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Explicit speed of convergence of the stochastic billiard in

a convex set

Ninon Fétique ∗

Abstract

In this paper, we are interested in the speed of convergence of the stochastic billiard

evolving in a convex set K. This process can be described as follows: a particle moves

at unit speed inside the set K until it hits the boundary, and is randomly reflected,

independently of its position and previous velocity. We focus on convex sets in R
2 with

a curvature bounded from above and below. We give an explicit coupling for both the

continuous-time process and the embedded Markov chain of hitting points on the boundary,

which leads to an explicit speed of convergence to equilibrium.
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1 Introduction

In this paper, our goal is to give explicit bounds on the speed of convergence of a process, called
"stochastic billiard", towards its invariant measure, under some assumptions that we will detail
further. This process can be informally described as follows: a particle moves at unit speed
inside a domain until it hits the boundary. At this time, the particle is reflected inside the
domain according to a random distribution on the unit sphere, independently on its position
and previous velocity.
The stochastic billiard is a generalisation of shake-and-bake algorithm (see [1]), in which the
reflection law is the cosine law. In that case, it has been proved that the Markov chain of
hitting points on the boundary has a uniform stationary distribution. In [1], the shake-and-bake
algorithm is introduced for generating uniform points on the boundary of bounded polyhedra.
More generally, stochastic billiards can be used for sampling from a bounded set or the boundary
of such a set, through the Markov Chain Monte Carlo algorithms. In that sense, it is therefore
important to have an idea of the speed of convergence of the process towards its invariant
distribution.

Stochastic billiards have been studied a lot, under different assumptions on the domain in which
it lives and on the reflection law. Let us mention some of these works. In [5], Evans considers
the stochastic billiard with uniform reflection law in a bounded d-dimensional region with C1

boundary, and also in polygonal regions in the plane. He proves first the exponentially fast total
variation convergence of the Markov chain, and moreover the uniform total variation Césaro
convergence for the continuous-time process. In [3], the authors only consider the stochastic
billiard Markov chain, in a bounded convex set with curvature bounded from above and with
a cosine distribution for the reflection law. They give a bound for the speed of convergence
of this chain towards its invariant measure, that is the uniform distribution on the boundary
of the set, in order to get a bound for the number of steps of the Markov chain required to
sample approximatively the uniform distribution. Finally, let us mention the work of Comets,
Popov, Schütz and Vachkovskaia [2], in which some ideas have been picked and used in the
present paper. They study the convergence of the stochastic billiard and its associated Markov
chain in a bounded domain in R

d with a boundary locally Lipschitz and almost everywhere
C1. They consider the case of a reflection law which is absolutely continuous with respect
to the Haar measure on the unit sphere of Rd, and supported on the whole half-sphere that
points into the domain. They show the exponential ergodicity of the Markov chain and the
continuous-time process and also their Gaussian fluctuations. The particular case of the cosine
reflection law is discussed. Even if they do not give speeds of convergence, their proofs could
lead to explicit speeds if we write them in particular cases (as for the stochastic billiard in a
disc of R2 for instance). However, as we will mention in Section 2.3, the speed of convergence
obtained in particular cases will not be relevant, since their proof is adapted to their very
general framework, and not for more particular and simple domains.

The goal of this paper is to give explicit bounds on the speed of convergence of the stochastic
billiard and its embedded Markov chain towards their invariant measures. For that purpose,
we are going to give an explicit coupling of which we can estimate the coupling time.
In a first part, we study the particular case of the billiard in a disc. In that case, everything is
quite simple since all the quantities can be explicitly expressed.
Then, in a second part, we extend the results for the case of the stochastic billiard in a compact
convex set of R2 with curvature bounded from above and below. In that case, we can no more
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do explicit computations on the quantities describing the process, since we do not know exactly
the geometry of the convex set. However, thanks to the assumptions on the curvature, we are
able to estimate the needed quantities.
In both cases, the disc and the convex set, we suppose that the reflection law has a density
function which is bounded from below by a strictly positive constant on a part of the sphere.
The speed of convergence will obviously depend on it. However, for the convergence of the
stochastic billiard process in a convex set, we will need to suppose that the reflection law is
supported on the whole half sphere that points inside the domain.
At the end of this paper, we briefly discuss the extension of the results to higher dimensions.

Notations

We introduce some notations used in the paper:

• for A ⊂ R, 1A denotes the indicator function of the set A, that is 1A(x) is equal to 1 if
x ∈ A and 0 otherwise;

• for x ∈ R, ⌊x⌋ denotes the floor of the real x;

• for x, y ∈ R
2, we note by ‖x‖ the euclidean norm of x and we write 〈x, y〉 for the scalar

product of x and y;

• for A ⊂ R
2, ∂A denotes the boundary of the set A;

• Br denotes the closed ball of R2 centred at the origin with radius r, i.e. Br = {x ∈ R
2 : ‖x‖≤ r},

and S
1 denotes the unit sphere of R2, i.e. S

1 = {x ∈ R
2 : ‖x‖= 1};

• for I ⊂ R, |I| denotes the Lebesgue measure of the set I;

• for K ⊂ R
2 a compact convex set, we consider the 1-dimensional Hausdorff measure in

R
2 restricted to ∂K. Therefore, if A ⊂ ∂K, |A| denotes this Hausdorff measure of A;

• for A ⊂ R
2, if x ∈ ∂A, we write nx the unitary normal vector of ∂A at x looking into A and

we define Sx the set of vectors that point the interior of A: Sx = {v ∈ S
1 : 〈v, nx〉 ≥ 0};

• if two random variables X and Y are equal in law we write X
L
= Y , and we write X ∼ µ

to say that the random variable X has µ for law;

• we denote by G(p) the geometric law with parameter p.

2 Coupling for the stochastic billiard

2.1 Generalities on coupling

In order to describe the way we will prove the exponential convergences and obtain bounds on
the speeds of convergence, we first need to introduce some notions.
Let ν and

∼
ν be two probability measures on a measurable space E. We say that a probability

measure on E × E is a coupling of ν and
∼
ν if its marginals are ν and

∼
ν. Denoting by Γ(ν,

∼
ν)

the set of all the couplings of ν and
∼
ν, we say that two random variables Y and

∼
Y satisfy

3



(Y,
∼
Y ) ∈ Γ(ν,

∼
ν) if ν and

∼
ν are the respective laws of Y and

∼
Y . The total variation distance

between these two probability measures is then defined by

‖ν − ∼
ν‖TV= inf

(Y,
∼
Y )∈Γ(ν,∼ν )

P(Y 6=
∼
Y ).

For other equivalent definitions of the total variation distance and its properties, see for instance
[6].

Let (Y )t≥0 and (Ỹ )t≥0 be two Markov processes and let define Tc = inf
{

t ≥ 0 : Yt = Ỹt

}

the

coupling time of Y and Ỹ . From the definition of the total variation distance, it immediately
follows that

‖L(Yt)− L(Ỹt)‖TV≤ P (Tc > t) .

Therefore, let T ∗ be a random variable stochastically bigger than Tc, Tc ≤st T
∗, which means

that P (Tc ≤ t) ≥ P (T ∗ ≤ t) for all t ≥ 0. If T ∗ has a finite exponential moment, Markov’s
inequality gives then, for any λ such that the Laplace transform of T ∗ is well defined:

‖L(Yt)− L(Ỹt)‖TV≤ P (T ∗ > t) ≤ e−λt
E
[

eλT
∗]

.

Thus, if we manage to stochastically bound the coupling time of two stochastic billiards by a
random time whose Laplace transform can be estimated, we get an exponential bound for the
speed of convergence of the stochastic billiard towards its invariant measure.

We end this part with a definition that we will use throughout this paper.

Definition 2.1. Let K ⊂ R
2 be a compact convex set.

We say that a pair of random variables (X, T ) living in ∂K × R
+ is α-continuous on the set

A× B ⊂ ∂K × R
+ if for any measurable A1 ⊂ A, B1 ⊂ B:

P (X ∈ A1, T ∈ B1) ≥ α|A1||B1|.

We can also adapt this definition for a single random variable.

2.2 Description of the process

Let us now give a precise description of the stochastic billiard (Xt, Vt)t≥0 is a set K.
We assume that K ⊂ R

2 is a compact convex set with a boundary at least C1.
Let e = (1, 0) be the first coordinate vector of the canonical base of R2. We consider a law γ on
the half-sphere Se = {v ∈ S

1 : e · v ≥ 0}. Let moreover (Ux, x ∈ ∂K) be a family of rotations of
S
1 such that Uxe = −nx, where we recall that nx is the normal vector of ∂K at x looking into
K.
Given x0 ∈ ∂K, we consider the process (Xt, Vt)t≥0 living in K × S

1 constructed as follows (see
Figure 1):

• LetX0 = x0, and V0 = UX0
η0 with η0 a random vector chosen according to the distribution

γ.

• Let τ1 = inf{t > 0 : x0 + tV0 /∈ K} and define T1 = τ1. We put Xt = x0 + tV0, Vt = V0 for
t ∈ [0, T1), and XT1

= x0 + τ1V0.
Then, let VT1

= UXT1
η1 with η1 following the law γ.
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Kx0

XT0

v0

XT1

VT0

VT1

Figure 1: A trajectory of the stochastic billiard in a set K, starting in the interior of K

• Let τ2 = inf{t > 0 : XT1
+ tVT1

/∈ K} and define T2 = T1 + τ2. We put Xt = XT1
+ tVT1

,
Vt = VT1

for t ∈ [T1, T2), and XT2
= XT1

+ τ2VT1
.

Then, let VT2
= UXT2

η2 with η2 following the law γ.

• And we start again ...

As mentioned in the introduction (XTn
)n≥0 is a Markov chain living in ∂K and the process

(Xt, Vt)t≥0 is a Markov process living in K × S
1.

Remark 2.2. We can obviously define the continuous-time process starting at any x0 ∈ K,
what will in fact often do in this paper. If x0 ∈ K \∂K, we have to precise also the initial speed
v0 ∈ S

1, and we can use the same scheme to construct the process.

For x ∈ ∂K, it is equivalent to consider the new speed in Sx or to consider the angle in
[

−π
2
, π
2

]

between this vector speed and the normal vector nx. For n ≥ 1, we thus denote by Θn

the random variable in
[

−π
2
, π
2

]

such that rXTn ,Θn
(nXTn

)
L
= VTn

, where for x ∈ ∂K and θ ∈ R,
rx,θ denotes the rotation with center x and angle θ.
We make the following assumption on γ (see Figure 2):

Assumption (H):

The law γ has a density function ρ with respect to the Haar measure on Se, which
satisfies: there exist J ⊂ Se symmetric with respect to e and ρmin > 0 such that:

ρ(u) ≥ ρmin, for all u ∈ J .

