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Quenched asymptotics for interacting diffusions on inhomogeneous
random graphs

Eric Luçon

MAP5 (UMR CNRS 8145), Université de Paris, F-75006 Paris, France,
eric. lucon@ paridescartes. fr .

Abstract

The aim of the paper is to address the behavior in large population of diffusions interacting
on a random, possibly diluted and inhomogeneous graph. This is the natural continuation
of a previous work, where the homogeneous Erdős-Rényi case was considered. The class
of graphs we consider includes disordered W -random graphs, with possibly unbounded
graphons. The main result concerns a quenched convergence (that is true for almost
every realization of the random graph) of the empirical measure of the system towards
the solution of a nonlinear Fokker-Planck PDE with spatial extension, also appearing
in different contexts, especially in neuroscience. The convergence of the spatial profile
associated to the diffusions is also considered, and one proves that the limit is described in
terms of a nonlinear integro-differential equation which matches the neural field equation
in certain particular cases.

Keywords: mean-field system, interacting diffusions, nonlinear Fokker-Planck equation,
spatially-extended systems, nonlinear heat equation, neural field equation, random
graphs, graph convergence
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1. The model

1.1. Interacting diffusions on a graph

For all n > 1, consider the system of coupled diffusions (θ
(n)
1,t , . . . , θ

(n)
n,t ) in Rd (d > 1)

dθ
(n)
i,t = c(θ

(n)
i,t )dt+

κ
(n)
i

n

n∑
j=1

ξ
(n)
i,j Γ

(
θ

(n)
i,t , θ

(n)
j,t

)
dt+ σdBi,t, 0 6 t 6 T, i = 1, . . . , n . (1.1)

The dynamics in (1.1) is decomposed into three terms: a local dynamics, represented by
c(·) : Rd → Rd, a mean-field coupling (governed by the binary kernel Γ(·, ·) : Rd×Rd → Rd)
and a noise term, in the presence of i.i.d. standard Brownian motions in Rd, B1, . . . , Bn.
Here σ is a constant, but possibly degenerate (even equally 0) diffusion matrix. The time
horizon T is fixed (but arbitrary).

In (1.1), the diffusions (θ
(n)
1 , . . . , θ

(n)
n ) no longer interact on the complete graph (as it is a

common framework for a mean-field analysis) but through a nontrivial graph of interaction,

encoded by the matrix (ξ
(n)
i,j )i,j=1,...,n in {0, 1}n2

. More precisely, we define the graph of
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interaction of (1.1) as G(n) := (V(n), E(n)) with set of vertices V(n) = [n] := {1, . . . , n} and

set of oriented edges E(n) = {(i, j) ∈ V(n) × V(n), ξ
(n)
i,j = 1}. The aim of the paper is to

analyse the large population behavior of (1.1) for situations where the graph of interaction
G(n) is possibly inhomogeneous. This paper is the natural continuation of [22] where the
homogeneous Erdős-Rényi case is considered.

Remark 1.1. Note that it would also be possible to include disordered coefficients c(θi, ωi)
and Γ(θi, ωi, θj , ωj) in (1.1), where (ωi)i∈[n] is some i.i.d sequence independent of every-
thing, as it is customary for Kuramoto-type models (see Section 2.8 below). Everything
below works with this additional random environment up to an additional expectation w.r.t.
this disorder, under appropriate moment conditions.

1.2. Construction of the interaction graph

The construction of the graph G(n) goes back to the formalism of W -random graphs
developed in [36, 9, 10, 8, 7], which has been used in particular in a series of papers
[42, 32, 33, 16, 43] on macroscopic limits for Kuramoto-type models (see Section 2.8), in
the deterministic case σ = 0. In addition to the fact that we consider here more general
dynamics, the crucial point is the presence of noise in (1.1) that changes considerably the
analysis (in particular, the techniques used in [33, 16] for the convergence of the empirical
measure when σ = 0 do not seem to be directly applicable to the case σ 6= 0). The
work that is closest to the present analysis is the recent work [48] where annealed large
deviations estimates are given in the case of bounded graphons.

