of the
applications, and because of that, we have considered differ-
ent cases to cover all the range of possible scenarios. For the
sake of numerical stability we force the tridiagonal coeffi-
cient matrix to be diagonally dominant (|bi| > |ai| + |ci|,
"i = 0,. . ., n). We initialize the matrix coefficients
randomly following the previous property.

Figure 9 graphically illustrates the speedup achieved by
our implementation against the cuSPARSE routine. Even
when interleaving the elements of the systems does not scale
when computing a low number of systems (256 in Fig. 9a
and 20–200 in Fig. 9b), being gtsvStridedBatch faster
than our implementation, this last turns to be much faster
for the rest of tests (2560–256 000 in Fig. 9a and
2000–20 000 in Fig. 9b). In most cases, independently of
the size of the systems, bigger size means bigger speedup,
achieving a speedup peak close to 4 in single precision
and close to 3 in double precision.
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To analyze in more detail the scalability of both imple-
mentations, we also show (Figs. 10 and 11) the speedup (for
double precision operations) against the sequential counter-
part including the performance achieved by the multicore
execution (16 cores). The implementation based on multi-
core basically makes use of an OpenMP pragma (#pragma
omp for) on top of the for loop which goes over the different

independent tridiagonal systems to distribute blocks of sys-
tems over the available cores. While gtsvStridedBatch
achieves a peak speedup about 10 from 2560 and systems,
saturating the GPU capacity, cuThomasBatch continues
scaling from 2560 (Fig. 10) and 2000 (Fig. 11) to 256 000
and 20 000, with a speedup peak of about 25. It is impor-
tant to note that in some cases, the multicore OpenMP
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implementation outperforms both GPU-based implementa-
tions for a low number of systems. This is mainly because of
the parallelism of these tests, which is not enough for the
GPU to reduce the impact of the high latency by overlap-
ping execution and memory accesses.

The numerical accuracy is critical in a large number of
scientific and engineering applications. In this sense, we com-
pared the numerical accuracy of both parallel approaches
against the sequential counterpart, increasing the size of
the system. As shown in Figure 12a, cuThomasBatch pre-
sents a lower error and a more stable accuracy, being in some
cases about 4· more accurate. This is because of the intrinsic
characteristics of the Thomas algorithm.

As commented before, the use of parallel methods
requires an additional amount of temporary extra
storage [11].

In particular, gtsvStridedBatch is in need of
m · (4 · n + 2048) · size of (<type>) more memory,
being m and n the number of systems and the size of the
systems respectively [11]. This supposes, for instance, that
gtsvStridedBatch needs about 2· more memory capacity
than cuThomasBatch to compute 20 000 tridiagonal sys-
tems of 8192 elements each (Fig. 12a).

It is important to highlight that cuThomasBatch,
unlike the gtsvStridedBatch, is in need to modify the data
layout by interleaving the elements of the vectors. This pre-
processing does not compromise an important overhead
with respect to the whole process, in those applications
(numerical simulations) which have to solve multiple
tridiagonal systems many times in a temporal range, as this
is carried out just once at the very beginning of the
simulation [18].

Finally, we have used the NVIDIA profiler to evaluate
our cuThomasBatch in terms of occupancy and memory
bandwidth achieved. In this sense, our implementation is
able to achieve a high occupancy ratio of about 92% and
a high bandwidth of about 140 GB/s. Although the mem-
ory bandwidth of our GPU is 240 GB/s, given that the
ECC is activated, which causes a fall about 25% in the
bandwidth, we obtain about 80% of the maximum band-
width possible.

