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High-Gain Nonlinear Observer with Lower Tuning
Parameter

A. ZEMOUCHE1,2, F. ZHANG3, F. MAZENC2, R. RAJAMANI4

Abstract—This paper develops a new high-gain observer design
method for nonlinear systems that has a lower gain compared
to the standard high-gain observer. This new observer, called
HG/LMI observer is obtained by combining the standard high-
gain methodology with the LMI-based observer design technique.
Through analytical developments, the paper shows how the
new observer provides lower gains, shows how it applies to
systems with multi nonlinear functions and analyzes performance
in the presence of measurement noise and/or delayed output
measurements. A numerical example is given to illustrate the
increasing advantage of the new HG/LMI observer with increase
in the observer’s ‘compromise index’. Finally, the applicability
and performance of the observer is demonstrated for a real-world
application consisting of a train’s magnetic levitation system.

Index Terms—Observer design, high-gain methodology, Lips-
chitz systems, LMIs.

I. INTRODUCTION

NONLINEAR state observers have attracted much atten-
tion from the automatic control community in recent

years [1], [2], [3], [4], [5], [6], [7]. Observers are needed
since the full state cannot be measured or is too expensive
to measure in many applications. For instance, slip angle
and roll angle are too expensive to measure and have to be
estimated from other inexpensive sensors in intelligent vehicle
applications [8], [9]. The design of fault diagnostic systems
also often requires the use of one or more exponentially
stable observers [10]. In addition, some variables in many
applications have to be estimated and cannot be measured due
to unavailability of sensors at any cost.

Because of the lack of a single powerful observer design
method for nonlinear systems (unlike the linear case), several
different methods have been developed in the literature, where
each method corresponds to design for a specific class of
nonlinear systems. We can quote the class of systems with
Lipschitz nonlinearities [11], [12], [13], [14], [15], [16].
Specifically for this class of systems many LMI techniques
have been developed in the literature. Each new LMI technique
aims to provide a better way to get less conservative LMI
conditions compared to previous results. Despite theoretical
advances in this field and although some enhancements have
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been proposed recently [17], [18], [19], the problem still
remains open.

Different from the LMI methods, another popular method
for state estimation of nonlinear systems is the well known
high-gain observer. The high-gain observer is developed for
systems in triangular form or any system that can be trans-
formed into a triangular structure. The advantage of the high-
gain methodology is that it always guarantees the existence of
an exponentially convergent observer, thanks to the tuning of
only one parameter that should be chosen large enough [3],
[20]. Although the practicability of high-gain observer in
output feedback control has been nicely demonstrated by
Khalil’s work [5], [21], the use of a large gain remains a major
drawback. Indeed, a high-gain observer is very sensitive to
output measurement noise because of the value of the tuning
parameter which may be huge for higher dimensional sys-
tems having nonlinearities with large Lipschitz constants. To
overcome this obstacle, many research papers have addressed
high-gain observers with time-varying parameter adaptation,
and a lot of schemes have been proposed. For an overview
of the literature, we refer the reader to [22], [23], [17], [24],
[25], [26], [27], and the references therein.

Despite all these improvements, the research activities in
this direction still remain active and many problems remain
to be solved to improve the performance of the high-gain
observer with respect to measurement noise. A new technique
was proposed in [28] to solve this problem. Through elegant
arguments, the authors have proposed a high-gain observer
with limited gain power. Their observer structure is new and
different from the standard high-gain structure. Indeed, for an
n-dimensional system, instead of a Luenberger observer struc-
ture of dimension n, they designed an observer of dimension
2n − 2. Even if their gain power is limited to 2 instead of
n with the standard high-gain, the higher dimension of the
observer (2n−2) may increase the size of the tuning parameter.
As shown in [28], overall, this new high-gain observer is better
than the standard one from the sensitivity to measurement
noise point of view.

What we propose in this paper is different from the approach
in [28]. Our technique follows the standard high-gain method-
ology with the same state observer structure of dimension
n. However, by exploiting the LPV/LMI technique developed
in [18], we are able to decrease the tuning parameter (then
implicitly, the gain power is decreased). We will introduce
a so called ”compromise index” j0, with 0 ≤ j0 ≤ n.
Hence, the power of the proposed high-gain is limited to
j0, but we need to solve 2j0 LMIs instead of one with the
standard high-gain observer. The designed observer is called
”HG/LMI observer”. In addition to the power gain limitation,
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the HG/LMI observer provides lower gain thanks to a partic-
ular decomposition of the nonlinearity of the system, which
allows reducing the Lipschitz constant in some cases, which
is directly and proportionally related to the high-gain tuning
parameter. After analytical developments, a numerical example
with a comparison to the standard high gain observer and the
Astolfi/Marconi observer is first presented to demonstrate the
role of the index j0 and its influence on decreasing the high-
gain. Then, the applicability and performance of the observer
in a real world application consisting of a magnetic levitation
system is explored. Comparisons to the above mentioned
high-gain observers is provided, where we clearly show the
superiority of the proposed HG/LMI technique.

It is worth noticing that a short version of this work has
been presented in the conference paper [29], where only a
preliminary idea of the proposed technique was provided.
However, this present journal version contains the additional
material summarized in the following items:
• Advantages of the proposed HG/LMI observer are clearly

described in Section IV-A;
• A numerical implementation algorithm is added in Sec-

tion IV-B to show how the observer parameters are to be
computed;

• Extension to systems with multi-nonlinearities is given in
Section IV-C to widen the class of systems to which the
observer design methodology is applicable;

• Robustness and performance analysis to delayed outputs
and high-frequency measurement noise is included in
Section V;

• An application to a magnetic levitation system of trains
is included in Section VII to show the applicability of the
proposed new design technique on real-world models;

• Comparisons to Astolfi/Marconi observer have been
added in Sections VI and VII.

II. PROBLEM FORMULATION

A. Preliminaries

We start by introducing some definitions and preliminaries
which will be of crucial use in the developed LPV-approach
for Lipschitz and not necessarily differentiable systems.

Definition 1 ([18]). Consider two vectors

X =

x1

...
xn

 ∈ Rn and Z =

z1

...
zn

 ∈ Rn.

For all i = 0, ..., n, we define an auxiliary vector XZi ∈ Rn
corresponding to X and Z as follows:

XZi =



z1

...
zi
xi+1

...
xn


for i = 1, ..., n

XZ0 = X

. (1)

Lemma 1 ([18]). Consider a continuous function
Ψ : Rn −→ R. Then, for all

X =

x1

...
xn

 ∈ Rn and Z =

z1

...
zn

 ∈ Rn,

there exist functions ψj : Rn × Rn −→ R, j = 1, ..., n so
that

Ψ(X)−Ψ(Z) =

j=n∑
j=1

ψj

(
XZj−1 , XZj

)
e>n (j)

(
X − Z

)
, (2)

where en(j) is the jth vector of the canonical basis of Rn.

Lemma 2 ([18]). Consider a function Ψ : Rn −→ Rn.
Then, the two following items are equivalent:
• Ψ is γΨ-Lipschitz with respect to its argument, i.e.:∥∥∥Ψ(X)−Ψ(Z)

∥∥∥ ≤ γΨ

∥∥∥X − Z∥∥∥, ∀ X,Z ∈ Rn; (3)

• for all i, j = 1, ..., n, there exist functions

ψij : Rn × Rn −→ R

and constants γ
ψij
≤ 0, γ̄ψij ≥ 0, so that ∀ X,Z ∈ Rn,

Ψ(X)−Ψ(Z) =

i=n∑
i=1

j=n∑
j=1

ψijHij

(
X − Z

)
, (4)

and
− γΨ ≤ γψij ≤ ψij ≤ γ̄ψij ≤ γΨ, (5)

where

ψij , ψij

(
XZj−1 , XZj

)
and Hij = en(i)e>n (j).