This assumption is equivalent to the following one on the variables (Θn)n≥0:

Assumption (H′):
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x

θ∗

UxJ

∂K
nx

Figure 2: Illustration of Assumptions (H) and (A)

The variables Θn, n ≥ 0, have a density function f with respect to the Lebesgue
measure on

[

−π
2
, π
2

]

satisfying: there exist fmin > 0 and θ∗ ∈
(

0, π
2

)

such that:

f(θ) ≥ fmin, for all θ ∈
[

−θ
∗

2
,
θ∗

2

]

.

In fact, since these two assumptions are equivalent, we have

ρmin = fmin and |J |= θ∗.

In the sequel, we will use both descriptions of the speed vector depending on which is the most
suitable.

2.3 A coupling for the stochastic billiard

Let us now informally describe the idea of the couplings used to explicit the speeds of conver-
gence of our processes to equilibrium. They will be explain explicitly in Sections 3 and 4.

To get a bound on the speed of convergence of the Markov chain recording the location of
hitting points on the boundary of the stochastic billiard, the strategy is the following. We
consider two stochastic billiard Markov chains with different initial conditions. We estimate
the number of steps that they have to do before they have a strictly positive probability to
arrive on the same place at a same step. In particular, it is sufficient to know the number of
steps needed before the position of each chain charges the half of the boundary of the set on
which they evolve. Then, their coupling time is stochastically smaller than a geometric time
whose Laplace transform is known.
The case of the continuous-time process is a bit more complicated. To couple two stochastic
billiards, it is not sufficient to make them cross in the interior of the set where they live. Indeed,
if they cross with a different speed, then they will not be equal after. So the strategy is to
make them arrive at the same place on the boundary of the set at the same time, and then
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they can always keep the same velocity and stay equal. We will do this in two steps. First,
we will make the two processes hit the boundary at the same time, but not necessary at the
same point. This will take some random time, that we will be able to quantify. And secondly,
with some strictly positive probability, after two bounces, the two processes will have hit the
boundary at the same point at the same time. We repeat the scheme until the first success.
This leads us to a stochastic upper bound for the coupling time of two stochastic billiards.

Obviously, the way that we couple our processes is only one way to do that, and there are
many as we want. Let us for instance describe the coupling constructed in [2]. Consider two
stochastic billiard processes evolving in the set K with different initial conditions. Their first
step is to make the processes hit the boundary in the neighbour of a good x1 ∈ ∂K. This
can be done after n0 bounces, where n0 is the minimum number of bounces needed to connect
any two points of the boundary of K. Once the two processes have succeed, they are in the
neighbour of x1, but at different times. Then, the strategy used by the authors of [2] is to make
the two processes do goings and comings between the neighbour of x1 and the neighbour of
another good y1 ∈ ∂K. Thereby, if the point y1 is well chosen, the time difference between the
two processes decreases gradually, while the positions of the processes stay the same after one
going and coming. However, the number of goings and comings needed to compensate for the
possibly big difference of times could be very high. This particular coupling is therefore well
adapted for sets whose boundary can be quite "chaotic", but not for convex sets with smooth
boundary as we consider in this paper.

3 Stochastic billiard in the disc

In this section, we consider the particular case where K is a ball: K = Br, for some fixed r > 0.
In that case, for each n ≥ 0, the couple (XTn

, VTn
) ∈ ∂Br × S

1 can be represented by a couple
(Φn,Θn) ∈ [0, 2π)×

[

−π
2
, π
2

]

as follows (see Figure 3):

• to a position x on ∂Br corresponds an unique angle φ ∈ [0, 2π). The variable Φn nominates
this unique angle associated to Xn, i.e. (1,Φn) are the polar coordinate of Xn.

• at each speed VTn
we associate the variable Θn introduced in Section 2.2, satisfying

Assumption (H′).

Remark that for all n ≥ 0, the random variable Θn is independent of Φk for all k ∈ {0, n}. We
also recall that the variables Θn, n ≥ 0, are all independent.

In the sequel, we do not care about the congruence modulo 2π : it is implicit that when we
write Φ, we consider its representative in [0, 2π).

Let us state the following proposition that links the different random variables together.

Proposition 3.1. For all n ≥ 1 we have:

τn = 2r cos(Θn−1) and Φn = π + 2Θn−1 + Φn−1 (1)

Proof. The relationships are immediate with geometric considerations.
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XTn

VTn Φn
Θn

Figure 3: Definition of the variables Φn and Θn in bijection with the variables XTn
and VTn

3.1 The embedded Markov chain

In this section, the goal is to obtain a control of the speed of convergence of the stochastic
billiard Markov chain on the circle. For this purpose, we study the distribution of the position
of the Markov chain at each step.

Let Φ0 = φ0 ∈ [0, 2π).

Proposition 3.2. Let (Φn)n≥0 be the stochastic billiard Markov chain evolving on ∂Br, satis-
fying assumption (H′).
We have

fΦ1
(u) ≥ fmin

2
, ∀u ∈ I1 = [π − θ∗ + φ0, π + θ∗ + φ0] .

Moreover, for all n ≥ 2, for all η2, · · · , ηn such that η2 ∈ (0, 2θ∗), and for k ∈ {2, · · · , n− 1},
ηk+1 ∈

(

0, nθ∗ −∑n−1
k=2 ηk

)

, we have

fΦn
(u) ≥

(

fmin

2

)n

ηn · · · η2,

∀u ∈ In =

[

(n− 1)π − nθ∗ + φ0 +
n
∑

k=2

ηk, (n− 1)π + nθ∗ + φ0 −
n
∑

k=2

ηk

]

.

Proof. Since the Markov chain is totally symmetric, we do the computations with φ0 = 0.

• Case n = 2:
We have, thanks to (1), Φ1 = π+2Θ0+φ0 = π+2Θ0. Thus, for any measurable bounded
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function g, we get:

E [g(Φ1)] = E [g (π + 2Θ0)] =

∫ π
2

−π
2

g (π + 2x) f(x)dx

≥ fmin

∫ θ∗

2

− θ∗

2

g (π + 2x) dx =
fmin

2

∫ π+θ∗

π−θ∗
g(u)du.

We deduce:

fΦ1
(u) ≥ fmin

2
, ∀u ∈ [π − θ∗, π + θ∗] .

• Induction: let suppose that for some n ≥ 1, fΦn
(u) ≥ cn for all u ∈ [an, bn]. Then,

using the relationship (1) and the independence between Θn and Φn we have, for any
measurable bounded function g:

E [g(Φn+1)] = E [g(π + 2Θn + Φn)]

≥ fmincn

∫ θ∗

2

− θ∗

2

∫ bn

an

g(π + 2θ + x)dxdθ.

Using the substitution u = π + 2θ + x in the integral with respect to x and Fubini’s
theorem, we have:

E [g(Φn+1)] ≥ fmincn

∫ π+θ∗+bn

π−θ∗+an

(

∫ θ∗

2

− θ∗

2

1 1

2
(u−π−bn)≤θ≤ 1

2
(u−π−an)

)

g(u)du,

and we deduce the following lower bound of the density function fΦn+1
of Φn+1:

fΦn+1
(u) ≥ fmincn

∣

∣

∣

∣

[

−θ
∗

2
,
θ∗

2

]

∩
[

1

2
(u− π − bn) ,

1

2
(u− π − an)

]∣

∣

∣

∣

,

for all u ∈ [π − θ∗ + an, π + θ∗ + bn].
When u is equal to one extremal point of this interval, this lower bound is equal to 0. How-
ever, let ηn+1 ∈

(

0, 1
2
(bn − an)

)

, we have, for u ∈ [π − θ∗ + an + ηn+1, π + θ∗ + bn − ηn+1]:

fΦn+1
(u) ≥ fmincn

ηn+1

2
.

The results follows immediately.

By choosing a constant sequence for the ηk, k ≥ 2 in the Proposition 3.2, we immediately
deduce:

Corollaire 3.3. For all n ≥ 2, for all ε ∈ (0, θ∗), we have

fΦn
(u) ≥

(

fmin

2

)n

εn−1,

∀u ∈ Jn = [(n− 1)π − nθ∗ + φ0 + (n− 1)ε, (n− 1)π + nθ∗ + φ0 − (n− 1)ε].

Let (Jn)n≥2 defined as in Corollary 3.3. We put J1 = I1 with I1 defined in Proposition 3.2.
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Theorem 3.4. Let (Φn)n≥0 be the stochastic billiard Markov chain on the circle ∂Br, satisfying
assumption (H′).
There exists a unique invariant probability measure ν on [0, 2π) for the Markov chain (Φn)n≥0,
and we have:

1. if θ∗ > π
2
, for all n ≥ 0,

‖P (Φn ∈ ·)− ν‖TV≤ (1− fmin(2θ
∗ − π))n−1 ,

2. if θ∗ ≤ π
2
, for all n ≥ 0 and all ε ∈ (0, θ∗),

‖P (Φn ∈ ·)− ν‖TV≤ (1− α)
n
n0

−1
,

where

n0 =

⌊

π − 2ε

2(θ∗ − ε)

⌋

+ 1 and α =
(ε

2

)n0−1

fmin
n0 (2n0θ

∗ − 2(n0 − 1)ε− π) .

Proof. The existence of the invariant measure is immediate thanks to the compactness of ∂Br

(see [4]). The following proof leads to its uniqueness and the speed of convergence.
Let (Φn,Θn)n≥0 and (Φ̃n, Θ̃n)n≥0 be two versions of the process described above, with initial
positions φ0 and φ̃0 on ∂Br.
In order to couple Φn and Φ̃n at some time n, it is sufficient to show that the intervals Jn

and J̃n corresponding to Corollary 3.3 have a non empty intersection. Since these intervals are
included in [0, 2π), a sufficient condition to have Jn ∩ J̃n 6= ∅ is that the length of these two
intervals is strictly bigger than π.

Let ε ∈ (0, θ∗). We have

|J1|= |J̃1|= 2θ∗,

and for n ≥ 2,
|Jn|= |J̃n|= 2nθ∗ − 2(n− 1)ε.

Therefore the length of Jn is a strictly increasing function of n (which in intuitively clear).

• Case 1: θ∗ > π
2
. In that case we have |J1|= |J̃1|> π. Therefore we can construct a

coupling
(

Φ1, Φ̃1

)

such that we have, using Proposition 3.2:

P

(

Φ1 = Φ̃1

)

≥ fmin

2

∣

∣

∣
J1 ∩ J̃1

∣

∣

∣

≥ fmin

2
2(2θ∗ − π)

= fmin(2θ
∗ − π).