4.1.3 Variable Batch Thomas, cuThomasVBatch

Here we evaluate the variant of cuThomasBatch for variable
batch (batch of tridiagonal systems with different sizes),
cuThomasVBatch [24]. We study two different variants,
No Computing Padding (NCP) and Computing Padding
(CP). To evaluate these variants, we first initialize a batch
of tridiagonal systems with a size chosen randomly between
256 and 512. We also compute two other cases to compute
batches with the same size, one for 256 and one for 512 using
cuThomasBatch. As Figure 13 illustrates, the variant based
on CP is significantly more efficient and faster than the
NCP counterpart. This is because, although the NCP needs
less number of memory accesses and operations, this variant
suffers from divergence and non-coalesced memory accesses,
causing an important underutilization of the computational
capacity of our GPU architecture. We also make use of
NVPROF to extract some metrics like memory bandwidth
and efficiency. While the bandwidth achieved by the NCP
variant is about 28 GB/s, when executing 256 000 tridiago-
nal systems of 256–512 elements each, the CP is able to
achieve a bandwidth of about 70 GB/s for the same test
case. The efficiency is bigger using the CP approach
(84%) than the NCP one (71%).

The performance (execution time) of the CP variant is
bounded by the biggest size of the batch, as shown in
Figure 13. The time for a variable batch (cuThomasVBatch)
of 256–512 is similar to the execution time of a fixed-size
batch (cuThomasBatch) of 512. This is because in CP we
access and compute the null elements. This implies that, in
terms of performance, the CP variant is equivalent to the
execution of cuThomasBatch for the maximum system size
computed by CP.

4.1.4 Remarks

cuThomasBatch and cuThomasVBatch are not able to
saturate the GPU capacity when dealing with a low number
of systems, however, they outperform the cuSPARSE
implementation on a high number of tridiagonal systems.
This is because of a simpler management of CUDA threads,
as we do not have to deal with synchronizations, atomic
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operations and the limitations regarding the size of
shared memory and CUDA blocks. The code (cuThomas-
Batch) and the optimizations carried out will be included
in the next cuSPARSE release with the name
gtsvInterleavedBatch.

4.2 Performance analysis of multi-morphology Hines

To carry out the experiments, we have used one of the two
logic Kepler GPUs into one K80. Once the cuThomasBatch
implementation has been evaluated, we decided to use this
implementation to compute multi-morphology simulations,
i.e. we use cuThomasBatch to compute the independent
branches (tridiagonal systems) of the same level for a batch
of the neurons (see Fig. 7). To carry out the performance
analysis and evaluate the potential benefit of using the
multi-morphology approach, we use a set of different mor-
phologies composed by a different number of branch-levels

(from 2 to 4). All neurons, independently of the number of
branch-levels, have the same size (512).

We have followed a particular pattern to assign the size
of the different branch-levels. This consists of, given a
neuron size, using for the first level a size equal to half of
the whole neuron, in our case 256, the size and the number
of branches depend on the number of levels, following a
binary-tree structure. For instance, for 4 branch-levels
and a neuron size equal to 512, we have a first branch with
a size equal to 256, the next level is composed by 2 branches
of size equal to 32, the third branch-level is composed by
4 branches of 16 elements each and in the last level we have
8 branches of size 8.

Similarly, for two branch-levels and the same neuron
size (512), we have a first branch of 256 and a second level
of branches composed by two branches of 256. We could
have used branches of different size in the experiments,
but as the performance achieved for the variant of the
cuThomasBatch implementation to deal with tridiagonal
systems of different size is bounded by the maximum size
of the batch of tridiagonal systems (branches), we decided
to use the same size in order to not make more difficult
the performance analysis. The motivation to use this struc-
ture is two-fold: (i) this structure is similar to the shape of
the neurons and could be used for this kind of simulations,
and (ii) this is one of the most characteristic structures used
in multiple other applications, so that its integration in this
kind of simulations could be more satisfactory than using
other structures.