B. System Description
Since this paper deals with high-gain observers, we will

consider a special class of nonlinear systems. For simplicity
of the presentation and to explain well what we propose
in this paper, we consider the class of systems which are
diffeomorphic to the form of the system studied in [3]:

ẋ =



ẋ1
ẋ2
.
.
.

ẋn−1

ẋn


=



x2
x3
.
.
.
xn
f(x)


y = x1

(6)

with f : Rn → R satisfying the Lipschitz property
formulated under the following form:∣∣∣f(x1 + ∆1, . . . , xn + ∆n)− f(x1, . . . , xn)

∣∣∣
≤ γf

n∑
j=1

|∆j | . (7)

For the sake of compactness, we write system (6) under the
form: {

ẋ = Ax+Bf(x)
y = Cx

, (8)
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where

B =
[
0 . . . 0 1

]T
, C =

[
1 0 . . . 0

]
(9)

and the state matrix A is defined by

(A)i,j =

{
1 if j = i+ 1
0 if j 6= i+ 1

. (10)

Consider the following Luenberger observer:

˙̂x = Ax̂+Bf(x̂) + L
(
y − Cx̂

)
. (11)

The dynamics of the estimation error x̃ = x− x̂ is then given
by:

˙̃x =
(
A− LC

)
x̃+B

[
f(x)− f(x̂)

]
. (12)

C. LPV/LMI-Based Approach

Since f(.) is γf -Lipschitz, then following Lemma 2 there
are functions

γj : Rn × Rn −→ R

and constants γ
γj

and γ̄γj , so that

f(x)− f(x̂) =
[ j=n∑
j=1

ψje
>
n (j)

]
e, (13)

and
γ
γj
≤ ψj ≤ γ̄γj , (14)

where
ψj , ψj

(
x
x̂j−1

k , xx̂j
)

is defined as in Lemma 2. For the sake of brevity, we use only
ψj instead of ψj

(
xx̂j−1 , xx̂j

)
.

Now, define the matrix function

A (Ψ) = A+B

j=n∑
j=1

ψje
>
n (j), ∀Ψ ∈ Rn. (15)

Then, the dynamics (12) can be rewritten as

˙̃x = [A (Ψ)− LC] x̃. (16)

According to (14), the vector parameter Ψ belongs to a
bounded convex set Hn for which the set of vertices is defined
by:

VHn =
{

Φ ∈ Rn : Φj ∈
{
γ
γj
, γ̄γj

}}
. (17)

At this stage, we can state the following theorem, which
provides LMI conditions for observer design of Lipschitz
systems.

Theorem II.1 ([18]). The observer (11) is asymptotically
convergent if there exist a symmetric positive definite matrix P
and a matrix R of appropriate dimension so that the following
LMI conditions hold:

A (Φ)
T P + PA (Φ)− CTR−RTC < 0,

∀ Φ ∈ VHn . (18)

Then, the observer gain is given by

L = P−1RT .

The proof can be achieved easily by using the quadratic
Lyapunov function

V (x̃) = x̃TPx̃.

D. High-Gain Methodology

Here, we recall the basic high gain observer as in [20].
Basically, in the high-gain methodology, we write the observer
gain L under the form:

L := T(θ)K, θ ≥ 1. (19)

where
T(θ) := diag

(
θ, . . . , θn

)
and K ∈ Rn.

In addition, the high-gain methodology focuses on the trans-
formed estimation error

ˆ̃x := T−1(θ)x̃, (20)

where T−1(θ) is the inverse of T(θ) given by

T−1(θ) = diag
(1

θ
, . . . ,

1

θn

)
.

It is well-known that the dynamics of the error ˆ̃x is given by

˙̂
x̃ = θ

(
A−KC

)
ˆ̃x+

1

θn
B∆f, (21)

with
∆f := f(x)− f(x− T(θ)ˆ̃x).

From the Lipschitz condition (7) and the fact that θ ≥ 1, we
can show as in [26] that there always exists a positive scalar
constant kf , independent of θ, so that

‖T−1(θ)B∆f‖ ≤ kf‖ˆ̃x‖. (22)

Indeed, since

T−1(θ)B∆f =
1

θn
B∆f and T(θ)ˆ̃x =



θ ˆ̃x1

...
θj ˆ̃xj

...
θn ˆ̃xn


then, we have

‖T−1(θ)B∆f‖ =
1

θn
|∆f | = 1

θn
|f
(
θ ˆ̃x1, . . . , θ

n ˆ̃xn
)
|.

From (7), it follows that

‖T−1(θ)B∆f‖ =
1

θn
|f
(
θ ˆ̃x1, . . . , θ

n ˆ̃xn
)
|

≤ γf
θn

n∑
j=1

θj |ˆ̃xj | = γf

n∑
j=1

θj

θn
|ˆ̃xj |. (23)

Since θ ≥ 1 and 1 ≤ j ≤ n, then θj

θn ≤ 1. Finally, from the
inequality

n∑
j=1

|ˆ̃xj | ≤ n

√√√√ n∑
j=1

|ˆ̃xj |2 = n‖ˆ̃x‖

we get (22) with kf = nγf , which is independent from θ.
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Consequently, by following the high-gain methodology we
obtain the following theorem.

Theorem II.2 ([20]). If there exist P > 0, λ > 0, Y , and
θ ≥ 1 such that

ATP + PA− CTY − Y TC + λI < 0, (24)

θ > θ0 =
2kfλmax(P )

λ
, (25)

then the estimation error x̃ is asymptotically stable for the
choice

K = P−1Y T ,

where λmax(P ) is the largest eigenvalue of the matrix P .

Proof. For more details about the proof of this theorem, we
refer the reader to [20], [26], [27].

E. Problem formulation and objectives

If the LPV/LMI based approach is the best LMI technique
and avoids high-gain, it has a weakness from the complexity
point of view. Indeed, to synthesize the observer gain, the
LPV/LMI based approach typically needs to solve a high num-
ber of LMIs, nLMI = 2n. In addition, this technique, as is the
case for all LMI techniques, contrary to the high-gain method,
provides sufficient LMI conditions from which we cannot
guarantee the existence of a stable observer before solving
the LMIs. On the other hand, it is true that before solving
conditions (24)-(25), the high-gain methodology guarantees
convergence, however the obtained gain is really high even
for Lipschitz constants not too large. This weakness affects
strongly the performance of the high-gain observer, namely in
the case of systems with noise measurement.

To overcome the above drawbacks, we propose to combine
the two designs. We will exploit the advantages of each
method to get a new and improved observer design technique.
Especially, the combined observer, that we will call ”HG/LMI
observer” will have smaller observer gain compared to the
standard high-gain. On the other hand, the number of LMIs
nLMI will be significantly decreased. Mainly we will reduce
the value of the right hand side of the high-gain condition (25).
To do this successfully, we will need to use the LPV/LMI
based approach; then the new design method will reduce the
number of LMIs related to the standard LPV/LMI technique.
The next section is devoted to this issue.

III. PRELIMINARY RESULTS

A. Introduction and motivating example

The fact that kf in inequality (22) is independent of θ is not
necessarily an advantage. Indeed, this depends on how θ would
be involved in kf . Also, the fact that kf is independent of θ
does not come only from the condition θ ≥ 1, but essentially
from the presence of the last component of x in f . Because of
this last component, the parameter θ vanishes from the term
1
θn∆f for θ ≥ 1. This can be shown easily by using the
Lipschitz property (7). To illustrate this point and to motivate

our study, let us consider a simple three dimensional system.
If we take a nonlinear function

f(x) = γf sin(x3),

then we get from (7)
1

θ3
‖∆f‖ ≤ γf

θ3
× | θ3 ˆ̃x3 |= γf | ˆ̃x3 |≤ kf‖ˆ̃x‖,

where kf = γf in this case. However, if we take

f(x) = γf sin(x2),

then we get
1

θ3
‖∆f‖ ≤ γf

θ3
× | θ2 ˆ̃x2 |=

γf
θ
| ˆ̃x2 |≤

kf
θ
‖ˆ̃x‖.

