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This paper develops a new high-gain observer design method for nonlinear systems that has a lower gain compared to the standard high-gain observer. This new observer, called HG/LMI observer is obtained by combining the standard highgain methodology with the LMI-based observer design technique. Through analytical developments, the paper shows how the new observer provides lower gains, shows how it applies to systems with multi nonlinear functions and analyzes performance in the presence of measurement noise and/or delayed output measurements. A numerical example is given to illustrate the increasing advantage of the new HG/LMI observer with increase in the observer's 'compromise index'. Finally, the applicability and performance of the observer is demonstrated for a real-world application consisting of a train's magnetic levitation system.

I. INTRODUCTION

N ONLINEAR state observers have attracted much atten- tion from the automatic control community in recent years [START_REF] Krener | Nonlinear observer with linearizable error dynamics[END_REF], [START_REF] Simon | A game theory approach to costrained minmax state estimation[END_REF], [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF], [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], [START_REF] Khalil | Nonlinear Systems[END_REF], [START_REF] Arcak | Observer-based control of systems with slope-restricted nonlinearities[END_REF], [START_REF] Kravaris | Nonlinear observer design for state and disturbance estimation[END_REF]. Observers are needed since the full state cannot be measured or is too expensive to measure in many applications. For instance, slip angle and roll angle are too expensive to measure and have to be estimated from other inexpensive sensors in intelligent vehicle applications [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF], [START_REF] Rajamani | Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[END_REF]. The design of fault diagnostic systems also often requires the use of one or more exponentially stable observers [START_REF] Hammouri | Observer-based approach to fault detection and isolation for nonlinear systems[END_REF]. In addition, some variables in many applications have to be estimated and cannot be measured due to unavailability of sensors at any cost.

Because of the lack of a single powerful observer design method for nonlinear systems (unlike the linear case), several different methods have been developed in the literature, where each method corresponds to design for a specific class of nonlinear systems. We can quote the class of systems with Lipschitz nonlinearities [START_REF] Ibrir | Circle-criterion approach to discrete-time nonlinear observer design[END_REF], [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H∞ performance analysis[END_REF], [START_REF] Abbaszadeh | Nonlinear observer design for one-sided Lipschitz systems[END_REF], [START_REF] Phanomchoeng | Nonlinear observer for bounded jacobian systems, with applications to automotive slip angle estimation[END_REF], [START_REF] Chong | A robust circle criterion observer with application to neural mass models[END_REF], [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF]. Specifically for this class of systems many LMI techniques have been developed in the literature. Each new LMI technique aims to provide a better way to get less conservative LMI conditions compared to previous results. Despite theoretical advances in this field and although some enhancements have been proposed recently [START_REF] Oueder | A high gain observer with updated gain for a class of MIMO non-triangular systems[END_REF], [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF], [START_REF] Wang | Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation[END_REF], the problem still remains open.

Different from the LMI methods, another popular method for state estimation of nonlinear systems is the well known high-gain observer. The high-gain observer is developed for systems in triangular form or any system that can be transformed into a triangular structure. The advantage of the highgain methodology is that it always guarantees the existence of an exponentially convergent observer, thanks to the tuning of only one parameter that should be chosen large enough [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF], [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF]. Although the practicability of high-gain observer in output feedback control has been nicely demonstrated by Khalil's work [START_REF] Khalil | Nonlinear Systems[END_REF], [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], the use of a large gain remains a major drawback. Indeed, a high-gain observer is very sensitive to output measurement noise because of the value of the tuning parameter which may be huge for higher dimensional systems having nonlinearities with large Lipschitz constants. To overcome this obstacle, many research papers have addressed high-gain observers with time-varying parameter adaptation, and a lot of schemes have been proposed. For an overview of the literature, we refer the reader to [START_REF] Ahrens | High-gain observers in the presence of measurement noise: a switched-gain approach[END_REF], [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF], [START_REF] Oueder | A high gain observer with updated gain for a class of MIMO non-triangular systems[END_REF], [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF], [START_REF] Prieur | Hybrid high-gain observers without peaking for planar nonlinear systems[END_REF], [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF], [START_REF]Increasing-gain observers for nonlinear systems: stability and design[END_REF], and the references therein.

Despite all these improvements, the research activities in this direction still remain active and many problems remain to be solved to improve the performance of the high-gain observer with respect to measurement noise. A new technique was proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] to solve this problem. Through elegant arguments, the authors have proposed a high-gain observer with limited gain power. Their observer structure is new and different from the standard high-gain structure. Indeed, for an n-dimensional system, instead of a Luenberger observer structure of dimension n, they designed an observer of dimension 2n -2. Even if their gain power is limited to 2 instead of n with the standard high-gain, the higher dimension of the observer (2n-2) may increase the size of the tuning parameter. As shown in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], overall, this new high-gain observer is better than the standard one from the sensitivity to measurement noise point of view.

What we propose in this paper is different from the approach in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]. Our technique follows the standard high-gain methodology with the same state observer structure of dimension n. However, by exploiting the LPV/LMI technique developed in [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF], we are able to decrease the tuning parameter (then implicitly, the gain power is decreased). We will introduce a so called "compromise index" j 0 , with 0 ≤ j 0 ≤ n. Hence, the power of the proposed high-gain is limited to j 0 , but we need to solve 2 j0 LMIs instead of one with the standard high-gain observer. The designed observer is called "HG/LMI observer". In addition to the power gain limitation, the HG/LMI observer provides lower gain thanks to a particular decomposition of the nonlinearity of the system, which allows reducing the Lipschitz constant in some cases, which is directly and proportionally related to the high-gain tuning parameter. After analytical developments, a numerical example with a comparison to the standard high gain observer and the Astolfi/Marconi observer is first presented to demonstrate the role of the index j 0 and its influence on decreasing the highgain. Then, the applicability and performance of the observer in a real world application consisting of a magnetic levitation system is explored. Comparisons to the above mentioned high-gain observers is provided, where we clearly show the superiority of the proposed HG/LMI technique.

It is worth noticing that a short version of this work has been presented in the conference paper [START_REF] Zemouche | Observer design for nonlinear systems by using highgain and LPV/LMI-based technique[END_REF], where only a preliminary idea of the proposed technique was provided. However, this present journal version contains the additional material summarized in the following items:

• Advantages of the proposed HG/LMI observer are clearly described in Section IV-A; • A numerical implementation algorithm is added in Section IV-B to show how the observer parameters are to be computed; • Extension to systems with multi-nonlinearities is given in Section IV-C to widen the class of systems to which the observer design methodology is applicable; • Robustness and performance analysis to delayed outputs and high-frequency measurement noise is included in Section V; • An application to a magnetic levitation system of trains is included in Section VII to show the applicability of the proposed new design technique on real-world models; • Comparisons to Astolfi/Marconi observer have been added in Sections VI and VII.

II. PROBLEM FORMULATION A. Preliminaries

We start by introducing some definitions and preliminaries which will be of crucial use in the developed LPV-approach for Lipschitz and not necessarily differentiable systems.

