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Abstract. The problem of interactive contour extraction of targeted ob-
jects of interest in images is challenging and finds many applications in
image editing tasks. Several methods have been proposed to address this
problem with a common objective: performing an accurate contour ex-
traction with minimum user effort. For minimal paths techniques, achiev-
ing this goal depends critically on the ability of the so-called potential
map to capture edges. In this context we propose new patch-based po-
tentials designed to have small values at the boundary of the targeted
object. To evaluate these potentials, we consider the livewire framework
and quantify their abilities in terms of number of needed seed points.
Both visual and quantitative results demonstrated the strong capabil-
ity of our proposed potentials in reducing the user’s interaction while
preserving a good accuracy of extraction.

Keywords: Contour extraction · Patch · Minimal paths.

1 Introduction

Despite the high number of research works in image segmentation, interactive
contour extraction is still a very challenging image processing problem. In con-
trast to the traditional image segmentation problem, many real-world applica-
tions focus on identifying the pixels belonging to a specific object. Their aim
is to precisely delineate the contour of a targeted object. This is at the core
of many image editing tasks in photography or medical image analysis: using
a selection tool, an object is extracted and the background is removed. This
process can be very difficult to do cleanly manually because of the presence of
structures with ill-defined borders, and assistive tools can be very beneficial for
end-users. For that, it is necessary for the user to provide inputs to ease the ob-
ject extraction. These inputs can take different forms that are then incorporated
into the segmentation process as hard or soft constraints. Since this requires an
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interaction with the user, all methods try to obtain accurate segmentation re-
sults while reducing the user’s effort. There are essentially three methods in the
literature to allow the user to specify the targeted object. The first is to label
some pixels inside/outside the object [10] and to use a labeling process such
as graph-cut based-methods [8]. The second method is to provide a sub-region
within the image that contains the object. Bounding boxes have often been con-
sidered for that, see [1], and have been popularized by the GrabCut method [15].
The third method is to provide a curve close to the boundary or seed points on
the boundary. Providing curves has been extensively employed in level sets and
snakes methods [4]. Providing points has been mainly employed with minimal
path approaches [5]. In the sequel we will focus on that last type of interaction
that we call seed-based interactive contour extraction methods.

The paper is organized as follows. Section 2 provides a review of the mini-
mal paths approach for interactive contour extraction and describes the livewire
framework. Section 3 describes our patch-based potentials. They are compared
in Section 4 through experiments on ISEG dataset.

2 Seed-based Interactive contour extraction methods

2.1 Minimal paths

Most seed-based interactive contour extraction methods rely on minimal paths.
Given an image f : Ω ⊂ R2 → Rn+ and two seeds ps, pe ∈ Ω located on the
contour of an object, the objective is to find a path from ps to pe that represents
a piece of contour. In this paper, we consider the classical model presented in
[5]. A path from ps to pe is defined as a parametric curve γ : [0, 1]→ Ω so that
γ(0) = ps and γ(1) = pe, and its length as the cost:

L(γ) =

∫ 1

0

P (γ(s))‖γ′(s)‖ds. (1)

γ′ is the derivative of γ. P : Ω → R∗+ is a potential function derived from image
f that has low values for edges. The length L(γ) is smaller when it goes through
low values of P and one can search for curves that minimize L(γ) given a pair of
starting and ending points. The goal is therefore to capture the minimal path γ∗,
also called the geodesic path, that globally minimizes the cost function defined
in (1):

L(γ∗) = min
γ∈A(ps,pe)

L(γ) (2)

with A(ps, pe) the set of all possible paths joining ps to pe. The optimal cost
defines the geodesic distance d(ps, pe) = L(γ∗).