Hence, by replacing in (25) kf by kf
θ , θ0 will be reduced to√

θ0, which will reduce significantly the values of the observer
gain.

The main result of this paper is based on the above idea.
Thanks to the LPV/LMI technique combined with the standard
high-gain methodology, we will be able to obtain a high-gain
observer with a lower gain.

B. General case
This section is devoted to the preliminary key idea of the

proposed work. The high gain methodology exploits the fact
that kf in (22) is independent of θ. Our key idea lies in this
inequality. Indeed, under a simple assumption, we will show
that we can obtain a lower high-gain. That is, the value of θ0

in (25) will be reduced thanks to this assumption.

Assumption III.1. There exists j0 > 0 so that
∂f

∂xj
(x) ≡ 0,∀ j > n− j0. (26)

This assumption means that the nonlinear function f does
not depend on the j0 last components of the state vector x.
Notice that when Assumption III.1 is not fulfilled, we have
j0 = 0, which corresponds to the standard high-gain observer.

Under this assumption, inequality (22) becomes

‖T−1(θ)B∆f‖ ≤ kj0
θj0
‖ˆ̃x‖, (27)

where kj0 is independent of θ and kj0 ≤ kf , where kf is the
same than that in (22). It is clear that with inequality (27),
we reduce significantly the value of θ0. Therefore, we get the
following theorem providing our preliminary result, which is
the key idea of this paper.

Theorem III.2. Under Assumption III.1, if there exist P > 0,
λ > 0, Y , and θ ≥ 1 such that

ATP + PA− CTY − Y TC + λI < 0, (28)

θ1+j0 > θj0 =
2kj0λmax(P )

λ
, (29)

then the estimation error x̃ is asymptotically stable with

K = P−1Y T .

As can be shown in (29), the value θ0 is decreased to θ
1

1+j0
j0

,
which is a very significant attenuation of the standard high-
gain.
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C. HG/LMI Observer: preliminary result

This section is devoted to the preliminary contribution of
this paper for systems with a single nonlinearity. We will
exploit the LPV/LMI based technique to extend the previous
result to systems which do not satisfy Assumption III.1.

Following (13), ∆f in (21) can be rewritten under the
following form:

∆f =

for HG︷ ︸︸ ︷
n−j0∑
j=1

ψj ˆ̃xj︸ ︷︷ ︸
∆f1

+

for LPV/LMI︷ ︸︸ ︷
j0∑
j=1

ψk(j)
ˆ̃xk(j), (30)

where
k(j) = n− (j0 − j),

0 ≤ j0 ≤ n.

Hence, the error dynamics (21) is rewritten as follows:

˙̂
x̃ = θ

(
A(Ψθ)−KC

)
ˆ̃x+

1

θn
B∆f1, (31)

where

A(Ψθ) = A+B

j0∑
j=1

ψθj e>n (k(j)), (32)

Ψθ =

ψθ1
...
ψθj0

 ∈ Rj0 , (33)

ψθj =
ψk(j)

θ1+(j0−j)
. (34)

Now define the convex bounded set

Hσj0 =

{
Φ ∈ Rj0 :

γ
γk(j)

σ1+(j0−j)
≤ Φj ≤

γ̄γk(j)
σ1+(j0−j)

}
(35)

for which the set of vertices is defined by

VHσj0 =

{
Φ ∈ Rj0 : Φj ∈

{ γ
γk(j)

σ1+(j0−j)
,

γ̄γk(j)
σ1+(j0−j)

}}
.

(36)
Since γ̄γk(j) ≥ 0 and γ

γk(j)
≤ 0, then it is obvious that for two

positive scalars σ1, σ2, we have the following implication:

σ1 < σ2 =⇒ Hσ1
j0
⊃ Hσ2

j0
. (37)

Moreover,
lim

σ→+∞

(
Hσj0

)
=
{

0Rj0
}
. (38)

On the other hand, we can show that there exists a positive
real number kj0 ≤ kf so that ∆f1 satisfies

‖T−1(θ)B∆f1‖ ≤
kj0
θj0
‖ˆ̃x‖. (39)

Consequently, by analogy to Theorem III.2 and by using the
convexity principle as in Theorem II.1, we obtain the following
more general theorem.

Theorem III.3. If there exist P > 0, λ > 0, Y , and σ > 0
such that

A(Ψσ)TP + PA(Ψσ)− CTY
− Y TC + λI < 0,∀Ψσ ∈ VHσj0 , (40)

θ1+j0 > θj0 =
2kj0λmax(P )

λ
, (41)

then the estimation error x̃ is asymptotically stable with

L = T(θ)

K︷ ︸︸ ︷
P−1Y T , θ ≥ max

(
σ, θ

1
1+j0
j0

)
.

Proof. A direct application of Theorem III.2 leads to V̇ (ˆ̃x) <
0, for all ˆ̃x 6= 0, with V (ˆ̃x) = ˆ̃x>P ˆ̃x, if

A(Ψθ)TP + PA(Ψθ)− CTY
− Y TC + λI < 0,∀Ψθ ∈ Hθj0 , (42)

and
θ1+j0 > θj0 =

2kj0λmax(P )

λ
. (43)

At this stage, inequality (42) is not exploitable because it
depends on θ. However, from the inclusion implication (37),
we get Ψθ ∈ Hσj0 for all θ ≥ σ. Hence from the convexity
principle [30], inequality (42) holds if (40) is satisfied. There-
fore, the observer gain

L = T(θ)P−1Y T (44)

ensures the exponential convergence of the estimation error
towards zero for all θ such that

θ ≥ max
(
σ, θ

1
1+j0
j0

)
. (45)

This ends the proof.

IV. DISCUSSIONS AND EXTENSION

In this section, we will provide some discussions on the
HG/LMI observer technique compared to the standard high-
gain methodology and the LPV/LMI technique. A numerical
design implementation will also be given. Then, an extension
to systems with multi-nonlinearities will be provided in order
to render the HG/LMI technique more interesting and applica-
ble for a widen class of systems, like in the standard high-gain
case.

A. On the advantages of HG/LMI observer

This section is devoted to some clarifications on the advan-
tages of the proposed HG/LMI observer. We will clarify more
the role of the so-called ”compromise index” j0.

The advantages of the proposed HG/LMI technique can be
summarized in the following items:
• The proposed technique can be viewed as a way to reduce

the number of LMIs related to the LPV/LMI technique.
Indeed, the number of LMI of LPV/LMI method is
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reduced from 2n to 2j0 , which represents the number
of vertices in the set VHσj0 ;

• The observer gain L of the HG/LMI technique is signifi-
cantly smaller than that returned by the standard high-
gain observer because of the power 1

1+j0
due to the

compromise index j0;
• The standard high-gain observer is a particular solution

corresponding to j0 = 0;
• The LPV/LMI observer is a particular solution corre-

sponding to j0 = n;
• Solutions with LPV/LMI method are always guaranteed.