Definition 1 ([18]). Consider two vectors

X =    x 1 . . . x n    ∈ R n and Z =    z 1 . . . z n    ∈ R n .
For all i = 0, ..., n, we define an auxiliary vector X Zi ∈ R n corresponding to X and Z as follows:

                       X Zi =           z 1 . . . z i x i+1 . . . x n           for i = 1, ..., n X Z0 = X . ( 1 
)
Lemma 1 ([18]). Consider a continuous function Ψ : R n -→ R. Then, for all

X =    x 1 . . . x n    ∈ R n and Z =    z 1 . . . z n    ∈ R n ,
there exist functions ψ j : R n × R n -→ R, j = 1, ..., n so that

Ψ(X) -Ψ(Z) = j=n j=1 ψ j X Zj-1 , X Zj e n (j) X -Z , (2) 
where e n (j) is the j th vector of the canonical basis of R n .

Lemma 2 ([18]

). Consider a function Ψ : R n -→ R n . Then, the two following items are equivalent:

• Ψ is γ Ψ -Lipschitz with respect to its argument, i.e.:

Ψ(X) -Ψ(Z) ≤ γ Ψ X -Z , ∀ X, Z ∈ R n ; (3) 
• for all i, j = 1, ..., n, there exist functions

ψ ij : R n × R n -→ R and constants γ ψij ≤ 0, γψij ≥ 0, so that ∀ X, Z ∈ R n , Ψ(X) -Ψ(Z) = i=n i=1 j=n j=1 ψ ij H ij X -Z , (4) 
and

-γ Ψ ≤ γ ψij ≤ ψ ij ≤ γψij ≤ γ Ψ , (5) 
where

ψ ij ψ ij X Zj-1
, X Zj and H ij = e n (i)e n (j).

B. System Description

Since this paper deals with high-gain observers, we will consider a special class of nonlinear systems. For simplicity of the presentation and to explain well what we propose in this paper, we consider the class of systems which are diffeomorphic to the form of the system studied in [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF]:

                   ẋ =          ẋ1 ẋ2 . . . ẋn-1 ẋn          =          x2 x3 . . . xn f (x)          y = x1 (6) 
with f : R n → R satisfying the Lipschitz property formulated under the following form:

f (x 1 + ∆ 1 , . . . , x n + ∆ n ) -f (x 1 , . . . , x n ) ≤ γ f n j=1 |∆ j | . (7)
For the sake of compactness, we write system (6) under the form:

ẋ = Ax + Bf (x) y = Cx , (8) 
where

B = 0 . . . 0 1 T , C = 1 0 . . . 0 (9) 
and the state matrix A is defined by

(A) i,j = 1 if j = i + 1 0 if j = i + 1 . ( 10 
)
Consider the following Luenberger observer:

ẋ = Ax + Bf (x) + L y -C x . ( 11 
)
The dynamics of the estimation error x = x -x is then given by:

ẋ = A -LC x + B f (x) -f (x) . (12) 
C. LPV/LMI-Based Approach Since f (.) is γ f -Lipschitz, then following Lemma 2 there are functions

γ j : R n × R n -→ R
and constants γ γj and γγj , so that

f (x) -f (x) = j=n j=1 ψ j e n (j) e, (13) 
and

γ γj ≤ ψ j ≤ γγj , (14) 
where

ψ j ψ j x xj-1 k , x xj
is defined as in Lemma 2. For the sake of brevity, we use only ψ j instead of ψ j x xj-1 , x xj . Now, define the matrix function

A (Ψ) = A + B j=n j=1 ψ j e n (j), ∀Ψ ∈ R n . (15) 
Then, the dynamics (12) can be rewritten as

ẋ = [A (Ψ) -LC] x. (16) 
According to [START_REF] Phanomchoeng | Nonlinear observer for bounded jacobian systems, with applications to automotive slip angle estimation[END_REF], the vector parameter Ψ belongs to a bounded convex set H n for which the set of vertices is defined by:

V Hn = Φ ∈ R n : Φ j ∈ γ γj , γγj . (17) 
At this stage, we can state the following theorem, which provides LMI conditions for observer design of Lipschitz systems.

Theorem II. 1 ([18]). The observer (11) is asymptotically convergent if there exist a symmetric positive definite matrix P and a matrix R of appropriate dimension so that the following LMI conditions hold:

A (Φ) T P + PA (Φ) -C T R -R T C < 0, ∀ Φ ∈ V Hn . ( 18 
)
Then, the observer gain is given by

L = P -1 R T .
The proof can be achieved easily by using the quadratic Lyapunov function

V (x) = xT P x.

D. High-Gain Methodology

Here, we recall the basic high gain observer as in [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF]. Basically, in the high-gain methodology, we write the observer gain L under the form:

L := T(θ)K, θ ≥ 1. ( 19 
)
where T(θ) := diag θ, . . . , θ n and K ∈ R n .

In addition, the high-gain methodology focuses on the transformed estimation error

x := T -1 (θ)x, (20) 
where T -1 (θ) is the inverse of T(θ) given by

T -1 (θ) = diag 1 θ , . . . , 1 θ n .
It is well-known that the dynamics of the error x is given by

ẋ = θ A -KC x + 1 θ n B∆f, (21) 
with ∆f := f (x) -f (x -T(θ) x).
From the Lipschitz condition [START_REF] Kravaris | Nonlinear observer design for state and disturbance estimation[END_REF] and the fact that θ ≥ 1, we can show as in [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF] that there always exists a positive scalar constant k f , independent of θ, so that

T -1 (θ)B∆f ≤ k f x . (22) 
Indeed, since

T -1 (θ)B∆f = 1 θ n B∆f and T(θ) x =         θ x1 . . . θ j xj . . . θ n xn        
then, we have

T -1 (θ)B∆f = 1 θ n |∆f | = 1 θ n |f θ x1 , . . . , θ n xn |.
From [START_REF] Kravaris | Nonlinear observer design for state and disturbance estimation[END_REF], it follows that

T -1 (θ)B∆f = 1 θ n |f θ x1 , . . . , θ n xn | ≤ γ f θ n n j=1 θ j | xj | = γ f n j=1 θ j θ n | xj |. ( 23 
)
Since θ ≥ 1 and 1 ≤ j ≤ n, then θ j θ n ≤ 1. Finally, from the inequality

n j=1 | xj | ≤ n n j=1 | xj | 2 = n x
we get [START_REF] Ahrens | High-gain observers in the presence of measurement noise: a switched-gain approach[END_REF] with k f = nγ f , which is independent from θ.

Consequently, by following the high-gain methodology we obtain the following theorem.

Theorem II.2 ([20]

). If there exist P > 0, λ > 0, Y , and θ ≥ 1 such that

A T P + P A -C T Y -Y T C + λI < 0, (24) 
θ > θ 0 = 2k f λ max (P ) λ , (25) 
then the estimation error x is asymptotically stable for the choice

K = P -1 Y T ,
where λ max (P ) is the largest eigenvalue of the matrix P .

Proof. For more details about the proof of this theorem, we refer the reader to [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF], [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF], [START_REF]Increasing-gain observers for nonlinear systems: stability and design[END_REF].

E. Problem formulation and objectives

If the LPV/LMI based approach is the best LMI technique and avoids high-gain, it has a weakness from the complexity point of view. Indeed, to synthesize the observer gain, the LPV/LMI based approach typically needs to solve a high number of LMIs, n LMI = 2 n . In addition, this technique, as is the case for all LMI techniques, contrary to the high-gain method, provides sufficient LMI conditions from which we cannot guarantee the existence of a stable observer before solving the LMIs. On the other hand, it is true that before solving conditions ( 24)-( 25), the high-gain methodology guarantees convergence, however the obtained gain is really high even for Lipschitz constants not too large. This weakness affects strongly the performance of the high-gain observer, namely in the case of systems with noise measurement.