• Case 2: θ∗ ≤ π
2
. Here we need more jumps before having a positive probability to couple

Φn and Φ̃n. Let thus define

n0 = min{n ≥ 2 : 2nθ∗ − 2(n− 1)ε > π} =

⌊

π − 2ε

2(θ∗ − ε)

⌋

+ 1.
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Using the lower bound of the density function of Φn0
obtained in Corollary 3.3, we deduce

that we can construct a coupling
(

Φn0
, Φ̃n0

)

such that:

P

(

Φn0
= Φ̃n0

)

≥
(

fmin

2

)n0

εn0−1
∣

∣

∣
Jn0

∩ J̃n0

∣

∣

∣

≥
(

fmin

2

)n0

εn0−12 (2n0θ
∗ − 2(n0 − 1)ε− π)

=
(ε

2

)n0−1

(fmin)
n0 (2n0θ

∗ − 2(n0 − 1)ε− π) .

To treat both cases together, let define

m0 = 1θ∗>π
2
+

(⌊

π − 2ε

2(θ∗ − ε)

⌋

+ 1

)

1θ∗≤π
2
.

and

α = fmin(2θ
∗ − π)1θ∗>π

2
+
(ε

2

)m0−1

(fmin)
m0 (2m0θ

∗ − 2(m0 − 1)ε− π)1θ∗≤π
2
.

We get:

‖P (Φn ∈ ·)− ν‖TV ≤ P

(

Φn 6= Φ̃n

)

≤ P

(

Φ⌊ n
m0

⌋m0
6= Φ̃⌊ n

m0
⌋m0

)

≤ (1− α)
⌊ n
m0

⌋

≤ (1− α)
n

m0
−1
.

3.2 The continuous-time process

We assume here that the constant θ∗ introduced in Assumption (H′) satisfies

θ∗ ∈
(

2π

3
, π

)

.

This condition on θ∗ is essential in the proof of Theorem 3.7 to couple our processes with "two
jumps". However, if θ∗ ∈

(

0, 2π
3

]

we can adapt our method (see Remark 3.9).

Notation: Let x ∈ ∂Br . We write T x
n an Φx

n respectively for the hitting time of ∂Br and
the position of the Markov chain after n steps, and that started at position x.
Let us remark that the distribution of T x

n does not depend on x since we consider here the
stochastic billiard in the disc, which is rotationally symmetric. Therefore, we allow us to omit
this x when it is not necessary for the comprehension.

Proposition 3.5. Let (Xt, Vt)t≥0 be the stochastic billiard process in the ball Br satisfying
Assumption (H′) with θ∗ ∈

(

2π
3
, π
)

.

We denote by fT2
the density function of T2. Let η ∈

(

0, 2r
(

1− cos
(

θ∗

2

)))

. We have

fT2
(x) ≥ δ for all x ∈ [4r cos

(

θ∗

2

)

+ η, 4r − η],
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where

δ =
2f 2

min

r sin
(

θ∗

2

) min

{

θ∗

2
− arccos

(

cos

(

θ∗

2

)

+
η

2r

)

; arccos
(

1− η

2r

)

}

. (2)

Proof. If the density function f is supported on
[

−θ∗

2
, θ

∗

2

]

, it is immediate to observe that

4r cos
(

θ∗

2

)

≤ T2 ≤ 4r. But let be more precise.
Let g : R → R be a bounded measurable function. Let us recall that, thanks to (1), T2 =
2r (cos(Θ1) + cos(Θ2)) with Θ1,Θ2 two independent random variables with density function f .
We have, using Assumption (H′):

E [g(T2)] = E [g (2r (cos(Θ1) + cos(Θ2)))]

≥ f 2
min

∫ θ∗

2

− θ∗

2

∫ θ∗

2

− θ∗

2

g (2r (cos(u) + cos(v))) dudv

= 4f 2
min

∫ θ∗

2

0

∫ θ∗

2

0

g (2r (cos(u) + cos(v))) dudv.

The substitution x = 2r (cos(u) + cos(v)) in the integral with respect to u gives then:

E [g(T2)] ≥ 4f 2
min

∫ θ∗

2

0

∫ 2r(1+cos(v))

2r(cos( θ∗

2 )+cos(v))
g(x)

1

2r sin
(

arccos
(

x
2r

− cos(v)
))dxdv.

Fubini’s theorem leads to

E [g(T2)] ≥
2f 2

min

r

∫ 4r

4r cos( θ∗

2 )





∫ θ∗

2

0

1
√

1−
(

x
2r

− cos(v)
)2
1 x

2r
−1<cos(v)< x

2r
−cos( θ∗

2 )
dv



 g(x)dx.

We then deduce a lower-bound for the density function of T2:

fT2
(x) ≥ 2f 2

min

r

∫ θ∗

2

0

1
√

1−
(

x
2r

− cos(v)
)2
1 x

2r
−1<cos(v)< x

2r
−cos( θ∗

2 )
dv1

x∈(4r cos( θ∗

2 ),4r)
.

Let x ∈
(

4r cos
(

θ∗

2

)

, 4r
)

. Cutting the interval
(

4r cos
(

θ∗

2

)

, 4r
)

at point 2r
(

1 + cos
(

θ∗

2

))

, we
get:

fT2
(x) ≥ 2f 2

min

r

∫ θ∗

2

0

1
√

1−
(

x
2r

− cos(v)
)2
1 x

2r
−1<cos(v)< x

2r
−cos( θ∗

2 )
dv1

x∈(4r cos( θ∗

2 ),2r(1+cos( θ∗

2 ))]

+
2f 2

min

r

∫ θ∗

2

0

1
√

1−
(

x
2r

− cos(v)
)2
1 x

2r
−1<cos(v)< x

2r
−cos( θ∗

2 )
dv1

x∈[2r(1+cos( θ∗

2 )),4r)

=
2f 2

min

r

∫ θ∗

2

arccos( x
2r

−cos( θ∗

2 ))

1
√

1−
(

x
2r

− cos(v)
)2
dv1

x∈(4r cos( θ∗

2 ),2r(1+cos( θ∗

2 ))]

+
2f 2

min

r

∫ arccos( x
2r

−1)

0

1
√

1−
(

x
2r

− cos(v)
)2
dv1

x∈[2r(1+cos( θ∗

2 )),4r)
.
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Then, for v ∈
(

arccos
(

x
2r

− cos
(

θ∗

2

))

, θ
∗

2

)

we have cos(v) ≤ x
2r

− cos
(

θ∗

2

)

, and for
v ∈

(

0, arccos
(

x
2r

− 1
))

we have cos(v) ≤ 1. We thus have:

fT2
(x) ≥ 2f 2

min

r sin
(

θ∗

2

)

(

θ∗

2
− arccos

(

x

2r
− cos

(

θ∗

2

)))

1
x∈(4r cos( θ∗

2 ),2r(1+cos( θ∗

2 ))]

+
2f 2

min

r

arccos
(

x
2r

− 1
)

√

x
r

(

1− x
4r

)

1
x∈[2r(1+cos( θ∗

2 )),4r)
.

We can observe than the lower bound of fT2
is strictly positive for x ∈

(

4r cos
(

θ∗

2

)

, 4r
)

, but
is equal to 0 when x is one of the extremal points of this interval. Let therefore introduce
η ∈

(

0, 2r
(

1− cos
(

θ∗

2

)))

. We have:

• for x ∈ [4r cos
(

θ∗

2

)

+ η, 2r
(

1 + cos
(

θ∗

2

))

] we have

2f 2
min

r sin
(

θ∗

2

)

(

θ∗

2
− arccos

(

x

2r
− cos

(

θ∗

2

)))

≥ 2f 2
min

r sin
(

θ∗

2

)

(

θ∗

2
− arccos

(

4r cos
(

θ∗

2

)

+ η

2r
− cos

(

θ∗

2

)

))

=
2f 2

min

r sin
(

θ∗

2

)

(

θ∗

2
− arccos

(

cos

(

θ∗

2

)

+
η

2r

))

• for x ∈
[

2r
(

1 + cos
(

θ∗

2

))

, 4r − η
]

we have

2f 2
min

r

arccos
(

x
2r

− 1
)

√

x
r

(

1− x
4r

)

≥ 2f 2
min

r

arccos
(

4r−η

2r
− 1
)

√

2r(1+cos( θ∗

2 ))
r

(

1− 2r(1+cos( θ∗

2 ))
4r

)

=
2f 2

min

r

arccos
(

1− η

2r

)

√

(

1 + cos
(

θ∗

2

)) (

1− cos
(

θ∗

2

))

=
2f 2

min

r sin
(

θ∗

2

) arccos
(

1− η

2r

)

.

The result follows immediately.

Notation: For x ∈ ∂Br, we denote by ϕx the unique angle in [0, 2π) describing the position
of x on ∂Br .

Proposition 3.6. Let (Xt, Vt)t≥0 be the stochastic billiard process in Br satisfying Assumption
(H′) with θ∗ ∈

(

2π
3
, π
)

.

For all ε ∈
(

0, θ
∗

4

)

, the pair (Φx
2 , T

x
2 ) is

f2
min

2r sin( θ∗

4 )
-continuous on (ϕx − θ∗ + 4ε, ϕx + θ∗ − 4ε)×

(

2r cos
(

θ∗

4

)

, 2r cos
(

θ∗

4
− ε
))

for all x ∈ ∂B(0, r).
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Proof. By symmetry of the process, it is sufficient to prove the lemma for x ∈ ∂Br such that
ϕx = 0, what we do.
Let ε ∈

(

0, π
4

)

, A ⊂ (−θ∗ + 4ε, θ∗ − 4ε) and (r1, r2) ⊂
(

2r cos
(

θ∗

4

)

, 2r cos
(

θ∗

4
− ε
))

.
Let us recall that Φ0

2 = 2Θ1+2Θ2 and T 0
2 = 2r(cos(Θ1)+cos(Θ2)), where Θ1,Θ2 are independent

variables with density function f . We thus have:

P
(

Φ0
2 ∈ A, T 0

2 ∈ (r1, r2)
)

= P (2Θ1 + 2Θ2 ∈ A, 2r(cos(Θ1) + cos(Θ2)) ∈ (r1, r2))

=

∫ π
2

−π
2

∫ π
2

−π
2

12u+2v∈A1cos(u)+cos(v)∈( r1
2r

,
r2
2r )
f(u)f(v)dudv

≥ f 2
min

∫ θ∗

2

− θ∗

2

∫ θ∗

2

− θ∗

2

1u+v
2

∈A
4

1cos(u+v
2 ) cos(u−v

2 )∈( r1
4r

,
r2
4r )

dudv.

Let us consider

g : (u, v) ∈
[

−θ
∗

2
,
θ∗

2

]2

7−→
(

u+ v

2
,
u− v

2

)

.

We have
[

−θ
∗

4
,
θ∗

4

]2

⊂ g

(

[

−θ
∗

2
,
θ∗

2

]2
)

,

and

|det Jacg| =
1

2
.