Indeed, there always exists σ > 0 so that the LMIs (40)
admit solutions because from (38), we have

lim
σ→+∞

(
A(Ψσ)

)
= A

(
lim

σ→+∞
(Ψσ)

)
= A. (46)

This proves that the LPV/LMI technique for this class of
systems with the high-gain structure can always provide
solutions for the set of sufficient LMIs (40) for σ large
enough. Indeed, from (46) and the continuity of A(Ψσ)
with respect to σ, if (24) holds, we have

lim
σ→+∞

(
A(Ψσ)TP +PA(Ψσ)−CTY −Y TC +λI

)
= A

(
lim

σ→+∞
(Ψσ)

)T
P + PA

(
lim

σ→+∞
(Ψσ)

)
− CTY − Y TC + λI

= ATP + PA− CTY − Y TC + λI < 0. (47)

Then, by definition of the limit, there exists σ0 such
that (40) is satisfied for any σ > σ0. In addition, using
the definition of A(Ψσ), we can show that the standard
high-gain observer is a particular solution of (40). Indeed,
from the construction of A(Ψσ), we can write

A(Ψσ) = A+Aσ with ‖Aσ‖ ≤
kf
σ
.

Then, the left term of inequality (40) satisfies the follow-
ing inequality:(

ATP + PA− CTY − Y TC + λI
)

+ATσP + PAσ

≤
(
ATP+PA−CTY −Y TC+λI

)
+

2kfλmax(P )

σ
I.

(48)

It follows that if (24) is satisfied (which is always feasible
due to the observability canonical form), then there exists
ε > 0 so that

ATP + PA− CTY − Y TC + λI ≤ −εI.

Then, (48) holds for any σ > σ0 =
2kfλmax(P )

ε .

Table I sums up the number of LMIs, nLMI, and the value
of θ for each method: standard high-gain (Standard HG);
LPV/LMI technique, and the combined HG/LMI method.
Tables II, III and IV provide some examples for different
values of n, θ0 and j0.

Methods Standard HG LPV/LMI HG/LMI

θ θ0 σ θ
1

1+j0
j0

nLMI 1 2n 2j0

TABLE I
ILLUSTRATION OF THE HG/LMI METHOD

Methods Standard HG LPV/LMI HG/LMI
θ 100 σ 10

nLMI 1 210 = 1024 2

TABLE II
n = 10, j0 = 1 AND θ0 = 100

Methods Standard HG LPV/LMI HG/LMI
θ 1000 σ 10

nLMI 1 210 = 1024 4

TABLE III
n = 10, j0 = 2 AND θ0 = 1000

Methods Standard HG LPV/LMI HG/LMI
θ 1000 σ

√
10

nLMI 1 210 = 1024 8

TABLE IV
n = 10, j0 = 3 AND θ0 = 1000

B. Design algorithm: numerical implementation

In this section, we will present an algorithm which allows
of synthesizing a gain K and a parameter σ. The algorithm we
propose provides a simple and systematic numerical procedure
for the design of a smaller gain L.

The parameter σ is generally not large, as can be shown
through the comparisons in [12]. The simulations in [12]
provide small gain K with σ = 1. We could take σ = 1
in (40). However, the parameter σ is introduced to guarantee
the existence of solutions for (40). In addition, since the high-
gain constraint (41) depends on P and (40) depends on σ and
P , then even if the LMI (40) is feasible for σ = 1, it is always
possible to find better and lower solutions for σ > 1. On
the other hand, from homogeneity of (40)-(41), the decision
variable λ can be fixed to λ = 1. As for the selection of σ, the
best solution we found efficient for the numerical procedure
is the use of the gridding method. For this, we introduce a
bijective change of variable τ = σ

1+σ (σ = τ
1−τ ). Hence when

σ ∈ [1 +∞[, the new variable τ ∈ [ 1
2 1[. Then we can use the

gridding method on τ . The following algorithm summarizes
the numerical design procedure we proposed to get a lower
observer gain.

Algorithm 1: Design of an optimal gain L

(i) Choose a small ε > 0 for the gridding, take τ = 1
2 ,

a high value vgain > 0 and go to step (ii);
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(ii) Solve LMIs (40). If (40) is found feasible, then go
to step (iv). Else go to step (iii);

(iii) While τ + ε < 1, take τ := τ + ε and return to
step (ii);

(iv) Take θ = max
(

τ
1−τ , θ

1
1+j0
j0

)
and compute L as

in (44). If vgain > ‖L‖, then put vgain := ‖L‖ and
go to step (ii);

Algorithm 1 will be used in Section VI to show the
performance of the new HG/LMI observer.

Remark 1. It should be noticed that, generally, there are two
kinds of computational complexity: the first one is related to
the on-line real-time computation and the second one is related
to the numerical solving of the LMIs by using available LMI
solvers. As for the first case, it should be noticed that the
computation of the proposed HG/LMI observer parameters
K, σ, and θ does not affect the on-line implementation of the
algorithm because all these parameters are computed off-line;
all the observer parameters are constant. As for the numerical
solving of the proposed LMI conditions, the advantage of
the proposed HG/LMI observer is the significant reduction of
the number of LMIs to be solved, compared to the standard
LPV/LMI method. As shown through the illustrative example
in Section VI, solving only 2 LMIs, instead of 32 with the
LPV/LMI-based technique, allows reducing significantly the
values of the high-gain observer parameters. To sum up,
there is no additional computation time for on-line real-time
applications because all the observer parameters are constant
and computed off-line. There is also no significant computation
time related to the LMI solving, because the number of LMIs
to be solved is significantly reduced compared to the LPV/LMI
method.

C. Extension to systems with multi-nonlinearities

The HG/LMI method can be extended straightforwardly to
systems described by the following equations:


ẋ =



x2 + f1(x1)
x3 + f2(x1, x2)

.

.

.
xn + fn−1(x1, . . . , xn−1)

fn(x1, . . . , xn)


, Ax+ f(x)

y = x1 = Cx

, (49)

where A and C are the matrices defined in (9)-(10), and the
nonlinearities satisfy the following Lipschitz property:

∣∣fi(x1 + ∆1, . . . , xi + ∆i)− fi(x1, . . . , xi)
∣∣ ≤ i∑

j=1

kj |∆j | .

(50)

Remark 2. The systems studied in this paper are those
which can be transformed into the observability canonical
form (6) or (49) by mean of a diffeomorphism. Then, all
the examples considered in this paper are observable: The

illustrative example considered in Section VI is observable;
the magnetic levitation model in Section VII is uniformly
observable because it is transformed into the observable
canonical form (86) by mean of a diffeomorphism given in
Appendix. Nevertheless, the results can be generalized to all
uniformly observable systems:{

ẋ=ψ(x, u)
y=φ(x, u)

that can be transformed, by mean of a diffeomorphic change of
variables z = Φ(x), to the observability canonical form [31]: żi=fi(z1, . . . , zi+1, u), 1 ≤ i ≤ n− 1

żn= fn(z, u)
y = h(z1, u)

with
∂h

∂z1
(z1, u) 6= 0,

∂fi
∂zi+1

(z1, . . . , zi+1, u) 6= 0, 1 ≤ i ≤ n− 1.

The references [32] and [20] contain more explanations on
how such a transformation exists.

Remark 3. The paper proposes to design a constant gain
nonlinear observer based on the standard high-gain method-
ology [32] for systems represented in Euclidian space. All
the mathematical developments and convergence aspects are
performed in a Euclidian space. Although nonlinear systems
are sometimes better represented in a Riemannian space, this
issue is not raised in this paper. Constructing convenient
Riemannian metrics may produce different results for observer
design and lead to relevant conditions. For more details on the
convergence of nonlinear observers with a Riemannian metric,
we refer the reader to [33]. Some techniques to construct
appropriate Riemannian metrics for nonlinear observer design
can be found in [34], [35].