For the sake of comparison, we have also included in
this study the performance achieved using the multi-core
architecture and the mono-morphology approach. In the
first, we compute a batch of neurons with different mor-
phologies, all of them with a size equal to 512. In the last,
we have used the same morphology for the batch of neurons
with a size equal to 512. As shown, independently of the
morphology used, the performance achieved for mono-
morphology simulations is very similar (see Sect. 3.2).
As in the previous analysis, we have used different num-
ber of neurons to be computed, from 256 unto 256 000.
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It is important to note that in those cases which involve
multiple levels (Multi (x level), for x = 2, 3 and 4, in
Fig. 14), the number of tridiagonal systems (branches) to
be computed is multiplied by the number of branches of
such level. For instance, for the branch-levels case and
256 000 neurons, first we execute 256 000 · 8 tridiagonal
systems of size 8 to compute the last level, then we compute
256 000 · 4 branches of size 16, after that we compute
256 000 · 2 tridiagonal systems of size 32 and finally the
last cuThomasBatch kernel call computes 256 000 systems
of size 256.

As we can see, the overhead of the multi-morphology
approach due to the synchronization between the execution
of the different levels of branches (see Fig. 6) is mitigated
with the use of an efficient and fast solver, the cuThomas-
Batch. It is also important to highlight that, although the
mono-morphology approach presents a good performance
(see Sect. 3.2), computing a batch of neurons with the same
morphology, the memory access pattern is broken when
accessing the off-diagonal elements of the Hines matrix
(see Fig. 1), which makes difficult to achieve a good
exploitation of the top-levels of the memory hierarchy, in
particular the L2-cache. This consequence makes the multi-
level execution (multi-morphology approach) faster, even if
this has to deal with the synchronization among levels.
To do this analysis we have used nvprof. Using the NVIDIA
profiler nvprof we see that L2 Hits of the multi-morphology
approach are about 60%, being this metric 2· better than in
the mono-morphology approach. This has a direct conse-
quence on the IPC (Instructions Per Cycle), which is about
1.5· bigger in the multi-morphology approach than in the
mono-morphology approach (0.41 vs. 0.27). Other impor-
tant metrics are L1 read/write requests and Load/Store
Transactions to Global Memory, in both cases the

mono-morphology approach requires about a 97% more
requests than the multi-morphology approach.

The trend in performance of the multi-morphology
approach is similar to that achieved by cuThomasBatch
and mono-morphology computations on GPUs, that is,
the more number of neurons to be computed the better.
It is also important to note that for the 4-levels case (Multi
(4 levels) in Fig. 14), the performance is better than the two
levels and three levels case. This is because of a better
exploitation of the memory hierarchy, which can be more
efficient when the size of the tridiagonal systems (branches)
is smaller.

5 Related work

In this section we explore the state-of-the-art and reference
works for the parallelization of the Hines method. For the
sake of clarity, we also highlight both, the differences found
between these works and the work presented in this paper
and the main contributions of our work. This work can
be seen as an extension of the previously published paper
by Valero-Lara et al. [18]. In this paper, the authors
presented a novel implementation called cuHinesBatch
to accelerate one of the most expensive computationally
steps in the simulation of the Human Brain, that is the
computation of the voltage capacitance on the neurons
morphology. Although good results in terms of scalability
and speedup were reported on mono-morphology simula-
tions, this implementation turns out inefficient on real
simulations, achieving a poor performance when computing
neurons with different size and shape. This was clearly
reported in the present work.

The main contribution of this work is a novel and highly
scalable implementation able to deal with multi-morphology
simulations based on cuThomasBatch implementation [25].
Although in this paper the cuThomasBatch was proven to
be a fast implementation for batches of full-tridiagonal
systems, this is not enough to compute the sparsity found
in Hines matrices. Due to this, we proposed and developed
a new approach called cuThomasVBatch.6 As in other
works, such as the work by Vooturi et al. [26], the idea to
deal with multi-morphology simulations is to divide one
Hines system into smaller tridiagonal systems. Vooturi
et al. proposed two variants, one based on the use of the
BLAS-2 routine trsv, which makes use of the cuSparse
gtsvStridedBatch routine [11], and one called TPT using
one thread per tridiagonal system. They reported that the
first variant outperforms the second variant, achieving a
peak speedup versus the sequential CPU code of about
3.5, when the second variant was only able to achieve a
speedup of about 1.2. Our cuThomasVBatch, although
using one thread per tridiagonal system as the second vari-
ant of Vooturi’s work, is able to achieve a better perfor-
mance than using the cuSparse gtsvStridedBatch routine,
which is used in the first variant. This is mainly because of
using interleaved data layouts, which allows us to exploit
coalescing memory accessing on GPU memory. In fact, the
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use of this data-layout is proven to be very efficient for
batch operations not only in NVIDIA GPUs but also on
INTEL multi-core processors [27]. As a proof of this, the
cuThomasBatch implementation has been recently included
into the cuSparse NVIDIA library as part of a novel routine
called gtsvInterleavedBatch [11]. Other routines of the
NVIDIA cuSparse library, such as the gtsvInterleavedBatch,
also make use of this data-layout, as well as the INTEL
MKL compact routines [28, 29]