With this substitution, and using Fubini’s theorem, we get:

P
(

Φ0
2 ∈ A, T 0

2 ∈ (r1, r2)
)

≥ f 2
min

∫ θ∗

4

− θ∗

4

∫ θ∗

4

− θ∗

4

1x∈A
4

1cos(x) cos(y)∈( r1
4r

,
r2
4r )

2dxdy

= 4f 2
min

∫ θ∗

4

− θ∗

4

∫ θ∗

4

0

1cos(x) cos(y)∈( r1
4r

,
r2
4r )

dy1x∈A
4

dx.

We now do the substitution z = cos(x) cos(y) in the integral with respect to dy:

P
(

Φ0
2 ∈ A, T 0

2 ∈ (r1, r2)
)

≥ 4f 2
min

∫ θ∗

4

− θ∗

4

∫ cos(x)

cos( θ∗

4 ) cos(x)
1
z∈( r1

2r
,
r2
2r )

1
√

cos2(x)− z2
dz1x∈A

4

dx

≥ 4f 2
min

∫ θ∗

4

− θ∗

4

∫ cos(x)

cos( θ∗

4 ) cos(x)
1
z∈( r1

2r
,
r2
2r )

1

sin
(

θ∗

4

)dz1x∈A
4

dx

≥ 4f 2
min

sin
(

θ∗

4

)

∫ θ∗

4
−ε

− θ∗

4
+ε

∫ cos( θ∗

4
−ε)

cos( θ∗

4 )
1
z∈( r1

2r
,
r2
2r )

dz1x∈A
4

dx

=
f 2
min

2r sin
(

θ∗

4

)(r2 − r1) |A| ,
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where we have used for the last equality the fact that A ⊂ [−θ∗ + 4ε, θ∗ − 4ε) and (r1, r2) ⊂
(

2r cos
(

θ∗

4

)

, 2r cos
(

θ∗

4
− ε
))

.
This ends the proof.

Let fix η ∈ (0, r
(

1− 2 cos
(

θ∗

2

))

) and ε ∈
(

0, 2θ
∗−π
8

)

(the condition θ∗ > 2π
3

ensures that we
can take such η and ε).
Let define

h = 4r

(

1− cos

(

θ∗

2

))

− 2η − 2r = 2r

(

1− 2 cos

(

θ∗

2

))

− 2η > 0 (3)

and

α =
f 2
min

2r sin
(

θ∗

4

)(4θ∗ − 2π − 16ε)2r

(

cos

(

θ∗

4
− ε

)

− cos

(

θ∗

4

))

=
f 2
min

sin
(

θ∗

4

)(4θ∗ − 2π − 16ε)

(

cos

(

θ∗

4
− ε

)

− cos

(

θ∗

4

))

(4)

Theorem 3.7. Let (Xt, Vt)t≥0 be the stochastic billiard process in Br satisfying Assumption
(H′) with θ∗ ∈

(

2π
3
, π
)

.
There exists a unique invariant probability measure on Br × S

1 for the process (Xt, Vt)t≥0.
Moreover let η ∈ (0, r

(

1− 2 cos
(

θ∗

2

))

) and ε ∈
(

0, 2θ
∗−π
8

)

. For all t ≥ 0 and all λ < λM we
have

‖P (Xt ∈ ·, Vt ∈ ·)− χ‖TV≤ Cλe
−λt,

where

λM = min

{

1

4r
log

(

1

1− δh

)

;
1

4r
log

(

−(1− δh) +
√

(1− δh)2 + 4δh(1− α)

2δh(1− α)

)}

. (5)

and

Cλ =
αδhe10λr

1− e4λr(1− δh)− e8λrδh(1− α)
,

with δ, h and α respectively given by (2), (3) and (4).

Remark 3.8. The following proof of this theorem is largely inspired by the proof of Theorem
2.2 in [2].

Proof. The existence of the invariant probability measure comes from the compactness of the
space Br × S

1. The following proof show its uniqueness and gives the speed of convergence of
the stochastic billiard to equilibrium.
Let (Xt, Vt)t≥0 and (X̃t, Ṽt)t≥0 be two versions of the stochastic billiard with (X0, V0) = (x0, v0) ∈
Br × S

1 and (X̃0, Ṽ0) = (x̃0, ṽ0) ∈ Br × S
1.

We recall the definition of T0 and T̃0 and define w, w̃ as follows:

T0 = inf{t ≥ 0 : x0 + tv0 /∈ K}, w = x0 + T0v0 ∈ ∂Br,

and

T̃0 = inf{t ≥ 0 : x̃0 + tṽ0 /∈ K}, w̃ = x̃0 + T̃0ṽ0 ∈ ∂Br.
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We are going to couple (Xt, Vt) and (X̃t, Ṽt) in two steps: we first couple the times, so that the
two processes hit ∂Br at a same time, and then we couple both position and time.
In the sequel, we write Xa

Tn
or X̃a

Tn
for the position of the Markov chain at time Tn when it

starts at position a ∈ ∂Br. Similarly, we write T a
n and T̃ a

n for the successive hitting times of
∂Br of the processes.

Step 1. Proposition 3.5 ensures that Tw
2 and T̃ w̃

2 are both δ-continuous on [4r cos
(

θ∗

2

)

+η, 4r−η].
Therefore, the variables T0 + Tw

2 and T̃0 + T̃ w̃
2 are δ-continuous on

[T0 + 4r cos
(

θ∗

2

)

+ η, T0 + 4r − η] ∩ [T̃0 + 4r cos
(

θ∗

2

)

+ η, T̃0 + 4r − η], with
∣

∣

∣
[T0 + 2r cos

(

θ∗

2

)

+ η, T0 + 4r − η] ∩ [T̃0 + 2r cos
(

θ∗

2

)

+ η, T̃0 + 4r − η]
∣

∣

∣
≥ h since |T0−T̃0|≤ 2r.

Note that the condition θ∗ > 2π
3

has been introduced to ensure that this intersection is non-
empty.
Thus, there exists a coupling of T0 + Tw

2 and T̃0 + T̃ w̃
2 such that

P (E1) ≥ δh,

where
E1 =

{

T0 + Tw
2 = T̃0 + T̃ w̃

2

}

.

On the event E1 we define T 1
c = T0 + Tw

2 .
On the event Ec

1, we can suppose, by symmetry that T0 + Tw
2 ≤ T̃0 + T̃ w̃

2 . In order to try again
to couple the hitting times, we need to begin at times whose difference is smaller than 2r. Let
thus define

m1 = min
{

n > 0 : T0 + Tw
2 + T

XT0+Tw
2

n > T̃0 + T̃ w̃
2

}

and m̃1 = 0.

We then have

∣

∣

∣

∣

(

T0 + Tw
2 + T

XT0+Tw
2

m1

)

−
(

T̃0 + T̃ w̃
2 + T̃

X̃
T̃0+T̃ w̃

2

m̃1

)∣

∣

∣

∣

≤ 2r.

Defining

Z0 = XT0+Tw
2
, Z1 = X

T0+Tw
2
+T

Z0
m1

, Z̃0 = X̃T̃0+T̃ w̃
2
, Z̃1 = X̃

T̃0+T̃ w̃
2
+T̃

Z̃0
m̃1

,

we obtain as previously:
P (E2|Ec

1) ≥ δh,

where
E2 =

{

T0 + Tw
2 + TZ0

m1
+ TZ1

2 = T̃0 + T̃ w̃
2 + T̃ Z̃0

m̃1
+ T̃ Z̃1

2

}

.

On the event Ec
1 ∩E2 we define T 1

c = T0 + Tw
2 + TZ0

m1
+ TZ1

2 . We thus have T 1
c

L
= T0 +R1 +R2,

with R1, R2 independent variables with distribution fT2
.

We then repeat the same procedure. We thus construct two sequences of stopping times
(mk)k≥1, (m̃k)k≥1 and a sequence of events (Ek)k≥1 satisfying

P
(

Ek|Ec
1 ∩ · · · ∩ Ec

k−1

)

≥ δh.

On the event Ec
1∩· · ·∩Ec

k−1∩Ek we define T 1
c as previously, and we have T 1

c

L
= T0+R

1+· · ·+Rk

with R1, · · · , Rk independent variables with distribution fT2
. By construction, T 1

c is the cou-
pling time of the hitting times of the boundary.
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Step 2. Let us now work conditionally on T 1
c .

Let define y = Xw
T 1
c

and ỹ = X̃ w̃
T 1
c

in order to simplify the notations. By construction of T 1
c , y

and ỹ are on ∂Br. We define N1
c = min

{

n > 0 : Xw
Tn

= y
}

, i.e. T 1
c is the time at which the

chain starting at w hit the boundary for the N1
c -th time.

Proposition 3.6 ensures that the couples
(

Xy
T2
, T y

2

)

and
(

X̃ ỹ
T2
, T̃ X̃y

2

)

are both
f2
min

2r sin( θ∗

4 )
-continuous

on the set ((ϕy − θ∗ + 4ε, ϕy + θ∗ − 4ε) ∩ (ϕỹ − θ∗ + 4ε, ϕỹ + θ∗ − 4ε))×
(

2
√
2r, 4 cos

(

π
4
− ε
)

r
)

,
with |(ϕy − θ∗ + 4ε, ϕy + θ∗ − 4ε) ∩ (ϕỹ − θ∗ + 4ε, ϕỹ + θ∗ − 4ε)| ≥ 4θ∗ − 2π − 16ε. Note that
the condition θ∗ > 2π

3
implies in particular that the previous intersection in non-empty.

Therefore we can construct a coupling such that

P

(

F |Ec
1 ∩ · · · ∩ Ec

N1
c−1 ∩ EN1

c

)

≥ α,

where
F =

{

Xy
T2

= X̃ ỹ
T2

and T y
2 = T̃ ỹ

2

}

.

On the event F we define Tc = T 1
c + T y

2 .
If F does not occur, we can not directly try to couple both position and time since the two
processes have not necessarily hit ∂Br at the same time. We thus have to couple first the hitting
times, as we have done in step 1.

Let suppose that on
(

Ec
1 ∩ · · · ∩ Ec

N1
c−1 ∩ EN1

c

)

∩ F c, we have T y
2 ≤ T̃ ỹ

2 (the other case can be

treated in the same way thanks to the symmetry of the problem). Let define

ℓ = min

{

n > 0 : T y
2 + T

X
T
y
2

n > T̃ ỹ
2

}

and ℓ̃ = 0

We clearly have

∣

∣

∣

∣

∣

T y
2 + T

X
T
y
2

ℓ −
(

T̃ ỹ
2 + T̃

X̃
T̃
ỹ
2

ℓ̃

)∣

∣

∣

∣

∣

≤ 2r. Therefore, we can start again: we try to

couple the times at which the two processes hit the boundary, and then to couple the positions
and times together.