We consider the standard high-gain observer structure:

˙̂x = Ax̂+ f(x̂) + L
(
y − Cx̂

)
, (51)

where L is defined as in (19).
The dynamics of the transformed error ˆ̃x, defined in (20),

is then given by:

˙̂
x̃ = θ

(
A−KC

)
ˆ̃x+ T−1(θ)∆f (52)

with
∆f := f(x)− f(x− T(θ)ˆ̃x).

Each nonlinear component fi can be written under an
analogous form to (30):

∆fi =

i−ji∑
j=1

θjψij ˆ̃xj +

ji∑
j=1

θki(j)ψiki(j)
ˆ̃xki(j), (53)

where
ki(j) = i− (ji − j),

0 ≤ ji ≤ i.
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It follows that ∆f is written as

∆f =

for HG︷ ︸︸ ︷
n∑
i=1

i−ji∑
j=1

θjψijen(i)ˆ̃xj︸ ︷︷ ︸
∆f1

+

for LPV/LMI︷ ︸︸ ︷
n∑
i=1

ji∑
j=1

θki(j)ψiki(j)en(i)ˆ̃xki(j) . (54)

˙̂
x̃ = θ

(
A(Ψθ)−KC

)
ˆ̃x+ T−1(θ)∆f1, (55)

where

A(Ψθ) = A+B

n∑
i=1

ji∑
j=1

ψθijen(i)e>n (ki(j)), (56)

Ψθ =



ψθ11
...

ψθ1j1
ψθ21

...
ψθ2j2

...
ψθnjn


∈ R

n∑
i=1

ji
, (57)

ψθij =
ψiki(j)

θ1+(ji−j)
. (58)

As in the previous section (in the case with single nonlinear
component), we define the bounded convex set

Hσjmin
=

{
Φ ∈ R

n∑
i=1

ji
:

γ
γiki(j)

σ1+(ji−j)
≤ Φij ≤

γ̄γiki(j)

σ1+(ji−j)

}
(59)

for which the set of vertices is defined by

VHσjmin
=

{
Φ ∈ R

n∑
i=1

ji
: Φij ∈

{ γ
γiki(j)

σ1+(ji−j)
,
γ̄γiki(j)

σ1+(ji−j)

}}
,

(60)
where γ

γiki(j)
≤ 0 and γ̄γiki(j) ≥ 0 are respectively, the lower

and upper bounds of the bounded parameter ψiki(j).
On the other hand, it is easy to show that there exists a

constant kjmin independent from θ such that the following
holds:

‖T−1(θ)∆f1‖ ≤
kjmin

θ
min
ji 6=i

(ji)
‖ˆ̃x‖. (61)

Hence, by analogy, we get the next general theorem valid
for systems with multi-nonlinearities.

Theorem IV.1. If there exist P > 0, λ > 0, Y , and σ > 0
such that

A(Ψσ)TP + PA(Ψσ)− CTY
− Y TC + λI < 0,∀Ψσ ∈ VHσjmin

,

(62)

θ
1+min

ji 6=i
(ji)

>
2kjmin

λmax(P )

λ
, (63)

then the estimation error x̃ is asymptotically stable with

L = T(θ)

K︷ ︸︸ ︷
P−1Y T , (64)

θ ≥ max

(
σ,

[
2kjminλmax(P )

λ

] 1
1+ min
ji 6=i

(ji)

)
. (65)

Remark 4. Notice that in such a case, the number of LMIs
to be solved is

nLMI =

n∑
i=1

2ji .

By following the reasoning in [36], this number of LMIs can

be decreased to nLMI = 2
n∑
i=1

ji.

Remark 5. It is worth noticing that taking ji > min
ji 6=i

(ji) for

some i = 1, . . . , n does not affect θ
min
ji 6=i

(ji)
in the inequal-

ity (61), but it may affect the value of kjmin
. Hence, if the

nonlinear component corresponding to ji > min
ji 6=i

(ji) does not

increase significantly kjmin , then it is better to include it in
∆f1 instead of including it for the LPV/LMI part. Indeed, this
leads to decrease nLMI without affecting neither the LMIs (62)
nor the high-gain constraint (63).

V. ROBUSTNESS AND PERFORMANCE ISSUES

This section is devoted to some robustness issues. We will
consider two cases: the first case deals with systems with
delayed output measurements, while the second one raises the
problem of high-frequency measurement noise.

A. Robustness to delay in the measurements

We consider the system

ẋ(t) = Ax(t) +Bf(x(t))
y(t) = Cx(t− τ)

, (66)

where (A,C) and f satisfy the related assumptions of the
previous sections. At least for the time being, we assume that
τ > 0 is known.

We consider the system

˙̂x(t) = Ax̂(t) + f(x̂(t)) + L[y(t)− Cx̂(t− τ)], (67)

where L is defined as in (19).
Let us notice that the finite escape time phenomenon does

not occur.
We have

˙̃x(t) = Ax̃(t) + f(x(t))− f(x̂(t))− LCx̃(t− τ).
(68)

Then, from (31), we can write

˙̂
x̃(t) =

[
θ
(
Aj0(Ψθ

j0(t))−KC
)

ˆ̃x+
1

θn
B∆f j0

]
− LCT(θ)

(
ˆ̃x(t− τ)− ˆ̃x(t)

)
. (69)
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Notice that ˙̂
x̃ can also be formulated as follows:

˙̂
x̃(t) = θAn(Ψθ

n(t))ˆ̃x(t)− LCT(θ)ˆ̃x(t− τ). (70)

These two formulations of the dynamics of the error ˆ̃x are
needed in what we propose in the next mathematical develop-
ments.

Now, we assume that the conditions (40)-(41) of Theo-
rem III.3 hold. Then there exists c(θ) > 0 so that the derivative
of V (ˆ̃x) = ˆ̃x>P ˆ̃x (where P is a solution of (40)-(41)) along
the trajectories of (69) satisfies

V̇ (t) ≤ − c
2V (ˆ̃x(t)) + 2ˆ̃x(t)>PLC[ˆ̃x(t− τ)− ˆ̃x(t)].

(71)
Consequently, using ˆ̃x(t)− ˆ̃x(t− τ) =

∫ t
t−τ

˙̂
x̃(`)d`, we obtain

V̇ (t) ≤ − c
2V (ˆ̃x(t))− 2ˆ̃x(t)>P (LCT(θ))2

∫ t−τ
t−2τ

ˆ̃x(`)d`

−2ˆ̃x(t)>PLCT(θ)
∫ t
t−τ [θAn(Ψθ

n(`))]ˆ̃x(`)d`.
(72)

Let Q be a symmetric positive definite matrix such that Q2 =
P . Then

V̇ (t) ≤ − c
2V (ˆ̃x(t))

+2q̄(θ)
√
V (ˆ̃x(t))

∫ t−τ
t−2τ

√
V (ˆ̃x(`))d`

+2
√
V (ˆ̃x(t))

∫ t
t−τ |q(`)|

√
V (ˆ̃x(`))d`,

(73)

where
q(`) = QLCT(θ)[θAn(Ψθ

n(`))]Q−1,

and
q̄(θ) = |Q(LCT(θ))2Q−1|.

Let
q?(θ) = sup

s
{|q(s)|}. (74)

Since f is globally Lipschitz, then the constant q? is well-
defined. Then

V̇ (t) ≤ − c
2V (ˆ̃x(t))

+2q̄
∫ t−τ
t−2τ

√
V (ˆ̃x(t))

√
V (ˆ̃x(`))d`

+2q?
∫ t
t−τ

√
V (ˆ̃x(t))

√
V (ˆ̃x(`))d`,

(75)

Now, from Razumikhin’s theorem, it follows that if

τ < ϕ(θ) ,
c(θ)

4(q̄(θ) + q?(θ))
, (76)

then the origin of the system (69) is globally exponentially
stable.