To tackle the minimization problem (2), the geodesic distance map U{ps} :
Ω → R+ from a point ps to any other point p ∈ Ω is considered: U{ps}(p) =
d(ps, p) = minγ∈A(ps,p) L(γ). The distance map is solution of the Eikonal equa-
tion: {

‖∇U{ps}(p)‖ = P (p), ∀p ∈ Ω
U{ps}(ps) = 0

(3)
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(a) First seed p1 (b) Potential Pmax3 (c) 2nd seed p2 and γ∗p1,p2
(d)Updated potential

(e)3rd seed and γ∗p2,p3
(f)4th seed and γ∗p3,p4

(g) Final contour Γ (h) Final potential

Fig. 1: A livewire interactive contour extraction.

The value U{ps}(p) can be interpreted as the arrival time at p of a front propagat-
ing from a point ps with speed 1/P . Fast marching method [16,5] and Dijkstra’s
algorithm [6] are often used to compute the values of U{ps} in increasing order, so
that the process can be stopped when the end point pe is reached. Then the min-
imal path between ps and pe can be constructed by applying a back-propagation
procedure (gradient descent) starting from pe along the gradient of the map Ups
until arriving at ps. See [14] for more details.

An interesting thing to note is that the result curve γ∗ depends strongly on
the potential functional P which is usually built such as it takes lower values at
the desired structure of interest and higher values elsewhere. Some works have
suggested the use of new potential functionals or path cost functions in order
to better discriminate the discontinuities between objects and background. To
this end, and to go beyond classical edge-based energies, some authors have
considered more evolved information such as texture, curvature [3], or orientation
[2]. We focus on this track of research in this paper.

2.2 Livewire interactive contour extraction framework

Before entering into the details of our proposed potentials, we focus on how
interaction can be considered in seed-based minimal paths interactive contour
extraction. When points are provided as seeds in minimal path approaches for
contour extraction, the employed methods all adopt the same strategy. The user
places seed points that provides an initial labelling for some pixels of the image.
Then, an algorithm is performed to propagate the labels of seeds to unlabeled
regions until an optimum criterion is reached. If this strategy is similar from one
method to another, the interaction with the user for the providing of seeds differs.
A first way to proceed consists in iteratively minimizing an energy functional
for a given set of seed points on a contour [5,11]. The main drawback of this
type of user interaction is that the user cannot easily add new boundary points
on the contour segments that were poorly extracted: this requires a complete
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Algorithm 1 Livewire contour extraction framework

Potential function P , Seed set S = ∅, extracted contour Γ
Select seed point p1
Compute geodesic distance map U{p1} with P
ps ← p1, S ← S ∪ {ps}
repeat

Select pe
Backtrack to determine the shortest curve γ∗ps,pe from U{ps}
S ← S ∪ {pe}, Γ ← Γ ∪ γ∗ps,pe
Update Potential P (q)← +∞, ∀ q ∈ γ∗ps,pe \ {ps, pe}
Compute geodesic distance map U{pe} with P
Backtrack to determine the shortest curve γ∗pe,p1 from U{pe}
ps ← pe

until The user is satisfied with the extracted contour
Γ = Γ ∪ γ∗pi+1,p1

re-computation of the solution. A second more popular way to proceed is to let
the user place new seed points after each label propagation step.

The user provides starting seed points and the optimal boundary is extracted.
Then, the user can add another seed point if he is not satisfied. In that case, the
previously extracted boundary is frozen and a new optimal path is computed
to the new seed point. This process is repeated until the user decides to close
the contour. These methods do belong to the livewire framework. They require
an ordered sequence of seed points (provided one after the other) to extract
the object’s contour. The advantage of this type of interaction is that the user
can control and predict the final result. The interaction should be minimal in
the sense that few seeds should be used and the largest optimum path between
them should be obtained. Algorithm 1 resumes the livewire interactive contour
extraction framework and Figure 1 illustrates this interactive process to extract
one contour with one of the potentials (Pmax3 ) we propose thereafter. Significant
examples of the livewire framework include intelligent scissors methods [13],
their variations with the on-the-fly extension [7], the G-wire extension [9] and
the riverbed algorithm [12].