Finally, the probability that we succeed to couple the positions and times in "one step" is:

P

((

∪
k≥1

(

Ec
1 ∩ · · · ∩ Ec

k−1 ∩ Ek

)

)

∩ F
)

= P

(

F

∣

∣

∣

∣

∪
k≥1

(

Ec
1 ∩ · · · ∩ Ec

k−1 ∩ Ek

)

)

P

(

∪
k≥1

(

Ec
1 ∩ · · · ∩ Ec

k−1 ∩ Ek

)

)

= P

(

F

∣

∣

∣

∣

∪
k≥1

(

Ec
1 ∩ · · · ∩ Ec

k−1 ∩ Ek

)

)

≥ α.

Thus, the coupling time T̂ of the couples position-time satisfies:

T̂ ≤st T0 +

G
∑

k=1









Gk
∑

l=1

T k,l



 + T k
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where G ∼ G (α), G1, G2, · · · ∼ G (δh) are independent geometric variables, and
(

T k,l
)

k,l≥1
,

(

T k
)

k≥1
are independent random variables, independent from the geometric variables, with

distribution fT2
.

Let λ ∈ (0, λM), with λM defined in equation (5). Since all the random variables T k,l and T k,
k, l ≥ 1, are almost surely smaller than two times the diameter of the ball Br, and since T0 is
almost surely smaller than this diameter, we have:

P

(

T̂ > t
)

≤ e−λt
E

[

eλT̂
]

≤ eλ(T0−t)
E



exp



λ

G
∑

k=1









Gk
∑

l=1

T k,l



+ T k













≤ eλ(2r−t)
E





G
∏

k=1









Gk
∏

l=1

exp (λ4r)



 exp (λ4r)









= eλ(2r−t)
E

[

G
∏

k=1

E

[

e4λr(G
k+1)

]

]

.

Now, using the expression of generating function of a geometric random variable we get:

P

(

T̂ > t
)

≤ eλ(2r−t)
E

[

G
∏

k=1

( ∞
∑

l=1

e4λr(l+1)δh(1− δh)l−1

)]

= eλ(2r−t)
E

[

(

e8λrδh

1− e4λr(1− δh)

)G
]

= eλ(2r−t) αe8λrδh

1− e4λr(1− δh)

1

1− e8λrδh(1−α)
1−e4λr(1−δh)

= e−λt αe10λrδh

1− e4λr(1− δh)− e8λrδh(1− α)
.

This calculations are valid for λ > 0 such that the generating functions are well defined,
that is for λ > 0 satisfying

e4λr(1− δh) < 1 and
e8λrδh(1− α)

1− e4λr(1− δh)
< 1.

The first condition is equivalent to λ < 1
4r
log
(

1
1−δh

)

.

The second condition is equivalent to δh(1−α)s2+(1−δh)s−1 < 0 with s = e4λr. It gives s1 <

s < s2 with s1 =
−(1−δh)−

√
∆

2δh(1−α)
< 0 and s2 =

−(1−δh)+
√
∆

2δh(1−α)
> 1 where ∆ = (1−δh)2+4δh(1−α) > 0.

And finally we get λ < 1
4r
log (s2).

Therefore, the estimation for P

(

T̂ > t
)

is indeed valid for all λ ∈ (0, λM). The conclusion of

the theorem follows immediately.

Remark 3.9. If θ∗ ∈
(

0, 2π
3

]

, Step 1 of the proof of Theorem 3.7 fails: the intervals on which

the random variables T0 + Tw
2 and T̃0 + T̃ w̃

2 are continuous can have an empty intersection.
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Similarly, in Step 2, the intersection of the intervals on which the couples

(

X
Xw

T1
c

T2
, T

Xw

T1
c

2

)

and
(

X̃
X̃w̃

T1
c

T2
, T̃

X̃w̃

T1
c

2

)

are continuous can be empty if θ∗ ≤ π
2
.

However, instead of trying to couple the times or both positions and times in two jumps, we
just need more jumps to do that. Therefore, the method and the results are similar in the case
θ∗ ≤ 2π

3
, the only difference is that the computations and notations will be much more awful.

4 Stochastic billiard in a convex set with bounded curva-

ture

We make the following assumption on the set K in which the stochastic billiard evolves:

Assumption (K):

K is a compact convex set with curvature bounded from above by C < ∞ and
bounded from below by c > 0.

This means that for each x ∈ ∂K, there is a ball B1 with radius 1
C

included in K and a ball B2

containing K, so that the tangent planes of K, B1 and B2 at x coincide (see Figure 4). In fact,
for x ∈ ∂K, the ball B1 is the ball with radius 1

C
and with center the unique point at distance

1
C

from x in the direction of nx. And B2 is the one with the center at distance 1
c

from x in the
direction of nx.

In this section, we consider the stochastic billiard in such a convex K.
Let us observe that the case of the disc is a particular case. Moreover, Assumption (K) excludes
in particular the case of the polygons: because of the upper bound C on the curvature, the
boundary of K can not have "corners", and because of the lower bound c, the boundary can
not have straight lines.

In the following, D will denote the diameter of K, that is

D = max{‖x− y‖: x, y ∈ ∂K}.

4.1 The embedded Markov chain

Notation: We define lx,y = y−x

‖x−y‖ = −ly,x and we denote by ϕx,y the angle between lx,y and

the normal nx to ∂K at the point x (see Figure 5).

The following property, proved by Comets and al. in [2], gives the dynamics of the Markov
chain (XTn

)n≥0 defined in Section 2.2

Proposition 4.1. The transition kernel of the chain (XTn
)n≥0 is given by:

P
(

XTn+1
∈ A |XTn

= x
)

=

∫

A

Q(x, y)dy

where

Q(x, y) =
ρ(U−1

x lx,y) cos(ϕy,x)

‖x− y‖ .
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x K1
C

1
c

B1

B2

Figure 4: Illustration of Assumption (K)

x

y
ϕy,x

ϕx,y

ly,x

K

Figure 5: Definition of the quantities ϕx,y and ly,x for x, y ∈ ∂K

20



This proposition is one of the main ingredients to obtain the exponentially-fast convergence
of the stochastic billiard Markov chain towards its invariant probability measure.

Theorem 4.2. Let K ∈ R
2 satisfying Assumption (K) with diameter D. Let (XTn

)n≥0 be the
stochastic billiard Markov chain on ∂K verifying Assumption (H).
There exists a unique invariant measure ν on ∂K for (XTn

)n≥0.
Moreover, recalling that θ∗ = |J | in Assumption (H), we have:

1. if θ∗ > C|∂K|
8

, for all n ≥ 0,

‖P (XTn
∈ ·)− ν‖TV≤

(

1− qmin

(

8θ∗

C
− |∂K|

))n−1

;

2. if θ∗ ≤ C|∂K|
8

, for all n ≥ 0 and all ε ∈
(

0, 2θ
∗

C

)

,

‖P (XTn
∈ ·)− ν‖TV≤ (1− α)

n
n0

−1

where

n0 =

⌊

|∂K|
2

− 2ε
4θ∗

C
− 2ε

⌋

+ 1 and α = (
4θ∗

C
)n0−1qmin

n0

(

4

(

2n0θ
∗

C
− (n0 − 1)ε

)

− |∂K|
)

with

qmin =
cρmin cos

(

θ∗

2

)

CD
.

Proof. Once more, the existence of the invariant measure is immediate since the state space
∂K of the Markov chain is compact. The following shows its uniqueness and gives the speed
of convergence of (XTn

)n≥0 towards ν.
Let (XTn

)n≥0 and (X̃Tn
)n≥0 be two versions of the Markov chain with initial conditions x0 and

x̃0 on ∂K. In order to have a strictly positive probability to couple XTn
and X̃Tn

at time n, it is
sufficient that their density functions are bounded from below on an interval of length strictly
bigger than |∂K|

2
. Let us therefore study the length of set on which fXTn

is bounded from below
by a strictly positive constant.
Let x ∈ ∂K. For v ∈ Sx, we denote by hx(v) the unique point on ∂K seen from x in the
direction of v. We firstly get a lower bound on |hx(UxJ )|, the length of the subset of ∂K seen
from x with a strictly positive density.
It is easy to observe, with a drawing for instance, the following facts:

• |hx(UxJ )| increases when ‖x− hx(nx)‖ increases,

• |hx(UxJ )| decreases when the curvature at hx(nx) increases,

• |hx(UxJ )| decreases when |ϕhx(nx),x| increases.

Therefore, |hx(UxJ )| is minimal when ‖x−hx(nx)‖ is minimal, when the curvature at hx(nx) is
maximal, and then equal to C, and finally when ϕhx(nx),x = 0. Moreover, the minimal value of
‖x− hx(nx)‖ is 2

C
since C is the upper bound for the curvature of ∂K. The configuration that
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y = hx(nx)

x

θ∗

hx(UxJ )

2
C

Figure 6: Worst scenario for the length of hx(UxJ )

makes the quantity |hx(UxJ )| minimal is thus the case where x and hx(nx) define a diameter
on a circle of diameter 2

C
(see Figure 6). We immediately deduce a lower bound for |hx(UxJ )|:

|hx(UxJ )|≥ 2θ∗ × 2

C
=

4θ∗

C
.

This means that the density function fXT1
of XT1

is strictly positive on a subset of ∂K of

length at least 4θ∗

C
.

Let now ε ∈
(

0, 2θ
∗

C

)

. As it has been done in Section 3 for the disc, we can deduce that for all
n ≥ 2, the density function fXTn

is strictly positive on a set of length at least 2nθ∗ 2
C
−2(n−1)ε =

4nθ∗

C
− 2(n− 1)ε.

Let define, for x ∈ ∂K and n ≥ 1, J n
x the set of points of ∂K that can be reached from x in n

bounces by picking for each bounce a velocity in J .
We now separate the cases where we can couple in one jump, and where we need more jumps.

• Case 1: θ∗ > C|∂K|
8

. In that case we have, for all x ∈ ∂K, |J 1
x |≥ 4θ∗

C
> |∂K|

2
, and we can

thus construct a coupling (XT1
, X̃T1

) such that:

P

(

XT1
= X̃T1

)

≥ qmin

∣

∣

∣
J 1

x0
∩ J̃ 1

x̃0

∣

∣

∣
≥ qmin × 2

(

4θ∗

C
− |∂K|

2

)

= qmin

(

8θ∗

C
− |∂K|

)

,

where qmin is a uniform lower bound of Q(a, b) with a ∈ ∂K and b ∈ ha(UaJ ), i.e.

qmin ≤ min
a∈∂K,b∈ha(UaJ )

Q(a, b).

Let thus give an explicit expression for qmin. Let a ∈ ∂K and b ∈ ha(UaJ ). We have

Q(a, b) ≥ ρmin cos (ϕb,a)

D
.