From Theorem III.3, the constant c is given by

c(θ) =
2θλ− 4kj0λmax(P )

λmax(P )
, (77)

where

θ = max
(
σ, θ

1
1+j0
j0

)
.

It is obvious that

lim
θ→+∞

1

θ
c(θ) =

2λ

λmax(P )
.

We can show by developing the expressions of q̄(θ) and q?(θ)
that the following holds:

lim
θ→+∞

1

θ
q̄(θ) = lim

θ→+∞

1

θ
q?(θ) = +∞.

Consequently,
lim

θ→+∞
ϕ(θ) = 0.

This means that the largest is θ, the smaller is the value of
the tolerated delay τ . Thus the importance of the HG/LMI
method provided in the previous section. Indeed, this latter
provides smaller value of θ compared to the standard high-
gain observer. This shows that the HG/LMI method is more
performant than the standard high-gain method from the
robustness point of view with respect to the delay in the output
measurement.

B. Performance with respect to measurement noise

Since the problem of high-gain observer is the amplification
of high-frequency measurement noise, we consider only the
case where the measurement is affected by noises. That is
why we consider the system

ẋ(t) = Ax(t) +Bf(x(t))
y(t) = Cx(t) + ν(t)

(78)

with the corresponding state observer (11), where ν(t) repre-
sents the disturbance affecting the measurement y(t). There-
fore, the error dynamics (31) becomes:

˙̂
x̃ = θ

(
A(Ψθ)−KC

)
ˆ̃x+

1

θn
B∆f1 −Kν(t). (79)

1) An upper bound of the estimation error: Here we give
an upper bound on the estimation error in the case of the
presence of noise in the measurements.

Theorem V.1. Assume that there exist a positive definite
and symmetric matrix P and a matrix Y of appropriate
dimensions such that the inequalities (40)-(41) hold. Then with
the observer gain L given by (44), there exist two positive
constants α, β such that the estimation error x̃(t) is upper
bounded as follows:

‖x̃(t)‖ ≤ θn−1 max

(√
λmax(P )

λmin(P )
‖e0‖e−γ1θt, γ2‖ν(t)‖

)
,

(80)
where

γ1 =
β

2λmax(P )
, γ2 = α

√
λmax(P )

λmin(P )
(81)

with

α ≥
2λmax(P )

θ ‖K‖
λ− 2λmax(P )

θ kj0
, (82)

β ≤ λ− 2λmax(P )

θ

(
kj0 +

1

α
‖K‖

)
. (83)
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Proof. The proof is standard and well known in the high-
gain observer literature. We refer the reader to [28] and the
references therein. Indeed, after developing the calculation of
V̇ along the trajectory of (78), the key of the proof is based
on the fact that under the conditions (40)-(41), if ‖ˆ̃x(t)‖ ≥
α‖ν(t)‖ for α > 0 satisfying (82), then there exists β > 0
satisfying (83) such that V̇ (ˆ̃x(t)) ≤ −βθ‖ˆ̃x(t)‖2. Therefore,
using the fact that

λmin(P )‖ˆ̃x(t)‖2 ≤ V (ˆ̃x(t)) ≤ λmax(P )‖ˆ̃x(t)‖2,

we can easily deduce that when

V (ˆ̃x(t)) ≥ λmax(P )α2‖ν(t)‖2,

we obtain

‖ˆ̃x(t)‖ ≤

√
λmax(P )

λmin(P )
‖ˆ̃x0‖e−γ1θt, (84)

where γ1 is given in (81). On the other hand, by inverse
implication, we can deduce that if there exists t ≥ 0 such
that ‖ˆ̃x(t)‖ >

√
λmax(P )
λmin(P ) ‖ˆ̃x0‖e−γ1θt, then we have V (ˆ̃x(t)) <

λmax(P )α2‖ν(t)‖2, which leads to

‖ˆ̃x(t)‖ < α

√
λmax(P )

λmin(P )
‖ν(t)‖.

Consequently,

‖x̃(t)‖ ≤ θn−1 max

(√
λmax(P )

λmin(P )
‖e0‖e−γ1θt, γ2‖ν(t)‖

)
,

which ends the proof.

2) Comments and comparisons: Notice that compared to
the standard high-gain observer, the upper bound of ‖x̃(t)‖ is
smaller because of the smaller value of the lower bound of the
tuning parameter θ corresponding to the HG/LMI method. To
get a precise idea, assume that the tuning parameter θ takes the
smallest value, namely θ0 for the standard high-gain observer,

and max
(
σ, θ

1
1+j0
j0

)
for the HG/LMI observer. Then, we get

lim sup
t→+∞

‖x̃(t)‖ ≤ γHGθ
n−1
0 lim sup

t→+∞
‖ν(t)‖ (85)

with the standard high-gain observer, and

lim sup
t→+∞

‖x̃(t)‖ ≤ γ2 max
(
σ, θ

1
1+j0
j0

)n−1

lim sup
t→+∞

‖ν(t)‖
(86)

with the HG/LMI observer, where γHG in (85) is the constant
given by the same formula as in (81) with the corresponding
Lyapunov matrix P in the standard high-gain case.

Since in general the parameter σ is smaller than the thresh-
old value related to the high-gain constraint, then we have

max
(
σ, θ

1
1+j0
j0

)
= θ

1
1+j0
j0

.

Therefore, inequality (86) is rewritten as

lim sup
t→+∞

‖x̃(t)‖ ≤ γ2θ
n−1
1+j0
j0

lim sup
t→+∞

‖ν(t)‖. (87)

It is quite clear that the upper bound of the error corresponding
to the HG/LMI observer is smaller than that of the standard
high-gain observer since θ

1
1+j0
j0

is smaller than θ0 because of
the power 1

1+j0
and the fact that the difference between γ2 and

γHG is not significative compared to the difference between
the powers. In the case of standard high-gain observer, this
power corresponds to j0 = 0, which is the biggest one.

Analytically, the comparison is more clear if Assump-
tion III.1 holds. Indeed, in such a case, we have

σ = 1 and θj0 = θ0,

which means that

max
(
σ, θ

1
1+j0
j0

)
= θ

1
1+j0
0 .

Clearly, with the same threshold θ0, the power corresponding
to the HG/LMI observer is n−1

1+j0
instead of n − 1 for the

standard high-gain observer.
Recently, a new high-gain observer with limited gain power

was proposed in [28] and [31]. The corresponding observer
structure is different from that used in this paper. Indeed, the
authors in [28] proposed a novel observer structure, which
is a kind of interconnected system of dimension 2n − 2.
Although their gain power is limited to 2 instead of n for
the standard high-gain observer and the HG/LMI technique, it
is worth noticing that there are two drawbacks related to this
interconnected structure:
• The higher dimension of the observer (2n−2 instead of n)

may increase significantly the threshold θ0 of the tuning
parameter, as shown through the numerical example in
Table V. This is due to the higher dimension of the
Lyapunov matrix and the algorithm providing the gain K
by using a block-tridiagonal higher dimensional matrix.

• Even if the gain power is limited to 2, the upper bound
and the power n− 1 in the estimation error remains the
same as that of the standard high-gain observer. Indeed,
with the Astolfi/Marconi observer in [28], we get

lim sup
t→+∞

‖x̃(t)‖ ≤ γAM`
?n−1 lim sup

t→+∞
‖ν(t)‖, (88)

where γAM is a constant similar to γ2 in (81) with
appropriate Lyapunov matrix of dimension 2n − 2. The
explicit value of this constant can be found in [28].
In fact, although the observer uses only θ and θ2, but ow-
ing of the interconnected form the parameter θ is diffused
and redistributed in all the components of the system and
then the term θn−1 reappears in the bounds (80) and (85).
The interconnected form of the observer only makes it
possible to hide the higher powers of θ.