To overcome the above drawbacks, we propose to combine the two designs. We will exploit the advantages of each method to get a new and improved observer design technique. Especially, the combined observer, that we will call "HG/LMI observer" will have smaller observer gain compared to the standard high-gain. On the other hand, the number of LMIs n LMI will be significantly decreased. Mainly we will reduce the value of the right hand side of the high-gain condition [START_REF] Prieur | Hybrid high-gain observers without peaking for planar nonlinear systems[END_REF]. To do this successfully, we will need to use the LPV/LMI based approach; then the new design method will reduce the number of LMIs related to the standard LPV/LMI technique. The next section is devoted to this issue.

III. PRELIMINARY RESULTS

A. Introduction and motivating example

The fact that k f in inequality [START_REF] Ahrens | High-gain observers in the presence of measurement noise: a switched-gain approach[END_REF] is independent of θ is not necessarily an advantage. Indeed, this depends on how θ would be involved in k f . Also, the fact that k f is independent of θ does not come only from the condition θ ≥ 1, but essentially from the presence of the last component of x in f . Because of this last component, the parameter θ vanishes from the term our study, let us consider a simple three dimensional system. If we take a nonlinear function

f (x) = γ f sin(x 3 ), then we get from (7) 1 θ 3 ∆f ≤ γ f θ 3 × | θ 3 x3 |= γ f | x3 |≤ k f x ,
where k f = γ f in this case. However, if we take

f (x) = γ f sin(x 2 ),
then we get

1 θ 3 ∆f ≤ γ f θ 3 × | θ 2 x2 |= γ f θ | x2 |≤ k f θ x .
Hence, by replacing in [START_REF] Prieur | Hybrid high-gain observers without peaking for planar nonlinear systems[END_REF] 

k f by k f
θ , θ 0 will be reduced to √ θ 0 , which will reduce significantly the values of the observer gain.

The main result of this paper is based on the above idea. Thanks to the LPV/LMI technique combined with the standard high-gain methodology, we will be able to obtain a high-gain observer with a lower gain.

B. General case

This section is devoted to the preliminary key idea of the proposed work. The high gain methodology exploits the fact that k f in ( 22) is independent of θ. Our key idea lies in this inequality. Indeed, under a simple assumption, we will show that we can obtain a lower high-gain. That is, the value of θ 0 in (25) will be reduced thanks to this assumption.

Assumption III.1. There exists j 0 > 0 so that ∂f ∂x j (x) ≡ 0, ∀ j > n -j 0 .

This assumption means that the nonlinear function f does not depend on the j 0 last components of the state vector x. Notice that when Assumption III.1 is not fulfilled, we have j 0 = 0, which corresponds to the standard high-gain observer.

Under this assumption, inequality [START_REF] Ahrens | High-gain observers in the presence of measurement noise: a switched-gain approach[END_REF] becomes

T -1 (θ)B∆f ≤ k j0 θ j0 x , (27) 
where k j0 is independent of θ and k j0 ≤ k f , where k f is the same than that in [START_REF] Ahrens | High-gain observers in the presence of measurement noise: a switched-gain approach[END_REF]. It is clear that with inequality ( 27), we reduce significantly the value of θ 0 . Therefore, we get the following theorem providing our preliminary result, which is the key idea of this paper.

Theorem III.2. Under Assumption III.1, if there exist P > 0, λ > 0, Y , and θ ≥ 1 such that

A T P + P A -C T Y -Y T C + λI < 0, (28) 
θ 1+j0 > θ j0 = 2k j0 λ max (P ) λ , (29) 
then the estimation error x is asymptotically stable with

K = P -1 Y T .
As can be shown in [START_REF] Zemouche | Observer design for nonlinear systems by using highgain and LPV/LMI-based technique[END_REF], the value θ 0 is decreased to θ

1 1+j 0 j0
, which is a very significant attenuation of the standard highgain.

C. HG/LMI Observer: preliminary result

This section is devoted to the preliminary contribution of this paper for systems with a single nonlinearity. We will exploit the LPV/LMI based technique to extend the previous result to systems which do not satisfy Assumption III.1.

Following [START_REF] Abbaszadeh | Nonlinear observer design for one-sided Lipschitz systems[END_REF], ∆f in ( 21) can be rewritten under the following form:

∆f = for HG n-j0 j=1 ψ j xj ∆f1 + for LPV/LMI j0 j=1 ψ k(j) xk(j) , (30) 
where

k(j) = n -(j 0 -j), 0 ≤ j 0 ≤ n.
Hence, the error dynamics ( 21) is rewritten as follows:

ẋ = θ A(Ψ θ ) -KC x + 1 θ n B∆f 1 , (31) 
where

A(Ψ θ ) = A + B j0 j=1 ψ θ j e n (k(j)), (32) 
Ψ θ =    ψ θ 1 . . . ψ θ j0    ∈ R j0 , (33) 
ψ θ j = ψ k(j) θ 1+(j0-j) . ( 34 
)
Now define the convex bounded set

H σ j0 = Φ ∈ R j0 : γ γ k(j) σ 1+(j0-j) ≤ Φ j ≤ γγ k(j) σ 1+(j0-j) (35) 
for which the set of vertices is defined by

V H σ j 0 = Φ ∈ R j0 : Φ j ∈ γ γ k(j) σ 1+(j0-j) , γγ k(j) σ 1+(j0-j) . ( 36 
) Since γγ k(j) ≥ 0 and γ γ k(j)
≤ 0, then it is obvious that for two positive scalars σ 1 , σ 2 , we have the following implication:

σ 1 < σ 2 =⇒ H σ1 j0 ⊃ H σ2 j0 . (37) 
Moreover, lim σ→+∞

H σ j0 = 0 R j 0 . (38) 
On the other hand, we can show that there exists a positive real number k j0 ≤ k f so that ∆f 1 satisfies

T -1 (θ)B∆f 1 ≤ k j0 θ j0 x . (39) 
Consequently, by analogy to Theorem III.2 and by using the convexity principle as in Theorem II.1, we obtain the following more general theorem.

Theorem III.3. If there exist P > 0, λ > 0, Y , and σ > 0 such that

A(Ψ σ ) T P + P A(Ψ σ ) -C T Y -Y T C + λI < 0, ∀Ψ σ ∈ V H σ j 0 , (40) θ 1+j0 > θ j0 = 2k j0 λ max (P ) λ , (41) 
then the estimation error x is asymptotically stable with

L = T(θ) K P -1 Y T , θ ≥ max σ, θ 1 1+j 0 j0 . Proof. A direct application of Theorem III.2 leads to V ( x) < 0, for all x = 0, with V ( x) = x P x, if A(Ψ θ ) T P + P A(Ψ θ ) -C T Y -Y T C + λI < 0, ∀Ψ θ ∈ H θ j0 , (42) and θ 1+j0 > θ j0 = 2k j0 λ max (P ) λ . ( 43 
)
At this stage, inequality (42) is not exploitable because it depends on θ. However, from the inclusion implication (37), we get Ψ θ ∈ H σ j0 for all θ ≥ σ. Hence from the convexity principle [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], inequality (42) holds if (40) is satisfied. Therefore, the observer gain

L = T(θ)P -1 Y T (44)
ensures the exponential convergence of the estimation error towards zero for all θ such that θ ≥ max σ, θ

1 1+j 0 j0 . ( 45 
)
This ends the proof.