The solve of tridiagonal systems is of the vital impor-
tance for multi-morphology (Hines) systems. In the
literature, we can find multiple works which attempt to
accelerate this kind of systems. We can divide these works
into those which make use of pivoting to make the solving
more numerically stable on bad-conditioned matrices, such
as the works by Chang et al. [30], and those which assume
that the matrix is well-conditioned (diagonal dominant),
such as the work by Zhang et al. [31]. Since the Hines
matrices are well-conditioned by definition, the computa-
tionally expensive operations like pivoting are not neces-
sary. We can find multiple works for fast resolution on
well-conditioned tridiagonal systems, such as the aforemen-
tioned work of Zhang et al. [31] and the work by László et al.
[32]. Both works based on the use of a hybrid method to
solve the tridiagonal systems, the first one is based on
PCR-CR and the second one is based on PCR-Thomas.
The gtsvStridedBatch routine of the cuSpare library is based
on the Zhang’s work. Unlike these works, our main target is
to develop an implementation which does not saturate the
GPU capacity with a relatively low number of Thomas
matrices, since in our simulations we have a huge number
of independent systems (neurons). Both approaches achieve
a good performance for a relatively small number of systems,
but cannot continue scaling when increasing the number of
systems. Also, our implementation requires a significant
lower amount of memory, which allows us to execute much
larger simulations, as well as it is more numerically stable.

6 Final remarks

In this paper two different approaches have been presented,
one for mono-morphology simulations (batch of neurons
with the same shape) and one for multi-morphology simula-
tions (batch of neurons, where every neuron has a differ-
ent shape), to compute one of the most time consuming
steps of the simulation of the behavior of the Human Brain,
the Voltage on the morphology of the neurons. The mono-
morphology approach is based on using the state-of-the-art
and optimum Hines algorithm. This approach achieves a
good performance, being about 55· faster than the sequen-
tial counterpart using 2· K80 NVIDIA GPUs and about
12· faster using one of the logic K40 GPUs of the K80
NVIDIA GPU.

Although these simulations are interesting and can be
used in multiple test cases, in real world scenarios, the neu-
rons are completely different among them. However, when
the ideas explored for mono-morphology simulations are
used for multi-morphology simulations, we find an impor-
tant fall in performance with respect to the performance
achieved on mono-morphology simulations. This is mainly

due to the lack of coalescence in the memory accesses. To
minimize this impact, we proposed a different approach
for multi-morphology simulations, which consists of
computing each of the branches of the neurons separately.
Each of the branches can be seen as a tridiagonal system,
and the branches of the same level can be computed in par-
allel, using the cuThomasBatch implementation. This
implementation has proven to be very efficient, being faster
than the routine gtsvStridedBatch of the NVIDIA library
cuSPARSE. This implementation will be included in the
next release of the cuSPARSE library with the name
gtsvInterleavedBatch. Although the multi-morphology
approach has to deal with the synchronization of different
and independent levels of branches, using the cuThomas-
Batch implementation, we are able to achieve even a better
performance than the obtained using the mono-morphology
approach, being up to almost 25· faster than the sequential
counterpart using one of the two logic GPUs of one K80
NVIDIA GPU. This is up to 2· faster than the performance
achieved using the the mono-morphology approach.
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