On the other hand, the Astolfi/Marconi observer may be
interesting if some saturations are added to the observer [37].
It can avoid the peaking phenomenon thanks to the intercon-
nected structure of the observer, which allows a possibility of
saturations in various steps. Nevertheless, it is important to
notice that the HG/LMI technique, notably the decomposition
of the nonlinear function as in (30), can formally be applied
to the Astolfi/Marconi observer to enhance performances.
The only obstacle we have to face is the computation of
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the Lyapunov matrix P and the gain K from the block-
tridiagonal matrix, which becomes non tridiagonal because
of the injected nonlinear terms due to the application of the
HG/LMI methodology. This is one of the future work we aim
to investigate by using rigorous arguments. At this stage, we
focus our study on the HG/LMI technique and its advantages
compared to the standard high-gain observer.

Remark 6. The advantage of the proposed observer lies in its
ability to combine the standard High-gain observer and LMI-
based observer. Then, it can use the advantages of each of
the two methodologies. Since the LMI-based observer do not
have the ”peaking phenomenon”, then also the new observer
can do the same. Indeed, to avoid the peaking phenomenon,
it suffices to increase the value of the compromise index j0 in
order to decrease the value of θ. As stated in the paper, both
LPV/LMI-based technique and standard high-gain observer
can be viewed as particular cases of the proposed HG/LMI
observer. The latter is able to avoid the peaking phenomenon,
to reduce the sensitivity to high-frequency measurement noise,
and to enhance the convergence rate if necessary. To get a
good tradeoff between all these criteria, the new observer
offers the possibility to play with the values of j0 and θ.

VI. AN ILLUSTRATIVE EXAMPLE

We show through a numerical example the clear advantages
of combining the high gain and LMI observer design methods
by illustrating how the size of the observer gain varies for
different values of j0.

We consider the case of a five dimensional system with a
nonlinearity

f(x) =
kf
5

5∑
i=1

sin(xi).

This nonlinearity satisfies (7) and (22) with γf = kf . We can
show easily that

kj0 =
kf (5− j0)

5
.

We will provide some comparisons between the standard high-
gain, the Astolfi/Marconi observer, and the proposed HG/LMI
technique. The advantage of the ”compromise index” j0 will
be shown for different values of kf . Table V illustrates how the
values of the proposed HG/LMI observer gain are smaller than
those of the standard high-gain observer and Astolfi/Marconi
observer.

Notice that the LPV/LMI technique, which corresponds to
j0 = 5, provides lower observer gains, but we need to solve
25 = 32 LMIs. However, this high number of LMIs would
complicate the numerical solving of these LMIs for higher
dimensional systems. This can lead to infeasible LMIs. Hence
the importance of the Proposed HG/LMI method. For instance,
it suffices to solve 2 LMIs instead of only one to reduce
significantly the value of θ from θ = 31.72 to θ = 5.25 for
kf = 1 and from θ = 273.03 to θ = 17.63 for kf = 10. We
can reduce more the observer gain, but we have to solve more
LMIs, as can be shown in Table V (4 LMIs for j0 = 2 and
8 LMIs for j0 = 3). This is the reason why the index j0 is
called the ”compromise index”.

1x

Soft Stop

Electromagnet

Fig. 1. Schematic of levitation system at each electromagnet

To have an idea of the difference between the standard high-
gain and the HG/LMI observer, we take for instance kf = 0.1.
Then we obtain the following gains for different values of j0:

L0 =

HGO︷ ︸︸ ︷
17.40
148.20
753.30
2216.10�� ��3047.10

 L1 =

2 LMIs︷ ︸︸ ︷
7.21
25.73
54.99
68.74�� ��40.93



L2 =

4 LMIs︷ ︸︸ ︷
5.16
13.24
20.48
18.77�� ��8.45

 L3 =

8 LMIs︷ ︸︸ ︷
4.17
8.67
10.98
8.41�� ��3.39


for σ = 1.5, σ = 1.5, and σ = 1.2, respectively for j0 =
1, 2, 3. L0 is the standard high-gain, which corresponds to j0 =
0.

We can see that for j0 = 1, 2, 3, the last component
of the gain Lj0 is not necessarily higher than the other
components, contrarily to the standard high-gain L0 for which
this increasing property is necessarily fulfilled. This is due
to the fact that in the HG/LMI methodology, the LMIs (40)
depend on σ, which can affect the gain K and provides smaller
values in the last components.

VII. APPLICATION TO MAGNETIC LEVITATION SYSTEMS
FOR TRAINS

Now we study a real-world example as an application of
the proposed observer design methodology. We consider the
model of a magnetic levitation system for trains, see Fig. 1, in
which the objective is to control the electromagnet’s position
at a desired height above the guiderail. The dynamics of this
magnetic levitation system are typically described using the
position x1, velocity and current in the electromagnet as the
states. In this paper, we use instead the transformed states
of position, velocity and acceleration which lead to plant
dynamics of the following form:

ẋ1 = x2

ẋ2 = x3

ẋ3 = − 2[R(x1+ε)+L1x2](x3+g)
L1(x1+ε)+Lozo

+
2
√

K
m (x3+g)

L1(x1+ε)+Lozo
u , f(x, u)

y = x1

, (89)
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Standard High-Gain observer
j0 kf θ0 K

1 31.72 5.66 13.12 16.49 11.12 3.42
0 10 273.03 12.07 33.47 45.54 31.58 9.92

100 2594.20 32.51 97.87 137.15 96.01 30.39

Astolfi/Marconi observer of dimension 8
j0 kf `? K1 K2 K3 K4

1 273.29
[

2.9
8.0629

] [
2.9

3.0221

] [
2.9

1.3425

] [
2.9

0.5032

]
0 10 2732.90

[
2.9

8.0629

] [
2.9

3.0221

] [
2.9

1.3425

] [
2.9

0.5032

]
100 27329.09

[
2.9

8.0629

] [
2.9

3.0221

] [
2.9

1.3425

] [
2.9

0.5032

]
HG/LMI observer

j0 kf nLMI σ θ
1

1+j0
j0

K

1 5.2 5.25 5.38 12.32 15.54 10.71 3.51
1 10 2 17.5 17.63 5.46 12.77 16.61 12.10 4.51

100 62 62 11.43 34.53 53.42 46.94 24.56
1 2.5 2.88 5.11 11.57 14.74 10.65 4.08

2 10 4 7 7.06 5.34 12.86 17.89 15.08 7.92
100 23 24.32 6.22 18.01 32.19 40.23 39.86

1 2 2.06 4.73 10.34 13.03 9.67 4.19
3 10 8 4.10 4.47 5.22 12.83 19.04 18.62 13.31

100 14 15.12 6.92 23.02 50.57 86.80 133.18

TABLE V
COMPARISONS BETWEEN THE HIGH-GAIN OBSERVERS FOR DIFFERENT VALUES OF kf .

where x1, x2 and x3 are the position, velocity and acceleration
respectively of the electromagnet, x = [x1, x2, x3]>, u is the
control input voltage, and y is the measurement output which
may be perturbed by measurement noise and/or disturbance.
While the position of the electromagnet above the rail is
measured, the velocity and current could be estimated using
an observer. All the system parameters used for simulations
together with the original system model can be found in [38].
The state transformation procedure as well as the Lipschitz
constant computation of f(x, u) are given in the Appendix
of this paper. In order to carry out simulations below, the
parameter values are g = 9.81, m = 11.87× 10−3, R = 28.7,
L1 = 65, Lozo = 0.065, K = 1.4× 10−2, ε = 0.01. Here we
let the initial state be x(0) = [0.1, 0, 0]> and use a constant
voltage input u = 9 to activate the system. Then, we can
compute the Lipschitz constant of f(x, u) to be 195.8713.
Before moving on, we impose a constraint on the system (89)
by letting f(x, u) ≡ 0 when x3 + g < 0. This makes sense in
practice because x3 + g can never become negative due to the
physical stop and due to the current never becoming negative
in the provided electrical hardware.