IV. DISCUSSIONS AND EXTENSION

In this section, we will provide some discussions on the HG/LMI observer technique compared to the standard highgain methodology and the LPV/LMI technique. A numerical design implementation will also be given. Then, an extension to systems with multi-nonlinearities will be provided in order to render the HG/LMI technique more interesting and applicable for a widen class of systems, like in the standard high-gain case.

A. On the advantages of HG/LMI observer

This section is devoted to some clarifications on the advantages of the proposed HG/LMI observer. We will clarify more the role of the so-called "compromise index" j 0 .

The advantages of the proposed HG/LMI technique can be summarized in the following items:

• The proposed technique can be viewed as a way to reduce the number of LMIs related to the LPV/LMI technique. Indeed, the number of LMI of LPV/LMI method is reduced from 2 n to 2 j0 , which represents the number of vertices in the set V H σ j 0 ; • The observer gain L of the HG/LMI technique is significantly smaller than that returned by the standard highgain observer because of the power 1 1+j0 due to the compromise index j 0 ;

• The standard high-gain observer is a particular solution corresponding to j 0 = 0; • The LPV/LMI observer is a particular solution corresponding to j 0 = n; • Solutions with LPV/LMI method are always guaranteed.

Indeed, there always exists σ > 0 so that the LMIs (40) admit solutions because from [START_REF] Al-Muthairi | Sliding mode control of a magnetic levitation system[END_REF], we have

lim σ→+∞ A(Ψ σ ) = A lim σ→+∞ (Ψ σ ) = A. ( 46 
)
This proves that the LPV/LMI technique for this class of systems with the high-gain structure can always provide solutions for the set of sufficient LMIs (40) for σ large enough. Indeed, from (46) and the continuity of A(Ψ σ ) with respect to σ, if (24) holds, we have

lim σ→+∞ A(Ψ σ ) T P + P A(Ψ σ ) -C T Y -Y T C + λI = A lim σ→+∞ (Ψ σ ) T P + P A lim σ→+∞ (Ψ σ ) -C T Y -Y T C + λI = A T P + P A -C T Y -Y T C + λI < 0. (47)
Then, by definition of the limit, there exists σ 0 such that (40) is satisfied for any σ > σ 0 . In addition, using the definition of A(Ψ σ ), we can show that the standard high-gain observer is a particular solution of (40). Indeed, from the construction of A(Ψ σ ), we can write

A(Ψ σ ) = A + A σ with A σ ≤ k f σ .
Then, the left term of inequality (40) satisfies the following inequality:

A T P + P A -C T Y -Y T C + λI + A T σ P + P A σ ≤ A T P +P A-C T Y -Y T C +λI + 2k f λ max (P ) σ I. (48) 
It follows that if [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF] is satisfied (which is always feasible due to the observability canonical form), then there exists > 0 so that

A T P + P A -C T Y -Y T C + λI ≤ -I.
Then, (48) holds for any σ > σ 0 = 2k f λmax(P ) . 

B. Design algorithm: numerical implementation

In this section, we will present an algorithm which allows of synthesizing a gain K and a parameter σ. The algorithm we propose provides a simple and systematic numerical procedure for the design of a smaller gain L.

The parameter σ is generally not large, as can be shown through the comparisons in [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H∞ performance analysis[END_REF]. The simulations in [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H∞ performance analysis[END_REF] provide small gain K with σ = 1. We could take σ = 1 in (40). However, the parameter σ is introduced to guarantee the existence of solutions for (40). In addition, since the highgain constraint (41) depends on P and (40) depends on σ and P , then even if the LMI (40) is feasible for σ = 1, it is always possible to find better and lower solutions for σ > 1. On the other hand, from homogeneity of (40)-(41), the decision variable λ can be fixed to λ = 1. As for the selection of σ, the best solution we found efficient for the numerical procedure is the use of the gridding method. For this, we introduce a bijective change of variable τ = σ 1+σ (σ = τ 1-τ ). Hence when

σ ∈ [1 + ∞[, the new variable τ ∈ [ 1 2 1
[. Then we can use the gridding method on τ . The following algorithm summarizes the numerical design procedure we proposed to get a lower observer gain.

Algorithm 1: Design of an optimal gain L (i) Choose a small > 0 for the gridding, take τ = 1 2 , a high value v gain > 0 and go to step (ii);

(ii) Solve LMIs (40). If (40) is found feasible, then go to step (iv). Else go to step (iii); (iii) While τ + < 1, take τ := τ + and return to step (ii);

(iv) Take θ = max τ 1-τ , θ 1 1+j 0 j0 and compute L as in (44). If v gain > L , then put v gain := L and go to step (ii); Algorithm 1 will be used in Section VI to show the performance of the new HG/LMI observer.

Remark 1. It should be noticed that, generally, there are two kinds of computational complexity: the first one is related to the on-line real-time computation and the second one is related to the numerical solving of the LMIs by using available LMI solvers. As for the first case, it should be noticed that the computation of the proposed HG/LMI observer parameters K, σ, and θ does not affect the on-line implementation of the algorithm because all these parameters are computed off-line; all the observer parameters are constant. As for the numerical solving of the proposed LMI conditions, the advantage of the proposed HG/LMI observer is the significant reduction of the number of LMIs to be solved, compared to the standard LPV/LMI method. As shown through the illustrative example in Section VI, solving only 2 LMIs, instead of 32 with the LPV/LMI-based technique, allows reducing significantly the values of the high-gain observer parameters. To sum up, there is no additional computation time for on-line real-time applications because all the observer parameters are constant and computed off-line. There is also no significant computation time related to the LMI solving, because the number of LMIs to be solved is significantly reduced compared to the LPV/LMI method.

C. Extension to systems with multi-nonlinearities

The HG/LMI method can be extended straightforwardly to systems described by the following equations:

                       ẋ =           x 2 + f 1 (x 1 ) x 3 + f 2 (x 1 , x 2 ) . . . x n + f n-1 (x 1 , . . . , x n-1 ) f n (x 1 , . . . , x n )           Ax + f (x) y = x 1 = Cx , (49) 
where A and C are the matrices defined in ( 9)- [START_REF] Hammouri | Observer-based approach to fault detection and isolation for nonlinear systems[END_REF], and the nonlinearities satisfy the following Lipschitz property: that can be transformed, by mean of a diffeomorphic change of variables z = Φ(x), to the observability canonical form [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF]:

f i (x 1 + ∆ 1 , . . . , x i + ∆ i ) -f i (x 1 , . . . , x i ) ≤ i j=1 k j |∆ j | . (50 
   żi =f i (z 1 , . . . , z i+1 , u), 1 ≤ i ≤ n -1 żn = f n (z, u) y = h(z 1 , u) with ∂h ∂z 1 (z 1 , u) = 0, ∂f i ∂z i+1 (z 1 , . . . , z i+1 , u) = 0, 1 ≤ i ≤ n -1.
The references [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] and [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF] contain more explanations on how such a transformation exists.