Let I be a closed subset of Rp (p > 1), endowed with a probability measure ` with

support I. We associate to each vertex i ∈ [n] a position variable x
(n)
i ∈ I encoding

some local inhomogeneity for the vertex i in the graph G(n). In many situations (see
e.g. [36, 9]), the set of positions I is taken to be [0, 1], but most of the results presented

below remain valid in more general cases, closer to situations where x
(n)
i actually encodes

some real spatial position of the particle θ
(n)
i . Spatial extensions of mean-field dynamics

are particularly relevant in a context of neuroscience where one accounts for the spatial
organization of neurons in the cortex (see [38, 46, 14, 15, 44] and references therein for

further details). The way positions (x
(n)
1 , . . . , x

(n)
n ) are chosen in I will be made precise

later (see Assumptions 3.1 and 3.3 below). For now, we suppose that these positions are
deterministic. In the rest of the paper, we denote by `n(dx) the empirical measure of the
positions:

`n(dx) :=
1

n

n∑
k=1

δ
x
(n)
k

(dx). (1.2)

Then, we introduce a kernel Wn : I2 → [0, 1] such that Wn

(
x

(n)
i , x

(n)
j

)
∈ [0, 1] represents

the probability of the presence of the edge ξ
(n)
i,j in the graph G(n):

Definition 1.2. On a common probability space (Ω,F ,P), we give ourselves a family of

random variables
(
ξ

(n)
i,j

)
i,j∈[n];n > 1

on Ω, such that, under P, for each n > 1, (ξ
(n)
i,j )i,j∈[n]

is a collection of independent Bernoulli random variables with parameter Wn

(
x

(n)
i , x

(n)
j

)
.
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In (1.1), the parameter κ
(n)
i > 0 is a dilution parameter that compensates for the

possible local sparsity of the graph G(n) around vertex i: vertices with fewer neighbors will

have a larger dilution parameter. Note that each κ
(n)
i may actually depend on the whole

sequence of positions in the graph G(n): κ
(n)
i = κ

(n)
i (x

(n)
1 , . . . , x

(n)
n ). In the following Ξ :=(

ξ
(n)
i,j

)
i,j∈[n];n > 1

and X :=
(
x

(n)
i

)
i∈[n];n > 1

stand for the whole sequence of connections

and positions. For fixed n > 1, we also write x :=
(
x

(n)
i

)
i∈[n]

and ξ :=
(
ξ

(n)
i,j

)
i,j∈[n]

. In

absence of ambiguity, we write xi instead of x
(n)
i , ξi,j instead of ξ

(n)
i,j and θi instead of

θ
(n)
i . The notations P (·) and E [·] stand for the probability and expectation w.r.t. the

randomness in the Brownian motions and initial condition in (1.1). We use both notations
x · y or 〈x , y〉 for the scalar product of x, y ∈ Rd, and |x| denotes the Euclidean norm of
x. σ† stands for the transpose of the matrix σ. The notation 〈µ , f〉 :=

∫
fdµ is also used

for the usual duality between a measure and some test function.

1.3. The macroscopic kernel

In order to obtain a macroscopic limit as n→∞ for (1.1), we require some averaging for
the probability fieldWn(·, ·): we assume the existence of a nonnegative measurable function
W : I2 → [0,+∞) so that the probability field (Wn)n > 1, correctly renormalized by the

dilution parameters κ
(n)
i , converges along the sequence X as n → ∞ to the macroscopic

kernel W (anticipating on the definitions of the Section 2.3 below, what we rigorously
mean is that δn(x) in (2.19) goes to 0 as n→∞). This assumption encodes some notion
of graph convergence (in the sense of [36, 8]) that is discussed in Section 2.7 below.

Remark 1.3. Without loss of generality, we suppose that one particle does not interact

with itself, that is ξ
(n)
i,i = 0 for all i ∈ [n]. In the limit as n → ∞, this boils down to

the assumption that the macroscopic kernel W is zero on the diagonal. We make these
assumptions throughout this work without further notice.