a) First, we design a standard high-gain observer for the
system (89) following Theorem II.2. Without any loss of
generality, we let λ = 1 throughout this paper. By us-
ing Matlab & YALMIP, we can easily obtain that Y =
[0.5997, 1.4077,−0.4068]>, θ = 796.8498 and

P =

 1.6018 −0.5976 −0.4264
−0.5976 0.6184 −0.5944
−0.4264 −0.5944 1.6133


are solutions to (24) and (25). Then we get K =

P−1Y > = [45.6461, 89.4081, 44.7584]> and L = 1010 ·
[0, 0.0057, 2.2647]> through (19). Obviously, this observer
with an extremely high gain is not suitable for implementation
and thus the corresponding simulation is omitted.

b) Next, we turn to the high-gain observer proposed in [28].
We assign the eigenvalues of the M matrix (see (7) therein)
to be −1, −1.3, −1.6 and −1.9, and then derive that K1 =
[2.9, 3.98]> and K2 = [2.9, 0.993]>. Hence M is known as
well. By solving PM +M>P = −I , we obtain

P =


2.0685 −1.3815 0.3815 −1.8960
−1.3815 1.3314 −0.0830 1.1302
0.3815 −0.0830 0.7306 −1.6302
−1.8960 1.1302 −1.6302 5.4133

 ,
and thus `∗ = 2798.8.

c) Finally, the observer proposed in this paper will be
designed for the system (89). Here we skip the details of
the involved computation due to limited space. To reduce the
high-gain, we choose as compromise index j0 = 2, then we
obtain θ = 99 and K = [68, 386.8, 1097.8]>. This is another
advantage of the ”compromise index” j0.

Denote x̂AM = [x̂1,AM, x̂2,AM, x̂3,AM]
> and x̂LL =

[x̂1,LL, x̂2,LL, x̂3,LL]
> as the state estimates for the system (89)

by using the observer design methods proposed in [28]1 and
in the present paper, respectively. Let x̂AM(0) = [0.5, 0, 0]>

and x̂LL(0) = [0.5, 0, 0]>. In Fig. 2, the six curves of the
absolute values |x̂i,AM − xi| and |x̂i,LL − xi|, i = 1, 2, 3, are
plotted. The two observers work for the system (89) and it is

1The dimension of this observer is in fact 4. x̂AM is obtained by “extracting”
3 components from its states, whose initial values are [0.5, 0, 0, 0]>. The
reader can refer to [28] for more details.
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Fig. 2. Absolute values of estimation errors

clear that both trajectories of estimation errors approach zeros.
Note, however, that the transient performance of our designed
observer is much better in particular for the estimation of x2

and x3, although the convergence speeds are almost the same.
In addition, the simulation is also done using an additive

measurement noise, which is a Gaussian distributed random
signal with mean zero and standard deviation 0.01. The
simulation results are given in Fig. 3. From the plots of the
norms of the estimation errors, we know that on the whole
our designed observer still works much better than the one in
[28].

Besides measurement noise, we consider a single pulse
disturbance signal, which lasts for 0.002s with magnitude 0.3
and is injected into the measurement output at 0.03s. It follows
from Fig. 4 that our designed observer moves back to the
steady state faster. We also note that the estimation of x2 and
x3 is not perturbed that much.

Finally, we want to stress that the above advantages hold
under our designed observer with a dimension of just 3 rather
than the observer with dimension 4 proposed in [28] for the
system (89).

VIII. CONCLUSIONS

In this paper we presented a new state observer design for a
class of triangular systems with Lipschitz nonlinearities. This
new observer, called HG/LMI observer, has the advantage
to provide lower gain compared to the standard high-gain
observer. The key idea behind this observer is based on the use
of the LPV/LMI technique to modify the high-gain constraint,
which reduces significantly the Lipschitz constant and leads
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Fig. 3. Norms of estimation errors with measurement noise
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Fig. 4. Estimation states with a single pulse

to smaller observer gains compared to the classical high-gain.
A systematic design algorithm was provided and extensions to
multi nonlinear functions was developed, together with analy-
sis of performance in the presence of noise and in the presence
of time delayed measurement. A numerical example was used
to show the effectiveness of the HG/LMI technique, especially
the variation in gain size with change in the compromise
index. To show the applicability of the proposed observer,
an application to magnetic levitation system for trains was
provided.

Solving observer-based output feedback stabilization prob-
lem by using the proposed state observer is one of the future
work we aim to investigate in a deepen way. All the robustness
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and performance issues related to output feedback control
using the HG/LMI observer will be carefully investigated.

APPENDIX

The magnetic levitation system in [38] is given by

mẍ1 = K
I2

(x1 + ε)2
−mg, (A.1)

u = RI +
d

dt
(L(x1)I), (A.2)

L(x1) = L1 +
L0z0

x1 + ε
, (A.3)

where I is the current in the coil of the electromagnet, other
variables and parameters have been introduced in Section VII.
Substituting (A.3) into (A.2) yields

RI + L(x1)
dI

dt
− L0z0I

(x1 + ε)2
ẋ1 = u.

Conventionally, the state space vector is chosen as [x1, ẋ1, I]
>.

It results in the following state space dynamics

d

dt

x1

ẋ1

I

 =

0 1 0
0 0 0
0 0 0

x1

ẋ1

I

+

 0
−1
0

 g+

 0
KI2

m(x1+ε)2

− R
L(x1)I + L0z0I

(x1+ε)2L(x1) ẋ1

+

 0
0
1

L(x1)

u.
(A.4)

In order to convert (A.4) to the observable canonical form, we
choose the new state space vector as

x =
[
x1 ẋ1

K
m

I2

(x1+ε)2 − g
]>

.

Then, the observable canonical form is given by

ẋ =

0 1 0
0 0 1
0 0 0

x+

 0
0

2K
m

{(
−1 + L0z0

(x1+ε)L(x1)

)
I2ẋ1

(x1+ε)3 −
RI2

L(x1)(x1+ε)

}


+

 0
0

2KI
L(x1)m(x1+ε)

u.
From x3 = K

m
I2

(x1+ε)2 − g, we get I = (x1 + ε)
√

m
K (x3 + g).

Therefore, we obtain the model (89).
The Lipschitz constant of f(x, u) can be computed by

calculating its partial derivatives

∂f(x, u)

∂x1
=

2
(
L2

1x2 −RLozo
)

(x3 + g)

[L1(x1 + ε) + Lozo]2

−
2L1

√
K
m (x3 + g)

[L1(x1 + ε) + Lozo]2
u,

∂f(x, u)

∂x2
= − 2L1(x3 + g)

L1(x1 + ε) + Lozo
,

∂f(x, u)

∂x3
=− 2[R(x1 + ε) + L1x2]

L1(x1 + ε) + Lozo

+

√
K

m(x3+g)

L1(x1 + ε) + Lozo
u,

and finding out the supremum on∥∥∥∥[∂f(x, u)

∂x1
,
∂f(x, u)

∂x2
,
∂f(x, u)

∂x3

]∥∥∥∥
over a sufficiently long time interval under a given control
input through numerical simulation. As in Section VII, we
use a constant voltage input u = 9. Then it is easy to perform
the computations and find the Lipschitz constant as 195.8713.
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