We could have cos (ϕb,a) = 0 if a and b were on a straight part of ∂K, which is not possible
since the curvature of K is bounded from below by c. Thus, the quantity cos (ϕb,a) is
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b
a

1
c

nb

δ

ϕb,a

K

a

b

θ∗

1
C

δmin

Figure 7: Illustration for the calculation of a lower bound for cos (ϕb,a) with a ∈ ∂K and
b ∈ ha(UaJ )

minimal when a and b are on a part of a disc with curvature c. In that case, cos (ϕb,a) =
δc
2
, where δ is the distance between a and b (see the first picture of Figure 7). Since

b ∈ ha(UaJ ), we have δ ≥ δmin :=
2 cos( θ∗

2 )
C

(see the second picture of Figure 7). Finally
we get

Q(a, b) ≥ cρmin cos
(

θ∗

2

)

CD
=: qmin.

• Case 2: θ∗ ≤ C|∂K|
8

. In that case, we need more than one jump to couple the two Markov
chains. Therefore, defining

n0 = min

{

n ≥ 2 :
4nθ∗

C
− 2(n− 1)ε >

∂K

2

}

=

⌊ |∂K|
2

− 2ε
4θ∗

C
− 2ε

⌋

+ 1,

we get that the intersection J n0

x0
∩ J̃ n0

x̃0
is non-empty, and then we can construct XTn0

and X̃Tn0
such that the probability P

(

XTn0
= X̃Tn0

)

is strictly positive. It remains to

estimate a lower bound of this probability.
First, we have

∣

∣

∣
J n0

x0
∩ J̃ n0

x̃0

∣

∣

∣
≥ 2

(

4n0θ
∗

C
− 2(n0 − 1)ε− |∂K|

2

)

= 4

(

2n0θ
∗

C
− (n0 − 1)ε

)

− |∂K|.
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Moreover, let x ∈ {x0, x̃0} and y ∈ J n0

x0
∩ J̃ n0

x̃0
. We have:

Qn0(x, y)

≥
∫

hx(UxJ )

∫

hz1
(Uz1

J )

· · ·
∫

hzn−2
(Uzn−2

J )

Q(x, z1)Q(z1, z2) · · ·Q(zn0−1, y)dz1dz2 · · ·dzn0−1

≥ (
4θ∗

C
)n0−1qmin

n0 .

We thus deduce:

P

(

XTn0
= X̃Tn0

)

≥ (
4θ∗

C
)n0−1qmin

n0

∣

∣

∣
J n0

x0
∩ J̃ n0

x̃0

∣

∣

∣

≥ (
4θ∗

C
)n0−1qmin

n0

(

4

(

2n0θ
∗

C
− (n0 − 1)ε

)

− |∂K|
)

.

We can now conclude, including the two cases: let define

m0 = 1
θ∗>

C|∂K|
8

+

(⌊

|∂K|
2

− 2ε
4θ∗

C
− 2ε

⌋

+ 1

)

1
θ∗≤C|∂K|

8

and

α = qmin

(

8θ∗

C
− |∂K|

)

1
θ∗>

C|∂K|
8

+(
4θ∗

C
)m0−1qmin

m0

(

4

(

2m0θ
∗

C
− (m0 − 1)ε

)

− |∂K|
)

1
θ∗≤C|∂K|

8

.

We have proved that we can construct a coupling
(

XTm0
, X̃Tm0

)

such that P
(

XTm0
= X̃Tm0

)

≥
α, and then we get

‖P (XTn
∈ ·)− ν‖TV≤ (1− α)

n
m0

−1
.

4.2 The continuous-time process

In this section, we suppose |J |= θ∗ = π.

Proposition 4.3. Let K ⊂ R
2 satisfying Assumption (K). Let (Xt, Vt)t≥0 the stochastic billiard

process evolving in K and verifying Assumption (H) with |J |= π.
For all x ∈ ∂K, the first hitting-time T x

1 of ∂K starting at point x is cρmin-continuous on
[

0, 2
C

]

.

Proof. Let x ∈ ∂K. Let us recall that the curvature of K is bounded from above by C, which
means that for each x ∈ ∂K, there is a ball B1 with radius 1

C
included in K so that the tangent

planes of K and B1 at x coincide. Therefore, starting from x, the maximal time to go on
another point of ∂K is bigger than 2

C
(the diameter of the ball B1).

That is why we are going to prove the continuity of T x
1 on the interval

[

0, 2
C

]

. Let thus
0 ≤ r ≤ R ≤ 2

C
.

Let Θ be a random variable living in
[

−π
2
, π
2

]

such that the velocity vector (cos(Θ), sin(Θ))
follows the law γ.
The time T x

1 being completely determined by the velocity V0 and thus by its angle with respect
to nx, it is clear that there exist −π

2
≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ π

2
such that we have:

P (T x
1 ∈ [r, R]) = P (Θ ∈ [θ1, θ2] ∪ [θ3, θ4]) .
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Then, thanks to assumption (H) on the law γ, and since we assume here that |J |= π, the
density function of Θ is bounded from below by ρmin on

[

−π
2
, π
2

]

. It gives:

P (T x
1 ∈ [r, R]) ≥ ρmin (θ2 − θ1 + θ4 − θ3) .

Moreover, since the curvature is bounded from below by c, there exists a ball B2 with radius 1
c

containing K so that the tangent planes of K and B2 at x coincide. And it is easy to see that
the differences θ2 − θ1 and θ4 − θ2 are larger than the difference α2 − α1 where α1 and α2 are
the angles corresponding to the distances r and R starting from x and to arrive on the ball B2.
The time of hitting the boundary of B2 is equal to d ∈

[

0, 2
C

]

if the angle between nx and the
velocity is equal to arccos

(

cd
2

)

. We thus deduce:

P (T x
1 ∈ [r, R]) ≥ 2ρmin

(

arccos
(cr

2

)

− arccos

(

cR

2

))

≥ 2ρmin

∣

∣

∣

∣

cr

2
− cR

2

∣

∣

∣

∣

= ρminc (R − r) ,

where we have used the mean value theorem for the second inequality.

Let us introduce some constants that will appear in the following results.
Let β > 0 and δ > 0 such that |∂K|

3
−max{2δ; β + δ} > 0.

Let ε ∈
(

0,min{β; 2
C
}
)

such that h > 0 where

h =
δ

D

(

βc

2

)2

− εM, (6)

with

M = 2

(

1
1
C
− ε

+
1

β − ε
+ C

)

. (7)

Let us remark that M is non decreasing with ε, so that it is possible to take ε small enough
to have h > 0.

Proposition 4.4. Let K ⊂ R
2 satisfying Assumption (K) with diameter D. Let (Xt, Vt)t≥0 the

stochastic billiard process evolving in K and verifying Assumption (H) with |J |= π.
Let x, x̃ ∈ ∂K with x 6= x̃.
There exist R1 > 0, R2 > 0 and J∗ ⊂ ∂K, with |J∗|< hε, such that the couples (Xx

T2
, T x

2 ) and

(X̃ x̃
T̃2
, T̃ x̃

2 ) are both η-continuous on J∗ × (R1, R2), with

η =
1

2

(cρmin

2D

)2
(

1

C
− ε

)

(β − ε) .

Moreover we have R2 −R1 ≥ 2 (hε− |J∗|).

Remark 4.5. The following proof is largely inspired by the proof of Lemma 5.1 in [2].
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Proof. Let x, x̃ ∈ ∂K, x 6= x̃. Let us denotes by ∆xx̃ the bisector of the segment defined by the
two points x and x̃. The intersection ∆xx̃ ∩ ∂K contains two points, let thus define ȳ the one
which achieves the larger distance towards x and x̃ (we consider this point of intersection since
we need in the sequel to have a lower bound on ‖x− ȳ‖ and ‖x̃− ȳ‖).
Let t ∈ I 7→ g(t) be a parametrization of ∂K with g(0) = ȳ, such that ‖g′(t)‖= 1 for all t ∈ I.
Consequently, the length of an arc satisfies length(g|[s,t]) = ||g(t) − g(s)|| = |t − s|. We can
thus write I = [0, |∂K|], and g(0) = g(|∂K|). Note that the parametrization g is C2 thanks to
Assumption (K).
In the sequel, for z ∈ ∂K, we write sz (or tz) for the unique s ∈ I such that g(s) = z. And for
A ⊂ ∂K, we define IA = {t ∈ I : g(t) ∈ A}.
Let define, for s, t ∈ I and w ∈ {x, x̃}:

ϕw(s, t) = ‖w − g(s)‖+‖g(s)− g(t)‖.

Lemma 4.6. There exists an interval I∗β,δ ⊂ I, satisfying |I∗β,δ|< hε, such that for w ∈ {x, x̃}:

|∂sϕw(s, t)|≥ h, for s ∈ Bε
ȳ and t ∈ I∗β,δ,

where Bε
ȳ = {s ∈ I; |s− sȳ|≤ ε}.

We admit this lemma for the moment and prove it after the end of the current proof.
Let suppose for instance that ∂sϕw(s, t) is positive for s ∈ Bε

ȳ and t ∈ I∗β,δ, for w = x and
w = x̃. If one or both of ∂sϕx(s, t) and ∂sϕx̃(s, t) are negative, we just need to consider |ϕx| or
|ϕx̃|, and everything works similarly.
We thus have, by the lemma:

∂sϕw(s, t) ≥ h, for s ∈ Bε
ȳ and t ∈ I∗β,δ.

Let us now define:

r1 = sup
t∈I∗

β,δ

inf
s∈Bε

ȳ

ϕx(s, t) and r2 = inf
t∈I∗

β,δ

sup
s∈Bε

ȳ

ϕx(s, t)

and
r̃1 = sup

t∈I∗
β,δ

inf
s∈Bε

ȳ

ϕx̃(s, t) and r̃2 = inf
t∈I∗

β,δ

sup
s∈Bε

ȳ

ϕx̃(s, t).

Since s 7→ ϕx(s, t) and s 7→ ϕx̃(s, t) are strictly increasing on Bε
ȳ for all t ∈ I∗β,δ, we deduce that,

considering Bε
ȳ as the interval (s1, s2),

r1 = sup
t∈I∗

β,δ

ϕx(s1, t), r2 = inf
t∈I∗

β,δ

ϕx(s2, t), r̃1 = sup
t∈I∗

β,δ

ϕx̃(s1, t), r̃2 = inf
t∈I∗

β,δ

ϕx̃(s2, t).

Lemma 4.7. We have r1 < r2 and r̃1 < r̃2.
Moreover, there exist R1, R2 with 0 ≤ R1 < R2 satisfying R2 − R1 ≥ 2(hε − |I∗β,δ|), such that
(r1, r2) ∩ (r̃1, r̃2) = (R1, R2).

We admit this result to continue the proof, and will give a demonstration later.