Remark 3. The paper proposes to design a constant gain nonlinear observer based on the standard high-gain methodology [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] for systems represented in Euclidian space. All the mathematical developments and convergence aspects are performed in a Euclidian space. Although nonlinear systems are sometimes better represented in a Riemannian space, this issue is not raised in this paper. Constructing convenient Riemannian metrics may produce different results for observer design and lead to relevant conditions. For more details on the convergence of nonlinear observers with a Riemannian metric, we refer the reader to [START_REF] Sanfelice | Convergence of nonlinear observers on R n with a Riemannian metric (Part I)[END_REF]. Some techniques to construct appropriate Riemannian metrics for nonlinear observer design can be found in [START_REF]Convergence of nonlinear observers on R n with a Riemannian metric (Part II)[END_REF], [START_REF]Nonlinear observer design with an appropriate Riemannian metric[END_REF].

We consider the standard high-gain observer structure:

ẋ = Ax + f (x) + L y -C x , (51) 
where L is defined as in [START_REF] Wang | Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation[END_REF]. The dynamics of the transformed error x, defined in [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF], is then given by:

ẋ = θ A -KC x + T -1 (θ)∆f (52) with ∆f := f (x) -f (x -T(θ) x).
Each nonlinear component f i can be written under an analogous form to [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]:

∆f i = i-ji j=1 θ j ψ ij xj + ji j=1 θ ki(j) ψ iki(j) xki(j) , (53) 
where θ ki(j) ψ iki(j) e n (i) xki(j) . (54)

k i (j) = i -(j i -j), 0 ≤ j i ≤ i.
ẋ = θ A(Ψ θ ) -KC x + T -1 (θ)∆f 1 , (55) 
where

A(Ψ θ ) = A + B n i=1 ji j=1 ψ θ ij e n (i)e n (k i (j)), (56) 
Ψ θ =                ψ θ 11 . . . ψ θ 1j1 ψ θ 21 . . . ψ θ 2j2 . . . ψ θ njn                ∈ R n i=1 ji , (57) 
ψ θ ij = ψ iki(j) θ 1+(ji-j) . (58) 
As in the previous section (in the case with single nonlinear component), we define the bounded convex set

H σ jmin = Φ ∈ R n i=1 ji : γ γ ik i (j) σ 1+(ji-j) ≤ Φ ij ≤ γγ ik i (j)
σ 1+(ji-j) (59) for which the set of vertices is defined by

V H σ j min = Φ ∈ R n i=1 ji : Φ ij ∈ γ γ ik i (j) σ 1+(ji-j) , γγ ik i (j) σ 1+(ji-j) , (60) 
where γ γ ik i (j) ≤ 0 and γγ ik i (j) ≥ 0 are respectively, the lower and upper bounds of the bounded parameter ψ iki(j) .

On the other hand, it is easy to show that there exists a constant k jmin independent from θ such that the following holds:

T -1 (θ)∆f 1 ≤ k jmin θ min j i =i (ji) x . (61) 
Hence, by analogy, we get the next general theorem valid for systems with multi-nonlinearities.

Theorem IV.1. If there exist P > 0, λ > 0, Y , and σ > 0 such that

A(Ψ σ ) T P + P A(Ψ σ ) -C T Y -Y T C + λI < 0, ∀Ψ σ ∈ V H σ j min , (62) θ 1+min j i =i (ji) > 2k jmin λ max (P ) λ , (63) 
then the estimation error x is asymptotically stable with

L = T(θ) K P -1 Y T , (64) 
θ ≥ max σ, 2k jmin λ max (P )

λ 1 1+ min j i =i (j i ) . ( 65 
)
Remark 4. Notice that in such a case, the number of LMIs to be solved is

n LMI = n i=1 2 ji .
By following the reasoning in [START_REF] Zemouche | Convex optimization based dual gain observer design for Lipschitz nonlinear systems[END_REF], this number of LMIs can be decreased to n LMI = 2 n i=1 j i .

Remark 5. It is worth noticing that taking j i > min ji =i (j i ) for some i = 1, . . . , n does not affect θ

min j i =i (ji)
in the inequality (61), but it may affect the value of k jmin . Hence, if the nonlinear component corresponding to j i > min ji =i (j i ) does not increase significantly k jmin , then it is better to include it in ∆f 1 instead of including it for the LPV/LMI part. Indeed, this leads to decrease n LMI without affecting neither the LMIs (62) nor the high-gain constraint (63).

V. ROBUSTNESS AND PERFORMANCE ISSUES

This section is devoted to some robustness issues. We will consider two cases: the first case deals with systems with delayed output measurements, while the second one raises the problem of high-frequency measurement noise.

A. Robustness to delay in the measurements

We consider the system

ẋ(t) = Ax(t) + Bf (x(t)) y(t) = Cx(t -τ ) , (66) 
where (A, C) and f satisfy the related assumptions of the previous sections. At least for the time being, we assume that τ > 0 is known.

We consider the system

ẋ(t) = Ax(t) + f (x(t)) + L[y(t) -C x(t -τ )], (67) 
where L is defined as in [START_REF] Wang | Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation[END_REF]. Let us notice that the finite escape time phenomenon does not occur.

We have

ẋ(t) = Ax(t) + f (x(t)) -f (x(t)) -LC x(t -τ ).
(68) Then, from [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF], we can write

ẋ(t) = θ A j0 (Ψ θ j0 (t)) -KC x + 1 θ n B∆f j0 -LCT(θ) x(t -τ ) -x(t) . (69)
Notice that ẋ can also be formulated as follows:

ẋ(t) = θA n (Ψ θ n (t)) x(t) -LCT(θ) x(t -τ ). (70) 
These two formulations of the dynamics of the error x are needed in what we propose in the next mathematical developments. Now, we assume that the conditions (40)-(41) of Theorem III.3 hold. Then there exists c(θ) > 0 so that the derivative of V ( x) = x P x (where P is a solution of (40)-( 41)) along the trajectories of (69) satisfies

V (t) ≤ -c 2 V ( x(t)) + 2 x(t) P LC[ x(t -τ ) -x(t)]. (71) Consequently, using x(t) -x(t -τ ) = t t-τ ẋ( )d , we obtain V (t) ≤ -c 2 V ( x(t)) -2 x(t) P (LCT(θ)) 2 t-τ t-2τ x( )d -2 x(t) P LCT(θ) t t-τ [θA n (Ψ θ n ( ))] x( )d . (72) Let Q be a symmetric positive definite matrix such that Q 2 = P . Then V (t) ≤ -c 2 V ( x(t)) +2q(θ) V ( x(t)) t-τ t-2τ V ( x( ))d +2 V ( x(t)) t t-τ |q( )| V ( x( ))d , (73) where q( ) = QLCT(θ)[θA n (Ψ θ n ( ))]Q -1 , and 
q(θ) = |Q(LCT(θ)) 2 Q -1 |. Let q (θ) = sup s {|q(s)|}. ( 74 
)
Since f is globally Lipschitz, then the constant q is welldefined. Then

V (t) ≤ -c 2 V ( x(t)) +2q t-τ t-2τ V ( x(t)) V ( x( ))d +2q t t-τ V ( x(t)) V ( x( ))d , (75) 
Now, from Razumikhin's theorem, it follows that if

τ < ϕ(θ) c(θ) 4(q(θ) + q (θ)) , ( 76 
)
then the origin of the system (69) is globally exponentially stable. From Theorem III.3, the constant c is given by

c(θ) = 2θλ -4k j0 λ max (P ) λ max (P ) , (77) 
where θ = max σ, θ

1 1+j 0 j0 .