1.4. The McKean-Vlasov process and the nonlinear Fokker-Planck equation

The natural limit of the particle system (1.1) is then described by the nonlinear process
θ̄x (at position x ∈ I) solution to

dθ̄xt = c(θ̄xt )dt+

∫
W (x, y)Γ

(
θ̄xt , θ̃

)
νyt (dθ̃)`(dy)dt+ σdBt, 0 6 t 6 T. (1.3)

where, for fixed (x, t), νxt (dθ) is the law of θ̄xt . It is standard to see that the joint law

ν(dθ,dx) = νx(dθ)`(dx)

of (θ̄x, x) solves the nonlinear Fokker-Planck equation

〈νt , ϕ〉 = 〈ν0 , ϕ〉+

∫ t

0

〈
νs ,

1

2
∇θ
(
σσ†∇θϕ

)
+∇θϕ(·) · c(·)

〉
ds

+

∫ t

0

〈
νs(dθ,dx) , ∇θϕ(θ, x) ·

∫
W (x, y)Γ(θ, θ̃)νs(dθ̃,dy)

〉
ds, (1.4)
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where ϕ is a regular test function. Writing formally νt(dθ,dx) = qt(θ, x)dθ`(dx), (1.4) is
the weak formulation of

∂tqt =
1

2
∇θ
(
σσ†∇θqt

)
−∇θ

(
qt

(
c(·) +

∫
Γ(·, θ′)W (·, y)qt(θ

′, y)dθ′`(dy)

))
. (1.5)

The precise meaning we give to (1.3) and (1.4) is given in Section 2.2 below. (1.3) and
(1.5) are spatially-extended versions of standard McKean-Vlasov models that are natural
large population limits of mean-field particle systems such as (1.1). A recent interest in
models with spatial extension similar to (1.5) has been shown in a neuroscience context
(see e.g. [38, 14, 48, 46, 44] and references therein).

2. Main assumptions and results

2.1. General assumptions

For any r > 1, for any x ∈ I such that W (x, ·) ∈ Lr(I, `), denote by

Wr(x) :=

∫
W (x, y)r`(dy). (2.1)

Assumption 2.1 (Assumption on the kernel W ). We require the minimal assumption
that

‖W2‖∞ := sup
z∈I
W2(z) <∞. (2.2)

Suppose also that
inf
x∈I
W1(x) > 0. (2.3)

Condition (2.2) of Assumption 2.1 implies in particular that ‖W1‖∞ <∞: in the limit
n → ∞, the degree of each node x ∈ I in the macroscopic graph W remains uniformly
bounded ([23]).

Remark 2.2. A closer look to the proofs below shows that (2.3) can be discarded if one
assumes more integrability on W (for example, (2.3) is not needed if W is bounded).

Remark 2.3. An important remark is that we do not suppose any symmetry of the kernels
W and Wn, nor that we suppose that W and Wn are simple functions of the distance x−y
(this is a natural hypothesis if one thinks of applications in neuroscience, as the mutual
influence between neuron i on neuron j need not be symmetric). There are also some
interesting examples where W is not symmetric, even if G(n) might be (see Section 3).
Note that the proof of Theorem 2.20 below requires to consider asymmetric kernels (see
(B.4)).
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Assumption 2.4 (Assumptions on the coefficients Γ and c). We suppose that (θ, θ̃) 7→
Γ(θ, θ̃) and θ 7→ c(θ) are twice differentiable on Rd with continuous derivatives and that Γ
is Lipschitz continuous with sublinear behavior: there exists a constant LΓ > 0 such that∣∣∣Γ(θ1, θ2)− Γ(θ̃1, θ̃2)

∣∣∣ 6 LΓ

(∣∣∣θ1 − θ̃1

∣∣∣+
∣∣∣θ2 − θ̃2

∣∣∣) , θ1, θ̃1, θ2, θ̃2 ∈ Rd, (2.4)∣∣∣Γ(θ, θ̃)
∣∣∣ 6 LΓ

(
1 + |θ|+

∣∣∣θ̃∣∣∣) , θ, θ̃ ∈ Rd. (2.5)

We require that c(·) is one-sided Lipschitz: there exists a constant Lc > 0 such that〈
θ − θ̃ , c(θ)− c(θ̃)

〉
6 Lc

∣∣∣θ − θ̃∣∣∣2 , θ, θ̃ ∈ Rd. (2.6)

We also suppose some polynomial control on c(·): there exists k > 2 such that

sup
θ∈Rd

|c(θ)|
1 + |θ|k

<∞. (2.7)

Unless specified otherwise, we only assume (2.4), (2.5), (2.6) and (2.7). Nonetheless,
for some of the results of the paper, we may restrict for simplicity to a generic subset of
these assumptions:

Model 2.5 (Polynomial interactions). A particular case of the previous assumptions is to
require that c is polynomial of degree smaller than k satisfying (2.6) and that Γ is either

bounded or linear: Γ(θ, θ̃) = Γ ·
(
θ − θ̃

)
for some (possibly degenerate) matrix Γ.