We can now prove that the pairs
(

Xx
T2
, T x

2

)

and
(

X̃ x̃
T̃2
, T̃ x̃

2

)

are both η-continuous on I∗β,δ ×
(R1, R2) with some η > 0 that we are going to define after the computations.
We first prove that

(

Xx
T2
, T x

2

)

is η-continuous on I∗β,δ × (r1, r2). By the same way we can
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Figure 8: Upper bound for the distance ‖w − ȳ‖, w ∈ {x, x̃}

prove that
(

X̃ x̃

T̃2

, T̃ x̃
2

)

is η-continuous on I∗β,δ × (r̃1, r̃2). These two facts imply immediately the

continuity with (R1, R2) since the interval (R1, R2) is included in (r1, r2) and (r̃1, r̃2).
Let (u1, u2) ⊂ (r1, r2) and A ⊂ I∗β,δ. We have:

P
(

Xx
T2

∈ A, T x
2 ∈ (u1, u2)

)

≥
∫

IA

∫

Bε
ȳ

Q(x, g(s))Q(g(s), g(t))1ϕx(s,t)∈(u1,u2)dsdt.

Let s ∈ Bε
ȳ and t ∈ I∗β,δ. We now give a lower bound of Q(x, g(s)) and Q(g(s), g(t)).

Proposition 4.1 gives:

Q(x, g(s)) =
ρ(U−1

x lx,g(s)) cos
(

ϕg(s),x

)

‖x− g(s)‖

≥ cρmin

2D

(

1

C
− ε

)

,

where we have used the same method as in he proof of Theorem 4.2 (with Figure 7) to get

that cos
(

ϕg(s),x

)

≥ ‖x−g(s)‖c
2

, and then the fact that ‖x − g(s)‖≥ 1
C
− ε. Let us prove this

latter. With the notations of Figure 8, by Pythagore’s theorem we have, for ȳ ∈ {ȳ1, ȳ2},
‖x− ȳ‖2=

(

‖x−x̃‖
2

)2

+ ‖u− ȳ‖2. Moreover, since the curvature of K is bounded by C, it follows

that ‖ȳ1−ȳ2‖≥ 2
C

, and then max{‖u−ȳ1‖; ‖u−ȳ2‖} ≥ 1
C

. We deduce: max{‖x−ȳ1‖; ‖x−ȳ2‖} ≥
1
C

. Therefore, by the definition of ȳ, we have ‖x− ȳ‖≥ 1
C

. Thus, the reverse triangle inequality
gives, for s ∈ Bε

ȳ, ‖x− g(s)‖≥ 1
C
− ε.

By the same way, since ‖g(t)− g(s)‖≥ β − ε, we have:

Q (g(s), g(t)) ≥ cρmin

2D
(β − ε) .

Therefore we get:

P
(

Xx
T2

∈ A, T x
2 ∈ (u1, u2)

)

≥ a

∫

IA

∫

Bε
ȳ

1ϕx(s,t)∈(u1,u2)dsdt,
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with

a =
(cρmin

2D

)2
(

1

C
− ε

)

(β − ε) . (8)

Let define, for t ∈ I∗β,δ:

Mx,t(u1, u2) :=
{

s ∈ Bε
ȳ : ϕx(s, t) ∈ (u1, u2)

}

.

Using the fact that s 7→ ϕx(s, t) is strictly increasing on Bε
ȳ for t ∈ I∗β,δ we get (ϕ−1

w (s, t) stands
for the inverse function of s 7→ ϕx(s, t)):

|Mx,t(u1, u2)| =
∣

∣

{

s ∈ Bε
ȳ : s ∈

(

ϕ−1
x (u1, t), ϕ

−1
x (u2, t)

)}∣

∣

=
∣

∣(s1, s2) ∩
(

ϕ−1
x (u1, t), ϕ

−1
x (u2, t)

)∣

∣ .

By definition of r1 and r2, and since (u1, u2) ⊂ (r1, r2) we have:

ϕx(s1, t) ≤ r1 ≤ u1 and ϕx(s2, t) ≥ r2 ≥ u2,

and since s 7→ ϕx(s, t) is strictly increasing:

s1 ≤ ϕ−1
x (u1, t) and s2 ≥ ϕ−1

x (u2, t).

Therefore we deduce:

|Mx,t(u1, u2)| =
∣

∣

(

ϕ−1
x (u1, t), ϕ

−1
x (u2, t)

)∣

∣

=
∣

∣ϕ−1
x ((u1, u2), t)

∣

∣

≥ 1

2
(u2 − u1).

For the last inequality we have used the following property. Let ψ : R 7→ R a function. If
for all x ∈ [a1, a2] we have c1 < ψ′(x) < c2 with 0 < c1 < c2 < ∞, then for any interval I ⊂
[ψ(a1), ψ(a2)], we have c−1

2 |I|≤ |ψ−1(I)|≤ c−1
1 |I|. In our case, the Cauchy-Schwarz inequality

gives ∂sϕx(s, t) ≤ 2 (see Equation (9) for the expression of ∂sϕx(s, t)).
Finally we get, with a given by (8):

P
(

Xx
T2

∈ A, T x
2 ∈ (u1, u2)

)

≥ a

∫

A

1

2
(u2 − u1)dz

=
a

2
(u2 − u1)|A|,

which proves that
(

Xx
T2
, T x

2

)

is a
2
-continuous on I∗β,δ × (r̃1, r̃2).

Thanks to the remarks before, the proof is completed with η = a
2

and J = I∗β,δ.

Let us now give the proofs of Lemma 4.6 and 4.7 that we have admitted so far.

Proof of Lemma 4.6. We use the notations introduced at the end of the proof of Proposition
4.4.
We have, for s, t ∈ I:

∂sϕw(s, t) =

〈

g(s)− w

‖g(s)− w‖ +
g(s)− g(t)

‖g(s)− g(t)‖ , g
′(s)

〉

. (9)
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By the definition of g, we note that g′(s) is a director vector of the tangent line of ∂K at point
g(s).
It is easy to verify that for w ∈ {x, x̃}, there exists a unique t ∈ I \ {sȳ} such that

∂sϕw(sȳ, t) = 0. (10)

For w = x (resp. w = x̃), we denote by tzx (resp. tzx̃) this unique element of I. With our
notations we thus have g(tzx) = zx and g(tzx̃) = zx̃.
Let w ∈ {x, x̃}. We have:

∂t∂sϕw(s, t) = ∂t

(〈

g(s)− g(t)

‖g(s)− g(t)‖ , g
′(s)

〉)

=
1

‖g(t)− g(s)‖

(

−〈g′(t), g′(s)〉+
〈

g(t)− g(s)

‖g(t)− g(s)‖ , g
′(t)

〉〈

g(t)− g(s)

‖g(t)− g(s)‖ , g
′(s)

〉)

.

Let us look at the term in parenthesis. Let us denote by [u, v] the oriented angle between the
vectors u, v ∈ R

2. We have:

−〈g′(t), g′(s)〉+
〈

g(t)− g(s)

‖g(t)− g(s)‖ , g
′(t)

〉〈

g(t)− g(s)

‖g(t)− g(s)‖ , g
′(s)

〉

= − cos ([g′(t), g′(s)]) + cos ([g(t)− g(s), g′(t)]) cos ([g(t)− g(s), g′(s)])

= − cos ([g′(t), g′(s)]) +
1

2
cos ([g(t)− g(s), g′(t)] − [g(t)− g(s), g′(s)])

+
1

2
cos ([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)])

= − cos ([g′(t), g′(s)]) +
1

2
cos ([g′(s), g′(t)])

+
1

2
cos ([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)])

= −1

2
cos ([g′(t), g′(s)]) +

1

2
cos ([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)])

= − sin

(

1

2
([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)] + [g′(t), g′(s)])

)

×

sin

(

1

2
([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)] − [g′(t), g′(s)])

)

= − sin ([g(t)− g(s), g′(s)]) sin ([g(t)− g(s), g′(t)]) .

Therefore we get

∂t∂sϕw(s, t) = − 1

‖g(t)− g(s)‖ sin ([g(t)− g(s), g′(s)]) sin ([g(t)− g(s), g′(t)]) ,

and then

|∂t∂sϕw(s, t)| =
1

‖g(t)− g(s)‖ |sin ([g(t)− g(s), g′(s)]) sin ([g(t)− g(s), g′(t)])|

=
1

‖g(t)− g(s)‖
∣

∣cos
(

ϕg(s),g(t)

)

cos
(

ϕg(t),g(s)

)∣

∣
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Let t ∈ I such that |t− sȳ|≥ β (we recall that β is introduced at the beginning of the section).
Using once more Figure 7, we get, as we have done in the proof of Theorem 4.2:

|∂t∂sϕw(s, t)| ≥
1

‖g(t)− g(s)‖

(

βc

2

)2

≥ 1

D

(

βc

2

)2

. (11)

Using Equations (10) and Equation (11), the mean value theorem gives: for t ∈ I such that
|t− sȳ|≥ β and |t− tzw |≥ δ (δ is introduced at the beginning of the section),

|∂sϕw(sȳ, t)| = |∂sϕw(sȳ, t)− ∂sϕw(sȳ, tzw)| ≥
1

D

(

βc

2

)2

|t− tzw |≥
δ

D

(

βc

2

)2

. (12)

We want now such an inequality for s ∈ I near from sȳ. We thus compute:

∂2sϕw(s, t) =
1

‖w − g(s)‖ +
1

‖g(s)− g(t)‖ +

〈

g(s)− w

‖g(s)− w‖ +
g(s)− g(t)

‖g(s)− g(t)‖ , g
′′

(s)

〉

− 1

‖w − g(s)‖

〈

w − g(s)

‖w − g(s)‖ , g
′(s)

〉2

− 1

‖g(s)− g(t)‖

〈

g(s)− g(t)

‖g(s)− g(t)‖ , g
′(s)

〉2

.

We immediately deduce, using the Cauchy-Schwarz inequality, and the fact that ‖g′(s)‖= 1 for
all s ∈ I:

|∂2sϕw(s, t)| ≤
1

‖w − g(s)‖ +
1

‖g(s)− g(t)‖ + 2‖g′′

(s)‖+ 1

‖w − g(s)‖ +
1

‖g(s)− g(t)‖

≤ 2

(

1

‖w − g(s)‖ +
1

‖g(s)− g(t)‖ + C

)

,

where we recall that C is the upper bound on the curvature of K.
Let now t ∈ I such that |t− sȳ|≥ β and |t− tzw |≥ δ, and let s ∈ I such that |s− sȳ|≤ ε. With
such s and t we have |t − s|≥ β − ε. Moreover, we have already seen in proof of Proposition
4.4 (with Figure 8) that ‖w − g(s)‖≥ 1

C
− ε for s ∈ Bε

ȳ. Therefore, for such s and t:

|∂2sϕw(s, t)|≤ 2

(

1
1
C
− ε

+
1

β − ε
+ C

)

=M > 0. (13)

Using once again the mean value theorem with Equations (12) and (13), we deduce that for all
t ∈ I such that |t− sȳ|≥ β and |t− tzw |≥ δ, and for all s ∈ I such that |s− sȳ|≤ ε:

|∂sϕw(s, t)| ≥
δ

D

(

βc

2

)2

− εM = h > 0.