It is obvious that

lim θ→+∞ 1 θ c(θ) = 2λ λ max (P )
.

We can show by developing the expressions of q(θ) and q (θ) that the following holds:

lim θ→+∞ 1 θ q(θ) = lim θ→+∞ 1 θ q (θ) = +∞. Consequently, lim θ→+∞ ϕ(θ) = 0.
This means that the largest is θ, the smaller is the value of the tolerated delay τ . Thus the importance of the HG/LMI method provided in the previous section. Indeed, this latter provides smaller value of θ compared to the standard highgain observer. This shows that the HG/LMI method is more performant than the standard high-gain method from the robustness point of view with respect to the delay in the output measurement.

B. Performance with respect to measurement noise

Since the problem of high-gain observer is the amplification of high-frequency measurement noise, we consider only the case where the measurement is affected by noises. That is why we consider the system

ẋ(t) = Ax(t) + Bf (x(t)) y(t) = Cx(t) + ν(t) (78) 
with the corresponding state observer [START_REF] Ibrir | Circle-criterion approach to discrete-time nonlinear observer design[END_REF], where ν(t) represents the disturbance affecting the measurement y(t). Therefore, the error dynamics [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF] becomes:

ẋ = θ A(Ψ θ ) -KC x + 1 θ n B∆f 1 -Kν(t). ( 79 
)
1) An upper bound of the estimation error: Here we give an upper bound on the estimation error in the case of the presence of noise in the measurements. Theorem V.1. Assume that there exist a positive definite and symmetric matrix P and a matrix Y of appropriate dimensions such that the inequalities (40)-(41) hold. Then with the observer gain L given by (44), there exist two positive constants α, β such that the estimation error x(t) is upper bounded as follows:

x(t) ≤ θ n-1 max λ max (P ) λ min (P ) e 0 e -γ1θt , γ 2 ν(t) , (80) 
where

γ 1 = β 2λ max (P ) , γ 2 = α λ max (P ) λ min (P ) (81) with α ≥ 2λmax(P ) θ K λ -2λmax(P ) θ k j0 , ( 82 
)
β ≤ λ - 2λ max (P ) θ k j0 + 1 α K . ( 83 
)
Proof. The proof is standard and well known in the highgain observer literature. We refer the reader to [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] and the references therein. Indeed, after developing the calculation of V along the trajectory of (78), the key of the proof is based on the fact that under the conditions (40)-(41), if x(t) ≥ α ν(t) for α > 0 satisfying (82), then there exists β > 0 satisfying (83) such that V ( x(t)) ≤ -βθ x(t) 2 . Therefore, using the fact that

λ min (P ) x(t) 2 ≤ V ( x(t)) ≤ λ max (P ) x(t) 2 ,
we can easily deduce that when

V ( x(t)) ≥ λ max (P )α 2 ν(t) 2 ,
we obtain

x(t) ≤ λ max (P ) λ min (P ) x0 e -γ1θt , (84) 
where γ 1 is given in (81). On the other hand, by inverse implication, we can deduce that if there exists t ≥ 0 such that x(t) > λmax(P ) λmin(P ) x0 e -γ1θt , then we have V ( x(t)) < λ max (P )α 2 ν(t) 2 , which leads to

x(t) < α λ max (P ) λ min (P ) ν(t) .
Consequently,

x(t) ≤ θ n-1 max λ max (P ) λ min (P ) e 0 e -γ1θt , γ 2 ν(t) ,
which ends the proof.

2) Comments and comparisons: Notice that compared to the standard high-gain observer, the upper bound of x(t) is smaller because of the smaller value of the lower bound of the tuning parameter θ corresponding to the HG/LMI method. To get a precise idea, assume that the tuning parameter θ takes the smallest value, namely θ 0 for the standard high-gain observer, and max σ, θ

1 1+j 0 j0
for the HG/LMI observer. Then, we get

lim sup t→+∞ x(t) ≤ γ HG θ n-1 0 lim sup t→+∞ ν(t) (85) 
with the standard high-gain observer, and

lim sup t→+∞ x(t) ≤ γ 2 max σ, θ 1 1+j 0 j0 n-1 lim sup t→+∞ ν(t) (86)
with the HG/LMI observer, where γ HG in (85) is the constant given by the same formula as in (81) with the corresponding Lyapunov matrix P in the standard high-gain case.

Since in general the parameter σ is smaller than the threshold value related to the high-gain constraint, then we have max σ, θ

1 1+j 0 j0 = θ 1 1+j 0 j0 .
Therefore, inequality (86) is rewritten as

lim sup t→+∞ x(t) ≤ γ 2 θ n-1 1+j 0 j0 lim sup t→+∞ ν(t) . (87) 
It is quite clear that the upper bound of the error corresponding to the HG/LMI observer is smaller than that of the standard high-gain observer since θ 1 1+j 0 j0 is smaller than θ 0 because of the power 1 1+j0 and the fact that the difference between γ 2 and γ HG is not significative compared to the difference between the powers. In the case of standard high-gain observer, this power corresponds to j 0 = 0, which is the biggest one.

Analytically, the comparison is more clear if Assumption III.1 holds. Indeed, in such a case, we have σ = 1 and θ j0 = θ 0 , which means that max σ, θ

1 1+j 0 j0 = θ 1 1+j 0 0 .
Clearly, with the same threshold θ 0 , the power corresponding to the HG/LMI observer is n-1 1+j0 instead of n -1 for the standard high-gain observer.

Recently, a new high-gain observer with limited gain power was proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] and [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF]. The corresponding observer structure is different from that used in this paper. Indeed, the authors in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] proposed a novel observer structure, which is a kind of interconnected system of dimension 2n -2.

Although their gain power is limited to 2 instead of n for the standard high-gain observer and the HG/LMI technique, it is worth noticing that there are two drawbacks related to this interconnected structure:

• The higher dimension of the observer (2n-2 instead of n) may increase significantly the threshold θ 0 of the tuning parameter, as shown through the numerical example in Table V. This is due to the higher dimension of the Lyapunov matrix and the algorithm providing the gain K by using a block-tridiagonal higher dimensional matrix. • Even if the gain power is limited to 2, the upper bound and the power n -1 in the estimation error remains the same as that of the standard high-gain observer. Indeed, with the Astolfi/Marconi observer in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], we get

lim sup t→+∞ x(t) ≤ γ AM n-1 lim sup t→+∞ ν(t) , (88) 
where γ AM is a constant similar to γ 2 in (81) with appropriate Lyapunov matrix of dimension 2n -2. The explicit value of this constant can be found in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF].