3 Patch-based Potentials

In this section, we introduce new patch-based potentials for livewire contour
extraction. Generally speaking, a contour is a curve Γ that separates optimally
two regions R+ and R− that have different features (e.g., color, texture). Our
proposal consists in using patches as texture descriptors to build a potential map
that has small values especially for edges pixels.
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3.1 Notations

For a color image f , the color at a pixel pi = (xi, yi)
T is given by f(pi) ∈ R3. A

patch is a rectangular region of size (2w+1)2 around a pixel and is defined by the

vector P(pi) = (f(pi + t),∀t ∈ [−w,w]2)T ∈ R3(2w+1)2 . The difference between
two patches is provided by the L2-norm d(P(pi),P(pj)) = ‖P(pi)− P(pj)‖2.

Given tθ,δ a vector of translation δ according to the angle θ with the hori-
zontal line, we can define the left and right pixels at a distance δ of a pixel pi
on a line of angle θ with the horizon as: pl,θ,δi = pi + tθ,δ and pr,θ,δi = pi − tθ,δ.
In the sequel, we will consider lines of angle θ ∈ {0◦, 45◦, 90◦, 135◦}.

3.2 Pixel-surround potentials

We propose two first potentials that consider only the pixels surrounding a cur-
rent pixel pi in a 8-neighborhood. A pixel can be considered as lying on an
edge if the patch at its left is different from the patch at its right. If we com-
pute distances between these left and right patches, a high value means a high
probability of contour. We therefore define a patch difference centered on pi

as: dθ,δc (pi) = d
(
P(pl,θ,δi ),P(pr,θ,δi )

)
. However, the edge is not necessarily ori-

ented along the y axis and we have to test all the possible orientations in a
8-neighborhood to define the potential: P1(pi) = maxθ d

θ,1
c (pi) with δ = 1 since

we consider only the surrounding pixels. This first potential is illustrated in Fig-
ure 2 (first row, first column). Since a pixel on an edge is also not supposed to
be similar to its surrounding pixels, we can enhance this potential by computing
upwind left or right differences between the pixel and its neighbors. We define

dθ,δl (pi) = d
(
P(pi),P(pl,θ,δi )

)
and dθ,δr (pi) = d

(
P(pi),P(pr,θ,δi )

)
. Then, we can

aggregate all these distances along a direction and take the maximum on all
directions:

PAF2 (pi) = max
θ
AF (dθ,1s (pi)) (4)

with dθ,1s (pi) = {dθ,1l (pi), d
θ,1
c (pi), d

θ,1
r (pi)} and AF an aggregation function

among the min, the max and the mean. This second potential is illustrated
in Fig. 2 (first row, second column) and Fig. 3.

3.3 Band-based potentials

The drawback of the previous potentials is that they are operating on a small
neighborhood to discriminate edge from non-edge pixels. It might be much more
beneficial to study a larger neighborhood. Indeed if there is a texture edge at
pixel pi it is natural to expect that shifted patches to the left are different from
shifted patches to the right. To take this into account we generalize the previous
potential P2 to operate on a longer line and to consider pixels that are much
farther than a distance δ = 1. To that aim, we consider a band of ns patches on
a side of the line and to avoid an overlap between the patch at pi and its left and
right patches, we consider pixels at a distance δ ∈ [ε, ε + ns]. For each possible
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Fig. 2: Computation principles of the proposed potentials.

set of distances (left dl, right dr or center dc), we keep only the minimum on
a side. Then we can aggregate all these distances between the band of patches
along a direction and take the maximum on all directions:

PAF3 (pi) = max
θ
AF

({
min

δ∈[ε,ε+ns]
, dθ,δs (pi),∀s ∈ {l, c, r}

})
(5)

This third potential is illustrated in Fig. 2 (second row, first column) and Fig. 3.