We give in Section 2.8 below several dynamics satisfying the present hypotheses, a
significant application to have in mind being FitzHugh-Nagumo oscillators with electrical
synapses (see Section 2.8, item 2).

We now turn to the assumptions related to the initial condition in (1.4): if (S, d) is a
Polish space, let w1(·, ·) be the usual Wasserstein distance [53] on S: for any probability
measures ν1, ν2 on S,

w1(ν1, ν2) := inf
π

{∫
d (θ1, θ2)π(dθ1, dθ2)

}
, (2.8)

where the infimum is taken on all couplings π on S×S with marginals ν1 and ν2. In (2.11)
below, we take S = Rd, but we will also use the same definition later for S = Rd× I when
necessary.

Assumption 2.6 (Assumption on the initial condition). We assume that (1.4) is endowed
with an initial condition ν0(dθ,dx) of the form

ν0(dθ,dx) = νx0 (dθ)`(dx) (2.9)

with some uniform a priori control on its moments: for k given by (2.7), suppose that

sup
x∈I

∫
|θ|2k νx0 (dθ) < +∞. (2.10)
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We assume here that there exist L0 > 0 and ι1 ∈ (0, 1] such that

w1 (νx0 , ν
y
0 ) 6 L0 |x− y|ι1 , x, y ∈ I. (2.11)

We suppose finally that the initial condition of the particle system (1.1) is such that

(θ
(n)
1,0 , . . . , θ

(n)
n,0) are independent, with respective law θ

(n)
k,0 ∼ νxk0 (dθ), for k ∈ [n]. Note

here that we allow a priori the initial law of the particles to depend on their positions

xk = x
(n)
k .

2.2. Well-posedness on the nonlinear Fokker-Planck equation and a priori estimates

Consider M the set of probability measures ν on C([0, T ],Rd) × I with marginals on
I equal to `. Since C([0, T ],Rd) is Polish, it follows from the disintegration Theorem [25]
that any ν ∈ M may be written as ν(dθ,dx) = νx(dθ)`(dx). We endow M with the
following Wasserstein-type metric [51]

δT (ν, µ) := sup
x∈I

inf
π

{
sup
s 6 T

∫ ∣∣ϑx1,s − ϑx2,s∣∣2k π(dϑ1,dϑ2)

} 1
2k

, (2.12)

where the infimum is taken over all couplings π under which ϑx1 ∼ νx and ϑx2 ∼ µx, for
`-almost every x ∈ I.

Proposition 2.7. Under Assumptions 2.1, 2.4 and 2.6, there exists a unique weak solution
to (1.4) inM with initial condition ν0(dθ,dx) = νx0 (dθ)`(dx). This solution ν is such that
for `-almost every x ∈ I, νx(dθ) is the law of the nonlinear process (θ̄xt )t∈[0,T ] given by
(1.3).

Remark 2.8. A byproduct of Proposition 2.7 is the following: under the hypotheses of
Proposition 2.7, there exists a constant C0, only depending on Γ, c,W, σ, T and ν0, such
that

sup
x∈I

E

[
sup
s 6 T

∣∣θ̄xs ∣∣2k] 6 C0. (2.13)

Similarly, it is standard to prove, under the same hypotheses, a similar estimate for the
particle system (1.1):

sup
i∈[n]

E

[
sup
s 6 T

∣∣∣θ(n)
i,s

∣∣∣2k] 6 C0. (2.14)

The proof of Proposition 2.7 is standard and relies on a fixed-point argument [51] on
the McKean-Vlasov diffusion (1.3). Existence and uniqueness in (1.3) provides existence
of a solution to (1.4). Uniqueness in (1.4) comes from a propagator method. Similar
well-posedness results for spatially-extended McKean-Vlasov processes may be found in
[38, 46, 48]. Proposition 2.7, as well as some further regularity estimates concerning ν, is
proven in Appendix A.
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2.3. A general propagation of chaos estimate

In this paragraph, we fix a sequence of positions (xi)i∈[n] (that is supposed to be
deterministic in Theorem 2.13 below), a probability field Wn(xi, xj) and a kernel W . We
are interested in the approximation of the microscopic system (1.1) by its mean-field limit
(1.3): let (θ̄x11 , . . . , θ̄xnn ), n independent copies of the nonlinear process driven by the same
Brownian motions (B1, . . . , Bn), with the same positions xi and initial conditions as in
(1.1). For simplicity, we write θ̄i,s in place of θ̄xii,s.