In fact, although the observer uses only θ and θ 2 , but owing of the interconnected form the parameter θ is diffused and redistributed in all the components of the system and then the term θ n-1 reappears in the bounds (80) and (85). The interconnected form of the observer only makes it possible to hide the higher powers of θ. On the other hand, the Astolfi/Marconi observer may be interesting if some saturations are added to the observer [START_REF] Astolfi | Low-power peaking-free highgain observers for nonlinear systems[END_REF]. It can avoid the peaking phenomenon thanks to the interconnected structure of the observer, which allows a possibility of saturations in various steps. Nevertheless, it is important to notice that the HG/LMI technique, notably the decomposition of the nonlinear function as in [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], can formally be applied to the Astolfi/Marconi observer to enhance performances. The only obstacle we have to face is the computation of the Lyapunov matrix P and the gain K from the blocktridiagonal matrix, which becomes non tridiagonal because of the injected nonlinear terms due to the application of the HG/LMI methodology. This is one of the future work we aim to investigate by using rigorous arguments. At this stage, we focus our study on the HG/LMI technique and its advantages compared to the standard high-gain observer. Remark 6. The advantage of the proposed observer lies in its ability to combine the standard High-gain observer and LMIbased observer. Then, it can use the advantages of each of the two methodologies. Since the LMI-based observer do not have the "peaking phenomenon", then also the new observer can do the same. Indeed, to avoid the peaking phenomenon, it suffices to increase the value of the compromise index j 0 in order to decrease the value of θ. As stated in the paper, both LPV/LMI-based technique and standard high-gain observer can be viewed as particular cases of the proposed HG/LMI observer. The latter is able to avoid the peaking phenomenon, to reduce the sensitivity to high-frequency measurement noise, and to enhance the convergence rate if necessary. To get a good tradeoff between all these criteria, the new observer offers the possibility to play with the values of j 0 and θ.

VI. AN ILLUSTRATIVE EXAMPLE

We show through a numerical example the clear advantages of combining the high gain and LMI observer design methods by illustrating how the size of the observer gain varies for different values of j 0 .

We consider the case of a five dimensional system with a nonlinearity

f (x) = k f 5 5 i=1 sin(x i ).
This nonlinearity satisfies [START_REF] Kravaris | Nonlinear observer design for state and disturbance estimation[END_REF] and [START_REF] Ahrens | High-gain observers in the presence of measurement noise: a switched-gain approach[END_REF] with γ f = k f . We can show easily that

k j0 = k f (5 -j 0 ) 5 .
We will provide some comparisons between the standard highgain, the Astolfi/Marconi observer, and the proposed HG/LMI technique. The advantage of the "compromise index" j 0 will be shown for different values of k f . Table V illustrates how the values of the proposed HG/LMI observer gain are smaller than those of the standard high-gain observer and Astolfi/Marconi observer.

Notice that the LPV/LMI technique, which corresponds to j 0 = 5, provides lower observer gains, but we need to solve 2 5 = 32 LMIs. However, this high number of LMIs would complicate the numerical solving of these LMIs for higher dimensional systems. This can lead to infeasible LMIs. Hence the importance of the Proposed HG/LMI method. For instance, it suffices to solve 2 LMIs instead of only one to reduce significantly the value of θ from θ = 31.72 to θ = 5.25 for k f = 1 and from θ = 273.03 to θ = 17.63 for k f = 10. We can reduce more the observer gain, but we have to solve more LMIs, as can be shown in Table V (4 LMIs for j 0 = 2 and 8 LMIs for j 0 = 3). This is the reason why the index j 0 is called the "compromise index". To have an idea of the difference between the standard highgain and the HG/LMI observer, we take for instance k f = 0.1. Then we obtain the following gains for different values of j 0 : for σ = 1.5, σ = 1.5, and σ = 1.2, respectively for j 0 = 1, 2, 3. L 0 is the standard high-gain, which corresponds to j 0 = 0.

L 0 = HGO      
We can see that for j 0 = 1, 2, 3, the last component of the gain L j0 is not necessarily higher than the other components, contrarily to the standard high-gain L 0 for which this increasing property is necessarily fulfilled. This is due to the fact that in the HG/LMI methodology, the LMIs (40) depend on σ, which can affect the gain K and provides smaller values in the last components.

VII. APPLICATION TO MAGNETIC LEVITATION SYSTEMS

FOR TRAINS Now we study a real-world example as an application of the proposed observer design methodology. We consider the model of a magnetic levitation system for trains, see Fig. 1, in which the objective is to control the electromagnet's position at a desired height above the guiderail. The dynamics of this magnetic levitation system are typically described using the position x 1 , velocity and current in the electromagnet as the states. In this paper, we use instead the transformed states of position, velocity and acceleration which lead to plant dynamics of the following form: where x 1 , x 2 and x 3 are the position, velocity and acceleration respectively of the electromagnet, x = [x 1 , x 2 , x 3 ] , u is the control input voltage, and y is the measurement output which may be perturbed by measurement noise and/or disturbance. While the position of the electromagnet above the rail is measured, the velocity and current could be estimated using an observer. All the system parameters used for simulations together with the original system model can be found in [START_REF] Al-Muthairi | Sliding mode control of a magnetic levitation system[END_REF]. The state transformation procedure as well as the Lipschitz constant computation of f (x, u) are given in the Appendix of this paper. In order to carry out simulations below, the parameter values are g = 9.81, m = 11.87 × 10 -3 , R = 28.7, L 1 = 65, L o z o = 0.065, K = 1.4 × 10 -2 , = 0.01. Here we let the initial state be x(0) = [0.1, 0, 0] and use a constant voltage input u = 9 to activate the system. Then, we can compute the Lipschitz constant of f (x, u) to be 195.8713. Before moving on, we impose a constraint on the system (89) by letting f (x, u) ≡ 0 when x 3 + g < 0. This makes sense in practice because x 3 + g can never become negative due to the physical stop and due to the current never becoming negative in the provided electrical hardware. a) First, we design a standard high-gain observer for the system (89) following Theorem II. [START_REF] Wang | Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation[END_REF]. Obviously, this observer with an extremely high gain is not suitable for implementation and thus the corresponding simulation is omitted.

                 ẋ1 = x 2 ẋ2 = x 3 ẋ3 = -2[R(x1+ )+L1x2](x3+g) L1(x1+ )+Lozo + 2 √ K m (x3+g) L1(x1+ )+Lozo u f (x, u) y = x 1 , (89) 
b) Next, we turn to the high-gain observer proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]. We assign the eigenvalues of the M matrix (see (7) therein) to be -1, -1.3, -1.6 and -1.9, and then derive that K 1 = [2.9, 3.98] and K 2 = [2.9, 0.993] . Hence M is known as well. By solving P M + M P = -I, we obtain c) Finally, the observer proposed in this paper will be designed for the system (89). Here we skip the details of the involved computation due to limited space. To reduce the high-gain, we choose as compromise index j 0 = 2, then we obtain θ = 99 and K = [68, 386.8, 1097.8] . This is another advantage of the "compromise index" j 0 .

P =     2.
Denote xAM = [x 1,AM , x2,AM , x3,AM ] and xLL = [x 1,LL , x2,LL , x3,LL ] as the state estimates for the system (89) by using the observer design methods proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] 1 and in the present paper, respectively. Let xAM (0) = [0.5, 0, 0] and xLL (0) = [0.5, 0, 0] . In Fig. 2 clear that both trajectories of estimation errors approach zeros. Note, however, that the transient performance of our designed observer is much better in particular for the estimation of x 2 and x 3 , although the convergence speeds are almost the same. In addition, the simulation is also done using an additive measurement noise, which is a Gaussian distributed random signal with mean zero and standard deviation 0.01. The simulation results are given in Fig. 3. From the plots of the norms of the estimation errors, we know that on the whole our designed observer still works much better than the one in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF].