3.4 Seed-dependent patch-based potential

All the previous potentials we proposed can be considered as blind as they do
not take into account the previously positioned seeds to compute the potential.
To overcome this, we design a seed-dependent patch-based potential. Given a
seed ps, it is expected that the regions R+(ps) and R−(ps) on its both sides will
be similar to the other regions for the next points of the contour. However, for
the first seed ps = p1 (Algorithm 1), we have no exact idea of the orientation to
define the regions it separates. To cope with this, we search for the angle θs that
maximizes the differences between the set of patches of the two regions. These
set of patches are contained within 45◦ to the band defined by the angle θ to
the horizon. We consider only 5 patches of size 5× 5 with minimum overlap for
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Original image

Pmax
2 Pmax

3

P4 P5

Fig. 3: Potentials maps with 5× 5 patches, AF = max for P2 and P3, ε = 2 and
ns = 5 for P3, and α = 0.3 for P5.

each region. Finally for p1,

θ1 = arg max
θ

max
q1×q2

q1∈R+
θ (p1)

q2∈R−
θ (p1)

d(P(q1),P(q2)) (6)

This provides two regions R+
θ1

(p1) and R−θ1(p1) according to the retained ori-

entation θ1. For any other seed ps 6= p1, the regions R+
θs

(ps) and R−θs(ps) are

defined from the normal Ns = (γ∗′s−1,s(ps))
⊥/‖γ∗′s−1,s(ps)‖ to the shortest path

γ∗s−1,s at ps by the angle θs = arg minθ ∠(Ns, psp
l,θ,1
s ).

Then, for each point pi of the image, we compute all the pairwise distances
between the regions R+

θs
(ps) and R+

θ (pi) (and similarly for R−) for different
orientations θ around pi. We retain only the minimum value that accounts for a
very similar configuration between ps and pi. This can be formulated by:

P4(pi) = min
θ

 min
q1×q2

q1∈R+
θ (pi)

q2∈R+
θs

(ps)

d(P(q1),P(q2)) + min
q1×q2

q1∈R−
θ (pi)

q2∈R−
θs

(ps)

d(P(q1),P(q2))

 (7)

This potential is illustrated in Figure 2 (second row, second column) and Figure
3 (the red point shows the seed ps). Contrary to the other potentials, it must be
computed at each iteration of Algorithm 1.
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(a) (b) (c)

Fig. 4: Number of times where a potential gives the minimum % of seeds (a)
w = 1 ; (b) w = 2 ; (c) w = 3.

4 Experiments

4.1 User simulation for contour extraction evaluation

As introduced in [17], to reliably evaluate the effectiveness of approaches for
contour extraction, one should ideally eliminate the user bias, while obtaining
quality measures of the result. To cope with this, user agents have to be consid-
ered. These agents should be able to simulate the human user behavior through
the addition of seeds close to the objects boundary. To do so, they have to evalu-
ate the optimum-boundary segment being computed from a previously selected
seed point to a virtual mouse position, seeking for the longest possible segment
with minimum acceptable error. A new seed is then added when the error is
too high and the agents iterate until closing the contour, just like real users.
To achieve that, we have designed our own user agent dedicated to the livewire
framework. A starting point ps close to the ground truth object contour is se-
lected using some criterion. In our case, the point has to be contained in a tube
T of radius r on both sides of the contour (Fig. 5b). The virtual mouse position
of the user is then simulated by finding a point pe that satisfies three criteria.
First it has to be located in tube T . Second, the length of the path γps,pe must
be the largest one among all possible paths joining ps and pe. Third, all points
of the curve γps,pe must be in the tube T . To do so, we perform a dichotomous
search along the ground truth object contour (Fig. 5b). To close the contour,
the last step of our simulation algorithm consists of trying to find a path γps,pe
that fulfills the third criterion. If it is not the case, point pe is considered as the
new seed starting point of the next iteration, as this is the case in the livewire
framework (see Algorithm 1). The final contour being in a tube T of radius r
on both sides of the contour, the contour extraction error is proportional to the
radius of the tube: the larger r, the higher the contour extraction error.