Let now take I∗β,δ ⊂ I \{sȳ, tzx , tzx̃} an interval of length strictly smaller than hε (this condition
on the length of I∗β,δ is not necessary for the lemma, but for the continuation of the proof of
the proposition), and such that for all t ∈ I∗β,δ, |t − tzx |≥ δ, |t − tzx̃ |≥ δ and |t − sȳ|≥ β. In

order to ensure that I∗β,δ is not empty, we take β and δ such that |∂K|
3

− max{2δ; β + δ} > 0.
Indeed, it is necessary that one of the intervals ”(tzx , tzx̃)”, ”(tzx , sȳ)” and ”(sȳ, tzx̃)” at which
we removes a length β or δ on the good extremity, is not empty. And since the larger of these
intervals has a length at least ∂K

3
, we obtain the good condition on β and δ.

We thus just proved that |∂sϕw(s, t)| ≥ h for s ∈ Bε
ȳ and t ∈ I∗β,δ, which is the result of the

lemma.
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Proof of Lemma 4.7. Let first prove that r1 < r2. We do it only for r1 and r2 since it is the
same for r̃1 and r̃2. We have:

r2 − r1 = inf
t∈I∗

β,δ

ϕx(s2, t)− sup
t∈I∗

β,δ

ϕx(s1, t)

= inf
t∈I∗

β,δ

ϕx(s2, t)− inf
t∈I∗

β,δ

ϕx(s1, t)−
(

sup
t∈I∗

β,δ

ϕx(s1, t)− inf
t∈I∗

β,δ

ϕx(s1, t)

)

≥ h(s2 − s1)−
(

sup
t∈I∗

β,δ

|∂tϕx(s1, t)|
)

∣

∣I∗β,δ
∣

∣

≥ 2hε−
∣

∣I∗β,δ
∣

∣ ,

and this quantity is strictly positive since |I∗β,δ|< hε by construction.
For the first inequality, we have used the mean value theorem twice, and for the last inequality,

we have used the fact that supt∈I∗
β,δ

|∂tϕx(s1, t)| = supt∈I∗
β,δ

∣

∣

∣

〈

g(t)−g(s1)
‖g(t)−g(s1)‖ , g

′(t)
〉∣

∣

∣
≤ 1 thanks to

the Cauchy-Schwarz inequality.
Let us now prove that the intersection (r1, r2) ∩ (r̃1, r̃2) is not empty.
Let t ∈ I∗β,δ, we have:

r2 − ϕx(sȳ, t) = inf
t∈I∗

β,δ

ϕx(s2, t)− ϕx(sȳ, t)

= inf
t∈I∗

β,δ

ϕx(s2, t)− inf
t∈I∗

β,δ

ϕx(sȳ, t)−
(

ϕx(sȳ, t)− inf
t∈I∗

β,δ

ϕx(sȳ, t)

)

≥ h(s2 − sȳ)− |I∗β,δ|
= hε− |I∗β,δ|
> 0,

once again thanks to the mean value theorem. Similarly we have

ϕx(sȳ, t)− r1 = ϕx(sȳ, t)− sup
t∈I∗

β,δ

ϕx(s1, t)

= ϕx(sȳ, t)− sup
t∈I∗

β,δ

ϕx(sȳ, t)−
(

sup
t∈I∗

β,δ

ϕx(s1, t)− sup
t∈I∗

β,δ

ϕx(sȳ, t)

)

≥ −|I∗β,δ|+h(sȳ − s1)

= hε− |I∗β,δ|
> 0.

Moreover, since ȳ ∈ ∆x,x̃, we have ϕx(sȳ, t) = ϕx̃(sȳ, t), and we thus can prove the same
inequalities with r̃1 and r̃2 instead of r1 and r2.
Finally we thus get that the interval (R1, R2) = (r1, r2) ∩ (r̃1, r̃2) is well defined and

R2 − R1 ≥ 2
(

hε− |I∗β,δ|
)

.

Remark 4.8. The fact that |J |= π is here to ensure that the process can go from x and x̃ to
ȳ in the proof of Proposition 4.4. If |J |< π, since x and x̃ are unspecified and ȳ can therefore
be everywhere on ∂K, nothing ensures that this path is available.
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We can now state the following theorem on the speed of convergence of the stochastic billiard
in the convex set K.

Theorem 4.9. Let K ⊂ R
2 satisfying Assumption (K) with diameter D. Let (Xt, Vt)t≥0 the

stochastic billiard process evolving in K and verifying Assumption (H) with |J |= π.
There exists a unique invariant probability measure χ on K × S for the process (Xt, Vt)t≥0.
Moreover, let define n0 and p by (14) and (15) with ζ ∈

(

0, 2
C

)

. Let consider η, I∗β,δ, R1, R2 as
in Proposition 4.4 and Lemma 4.6, and let define κ by (16).
For all t ≥ 0 and all λ < λM :

‖P (Xt ∈ ·, Vt ∈ ·)− χ‖TV≤ Cλe
−λt,

where

λM = min

{

1

2D
log

(

1

1− p

)

;
1

2D
log

(

−(1− p) +
√

(1− p)2 + 4p(1− κ)

2p(1− κ)

)}

and

Cλ =
pκe5λD

1− e2λD(1− p)− e4λDp(1− κ)
.

Proof. As previously, the existence of an invariant probability measure for the stochastic billiard
process comes from the compactness of K×S

1. The following proof ensures its uniqueness and
gives an explicit speed of convergence.
Let (Xt, Vt)t≥0 and (X̃t, Ṽt)t≥0 be two versions of the stochastic billiard with (X0, V0) = (x0, v0) ∈
K × S

1 and (X̃0, Ṽ0) = (x̃0, ṽ0) ∈ K × S
1.

We define (or recall the definition for T0 and T̃0):

T0 = inf{t ≥ 0, x0 + tv0 /∈ K}, w = x0 + T0v0 ∈ ∂K,

and
T̃0 = inf{t ≥ 0, x̃0 + tṽ0 /∈ K}, w̃ = x̃0 + T̃0ṽ0 ∈ ∂K.

Step 1. From Proposition 4.3, we deduce that for all x ∈ ∂K and all ζ ∈
(

0, 1
C

)

, T x
n is

(cρmin)
nζn−1-continuous on the interval Γn =

[

(n− 1)ζ, nC
2
− (n− 1)ζ

]

.
Let thus ζ ∈

(

0, 1
C

)

and let define

n0 = min {n ≥ 1 : |Γn|> D} =

⌊

D − 2ζ

2
(

1
C
− 1
)

⌋

+ 1. (14)

The variables T0 + Tw
n0

and T̃0 + T̃ w̃
n0

are both (cρmin)
n0ζn0−1-continuous on

[

T0 + (n0 − 1)ζ, T0 +
nC
2
− (n0 − 1)ζ

]

∩
[

T̃0 + (n0 − 1)ζ, T̃0 +
nC
2
− (n0 − 1)ζ

]

. Since
∣

∣

∣
T0 − T̃0

∣

∣

∣
≤

D, this intersection is non-empty and its length is larger that 2n0

C
− 2(n0 − 1)ζ −D.

Let define

p = (cρmin)
n0ζn0−1

(

2n0

C
− 2(n0 − 1)ζ −D

)

. (15)

Using the fact that the for all w ∈ ∂K, Tw
n0

≤ n0D almost surely, we deduce that we can

construct a coupling such that the coupling-time T 1
c of T0 + Tw

n0
and T̃0 + T̃ w̃

n0
satisfies:

T 1
c ≤st T0 + n0DG

1
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with G1 ∼ G (p).

Step 2. Once the coupling of these times has succeed, we try to couple the couples
(

X
Xw

T1
c

T2
, T

Xw
Tc
1

2

)

and

(

X̃
X̃w̃

T1
c

T̃2

, T̃
X̃w̃

T1
c

2

)

. By the Proposition 4.4, we can construct a coupling such

that

P

(

X
Xw

T1
c

T2
= X̃

X̃w̃

T1
c

T̃2

and T
Xw

T1
c

2 = T̃
X̃w̃

T1
c

2

)

≥ η|I∗β,δ|(R2 −R1).

Defining

κ = η|I∗β,δ|(R2 −R1), (16)

we get that the entire coupling-time of the two processes satisfies:

T̂ ≤st T0 +
G
∑

l=1

(

n0DG
l + n0D

)

= T0 +
G
∑

l=1

(

n0D(Gl + 1)
)

where G as a geometric distribution with parameter κ and the (Gl)l≥1 are independent geometric
random variables with parameter p, and independent of G.
Finally, we get

P

(

T̂ > t
)

≤ e−λt pκe5λD

1− e2λD(1− p)− e4λDp(1− κ)
,

for all λ ∈ (0, λM).

5 Discussion

All the results presented in this paper are in dimension 2. However, the ideas developed here
can be adapted to higher dimensions. Let us briefly explain it.

Stochastic billiard in a ball of R
d

Let us first look at the stochastic billiard (X, V ) in a ball B ⊂ R
d with d ≥ 2.

As we have done in Section 3, we can represent the Markov chain (XTn
, VTn

)n≥0 by another
Markov chain. Indeed, for n ≥ 1, the position XTn

∈ ∂B can be uniquely represented by
its hyperspherical coordinates: a (d − 1)-tuple (Φ1

n, · · · ,Φd−1
n ) with Φ1

n, · · · ,Φd−2
n ∈ [0, π) and

Φd−1
n ∈ [0, 2π).

Similarly, for n ≥ 1, the vector speed VTn
∈
{

v ∈ S
d−1 : v · nXTn

≥ 0
}

can be represented by its
hyperspherical coordinates.
Thereby, we can give relations between the different random variables as in Proposition 3.1, and
in theory, we can do explicit computations to get lower bounds on the needed density function.
Then the same coupling method in two steps can be applied. Nevertheless, it could be difficult
to manage the computations in practice when the dimension increases.
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Stochastic billiard in a convex set K ⊂ R
d

To get bounds on the speed of convergence of the stochastic billiard (X, V ) in a convex set
K ⊂ R

d, d ≥ 2, satisfying Assumption (K), we can apply exactly the same method as in
Section 4. The main difficulty could be the proof of the equivalent of Proposition 4.4. But it
can easily be adapted, and we refer to the proof of Lemma 5.1 in [2], where the authors lead
the proof in dimension d ≥ 3.
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