Besides measurement noise, we consider a single pulse disturbance signal, which lasts for 0.002s with magnitude 0.3 and is injected into the measurement output at 0.03s. follows Fig. 4 that our designed observer moves back to the steady state faster. We also note that the estimation of x 2 and x 3 is not perturbed that much.

Finally, we want to stress that the above advantages hold under our designed observer with a dimension of just 3 rather than the observer with dimension 4 proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] for the system (89).

VIII. CONCLUSIONS

In this paper we presented a new state observer design for a class of triangular systems with Lipschitz nonlinearities. This new observer, called HG/LMI observer, has the advantage to provide lower gain compared to the standard high-gain observer. The key idea behind this observer is based on the use of the LPV/LMI technique to modify the high-gain constraint, which reduces significantly the Lipschitz constant and leads A systematic design algorithm was provided and extensions to multi nonlinear functions was developed, together with analysis of performance in the presence of noise and in the presence of time delayed measurement. A numerical example was used to show the effectiveness of the HG/LMI technique, especially the variation in gain size with change in the compromise index. To show the applicability of the proposed observer, an application to magnetic levitation system for trains was provided.

Solving observer-based output feedback stabilization problem by using the proposed state observer is one of the future work we aim to investigate in a deepen way. All the robustness and performance issues related to output feedback control using the HG/LMI observer will be carefully investigated.

APPENDIX

The magnetic levitation system in [START_REF] Al-Muthairi | Sliding mode control of a magnetic levitation system[END_REF] is given by 

mẍ 1 = K I 2 (x 1 + ) 2 -

It follows that ∆f is written as

  

Fig. 1 .

 1 Fig. 1. Schematic of levitation system at each electromagnet

2 .

 2 Without any loss of generality, we let λ = 1 throughout this paper. By using Matlab & YALMIP, we can easily obtain that Y = [0.5997, 1.4077, -0.4068] , θ = 796.8498 and P =   1.6018 -0.5976 -0.4264 -0.5976 0.6184 -0.5944 -0.4264 -0.5944 1.6133   are solutions to (24) and (25). Then we get K = P -1 Y = [45.6461, 89.4081, 44.7584] and L = 10 10 • [0, 0.0057, 2.2647] through

Fig. 3 .Fig. 4 .

 34 Fig. 3. Norms of estimation errors with measurement noise

4 ) 2 ( 2 ( 1 = 2 L 2 1 x 2 - 2 - 1 Km

 42212221 I is the current in the coil of the electromagnet, other variables and parameters have been introduced in Section VII. Substituting (A.3) into (A.2) yieldsRI + L(x 1 ) dI dt -L 0 z 0 I (x 1 + ) 2 ẋ1 = u.Conventionally, the state space vector is chosen as [x 1 , ẋ1 , I] . It results in the following state space dynamics In order to convert (A.4) to the observable canonical form, we choose the new state space vector asx = x 1 ẋ1 K m I x1+ ) 2 -g .Then, the observable canonical form is given by x1+ ) 2 -g, we get I = (x 1 + ) m K (x 3 + g). Therefore, we obtain the model (89).The Lipschitz constant of f (x, u) can be computed by calculating its partial derivatives∂f (x, u) ∂x RL o z o (x 3 + g) [L 1 (x 1 + ) + L o z o ] 2L (x 3 + g) [L 1 (x 1 + ) + L o z o ] 2 u, ∂f (x, u) ∂x 2 = -2L 1 (x 3 + g) L 1 (x 1 + ) + L o z o , ∂f (x, u) ∂x 3 = -2[R(x 1 + ) + L 1 x 2 ] L 1 (x 1 + ) + L o z o + K m(x3+g) L 1 (x 1 + ) + L o z o u,and finding out the supremum on∂f (x, u) ∂x 1 , ∂f (x, u) ∂x 2 , ∂f(x, u) ∂x 3 over a sufficiently long time interval under a given control input through numerical simulation. As in Section VII, we use a constant voltage input u = 9. Then it is easy to perform the computations and find the Lipschitz constant as 195.8713. Rajesh RAJAMANI obtained his M.S. and Ph.D. degrees from the University of California at Berkeley in 1991 and 1993 respectively and his B.Tech degree from the Indian Institute of Technology at Madras in 1989. Dr. Rajamani is currently Professor of Mechanical Engineering at the University of Minnesota. His active research interests include sensors and estimation systems for automotive and biomedical applications. Dr. Rajamani has co-authored over 130 journal papers and is a co-inventor on 13 patent applications. He is the author of the popular book "Vehicle Dynamics and Control" published by Springer Verlag. Dr. Rajamani has served as Chair of the IEEE Technical Committee on Automotive Control and on the editorial boards of the IEEE Transactions on Control Systems Technology, the IEEE/ASME Transactions on Mechatronics, and the IEEE Control Systems Magazine. Dr. Rajamani is a Fellow of ASME and has been a recipient of the CAREER award from the National Science Foundation, the 2001 Outstanding Paper award from the journal IEEE Transactions on Control Systems Technology, the Ralph Teetor Award from SAE, and the 2007 O. Hugo Schuck Award from the American Automatic Control Council.

TABLE I ILLUSTRATION

 I OF THE HG/LMI METHOD

	Methods	Standard HG	LPV/LMI	HG/LMI
	θ	100	σ	10
	nLMI	1	2 10 = 1024	2

TABLE II n

 II = 10, j 0 = 1 AND θ 0 = 100

	Methods	Standard HG	LPV/LMI	HG/LMI
	θ	1000	σ	10
	nLMI	1	2 10 = 1024	4

TABLE III n

 III = 10, j 0 = 2 AND θ 0 = 1000

	Methods θ	Standard HG 1000	LPV/LMI σ	HG/LMI √ 10
	nLMI	1	2 10 = 1024	8

TABLE IV n

 IV = 10, j 0 = 3 AND θ 0 = 1000

  The illustrative example considered in Section VI is observable; the magnetic levitation model in Section VII is uniformly observable because it is transformed into the observable canonical form (86) by mean of a diffeomorphism given in Appendix. Nevertheless, the results can be generalized to all uniformly observable systems:

	ẋ=ψ(x, u)
	y=φ(x, u)

)

Remark 2. The systems studied in this paper are those which can be transformed into the observability canonical form (6) or (49) by mean of a diffeomorphism. Then, all the examples considered in this paper are observable:

TABLE V COMPARISONS

 V BETWEEN THE HIGH-GAIN OBSERVERS FOR DIFFERENT VALUES OF k f .

  , the six curves of the absolute values |x i,AM -x i | and |x i,LL -x i |, i = 1, 2, 3, are plotted. The two observers work for the system (89) and it is
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θ n ∆f for θ ≥ 1. This can be shown easily by using the Lipschitz property[START_REF] Kravaris | Nonlinear observer design for state and disturbance estimation[END_REF]. To illustrate this point and to motivate

The dimension of this observer is in fact 4. xAM is obtained by "extracting" 3 components from its states, whose initial values are [0.5, 0, 0, 0] . The reader can refer to[START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] for more details.
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