4.2 Results

To demonstrate the ability of the proposed potentials to recover closed bound-
aries of objects in color images, we have carried out experiments on ISEG [8].
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Mean Mean
Potential Radius % seeds Jaccard index

PE

2 4.58 0.96
3 2.96 0.95
4 2.31 0.94

Pmax
3

2 3.93 0.97
3 2.67 0.95
4 2.12 0.94

P4

2 4.42 0.95
3 3.13 0.93
4 2.52 0.91

P5

2 3.67 0.97
3 2.38 0.95
4 1.86 0.94

(a)

p
s

p
e

2r

(b)

Fig. 5: (a) Quantitative comparison between potentials. (b) Tube of radius r
surrounding a ground truth curve and process to find the next seed from the
current one (red dot). The black curve is finally retained.

We ran Algorithm 1 for all the potentials with the user agent behavior. To have
a fair comparison between the compared potentials, the first starting point is
always the same on a given image. The criteria used to compare two poten-
tials will be: i) the average of the ratio between the number of seeds and the
length of the ground truth contour (the lesser the better, this will be denoted
by % of seeds), ii) the Jaccard index that measures the similarity between the
extracted contour and the ground truth. Since we use patch-based potentials,
the first question that we can ask is what is the best patch size. We have con-
sidered three different patch sizes w ∈ {1, 2, 3} that correspond to 3 × 3, 5 × 5
and 7× 7 patches. For band-based potentials (i.e., P3), the length of the band is
set to ns = 5. For potentials that rely on an aggregation function (P2 and P3),
we consider the min, max and mean aggregation functions. This means that we
have three different configurations for each one of these potentials and this will
be specified with an upperscript. Figure 4 shows an histogram that counts, on
the ISEG dataset, the number of times that a potential gives the minimum %
of seeds for different patch sizes. We do not show the Jaccard index since its
average values are very close for all potentials (this was attended since we use
simulated user agents). From these results, we can see that the best results are
mostly always obtained with band-based potentials (with Pmax3 ). This shows the
interest of going farther than the pixel surround and the proposed patch-based
potentials have the ability to better delineate the object contour with less seeds
when considering 5× 5 patches. In the sequel we have retained this size.

Once this best patch size has been fixed, we compare the best potential
we have proposed and tested so far, namely Pmax3 , with the classical pixel-
edge potential map [11] based on gradient magnitude and defined as PE = µ+
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P
E

28 38 48 47

P
m

a
x

3

34 53 26 37

P
4

26 37 45 46

P
5

24 32 32 28

Fig. 6: Contour extraction results with different potentials (the number of re-
quired seed points is provided below each result).

max
(

0, ||∇f(pi||
max ||∇f(p)||

)
with µ = 0.2. Whatever the agent configuration (different

values of r), the potential Pmax3 performs always better than the baseline PE
potential in terms of both criteria (% of seeds and Jaccard index). It is important
to note that a difference of 0.1% on the average % of seeds corresponds to 1.5
points). This is shown in Fig. 5a. However, if the results are in favor of potential
Pmax3 , this is not the case for potential P4. But for some images, P4 performs
better. This is illustrated in Figure 6 where less seeds are needed for the first
image. Since no general rule can be devised to choose between potentials Pmax3

and P4, we choose to combine them with P5 = αPmax
3 +(1−α)P4. To choose the

best α, we have tested values within [0, 1] and retained the one that minimizes
the % of seeds. We obtained a value of α = 0.3. With this new potential P5,
one can see that we overpass by far the classical pixel-edge potential as well as
all the patch-based potential we considered. In addition, this is true whatever
the considered radius r of the user agent, which enforces the robustness of our
proposed seed-dependent patch-based potential P5.
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5 Conclusion

In this paper new patch-based potentials have been proposed for minimal path
contour extraction. Their interest has been assessed in terms of the number
points needed to perform the contour extraction, so that the user interaction is
potentially minimized. To eliminate the user bias in the interactive process, a
dedicated user agent has been conceived. Results have shown that patch-based
potentials can overcome the classical pixel-based ones and improve object con-
tour extraction.
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