In order to state the result, we need some hypotheses on the graph G(n):

Assumption 2.9 (Convergence of (G(n), κ(n)) to W ). We assume the following:

1. Uniform control on κ(n): we suppose some uniformity in the dilution parameters

(κ
(n)
i )i∈[n], namely the existence of κn > 1 and wn ∈ (0, 1] such that

κ(n)
∞ (x) := max

i∈[n]

(
κ

(n)
i (x)

)
6 κn, (2.15)

max
i,j∈[n]

(Wn(xi, xj)) 6 wn, (2.16)

satisfying, as n→∞,

1

κn
6 wn 6 1, (2.17)

κ2
nwn = o

(
n

log(n)

)
, as n→∞. (2.18)

2. Convergence of the weighted graph (G(n), κ(n)): defining

δn(x) := sup
i∈[n]

(
1

n

n∑
k=1

∣∣∣κ(n)
i Wn(xi, xk)−W (xi, xk)

∣∣∣) , (2.19)

we assume that
δn(x) −−−→

n→∞
0. (2.20)

Remark 2.10. A few comments are in order here:

1. Assumptions (2.16) and (2.17) are mostly technical, since it is always possible to take
wn = 1. Nonetheless, there are simple cases where it is natural to take wn → 0 as
n→∞: e.g. consider Wn(xi, xj) ≡ wn = ρn for some ρn −−−→

n→∞
0 (this corresponds

to a uniform diluted Erdős-Rényi graph G(n), see [22]). In this case, it is natural
to renormalize the sum in (1.1) by the mean degree of each vertex (equal to nρn),

so that we take κ
(n)
i ≡ κn = 1

ρn
for all i ∈ [n]. Then, (2.18) boils down to the

condition κn = o
(

n
log(n)

)
, which is exactly the condition found in [22], Eq. (1.12)

in the Erdős-Rényi case. A general extension of this simple case is considered in
Section 3.3.
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2. The convergence (2.20) of the microscopic probability field Wn (properly renormalized
by κ(n)) to the macroscopic kernel W encodes some notion of convergence of the
underlying graph G(n) as n → ∞. Further comments on this point are made in
Section 2.7.
In the remaining of the paper, we will say that (G(n), κ(n)) converges to W as n →
∞ if Assumption 2.9 holds. General examples of converging graphs are given in
Section 3.

The second set of assumptions concerns regularity estimates on the limiting kernel W .
The following notations are used throughout the paper:

[Γ]u(θ, x) :=

∫
Γ(θ, θ̃)νxu(dθ̃), θ ∈ Rd, x ∈ I, u > 0. (2.21)

Υt(x, y, z) :=

∫ t

0

∫
〈[Γ]u(θ, y) , [Γ]u(θ, z)〉 νxu(dθ)du, x, y, z ∈ I, t > 0. (2.22)

A priori controls on [Γ] and Υ are given in Lemma A4 below. Define (recall the definition
of `n(dx) in (1.2)), for i ∈ [n]

ε
(1,i)
n,T (x) :=

∫
W (xi, y)W (xi, z)ΥT (xi, y, z) {`n(dy)`n(dz)− `(dy)`(dz)} ,

ε
(2,i)
n,T (x) :=

∫
W (xi, y)W (xi, z)ΥT (xi, y, z) {`n(dy)− `(dy)} `(dz),

ε
(3,i)
n,T (x) :=

∫
W (xi, y)W (xi, z)ΥT (xi, y, z)`(dy) {`n(dz)− `(dz)} .

(2.23)

Assumption 2.11 (Regularity of W along X ). We require that

ε
(m)
n,T (x) := sup

i∈[n]

∣∣∣ε(m,i)n,T (x)
∣∣∣ −−−→
n→∞

0, for m = 1, 2, 3, (2.24)

as well as

sup
n > 1

sup
i∈[n]

∫
W (xi, y)`n(dy) = sup

n > 1
sup
i∈[n]

1

n

n∑
k=1

W (xi, xk) < +∞. (2.25)

Remark 2.12. Assumption 2.11 captures a notion of regularity of the macroscopic kernel
W : (2.25) is the discrete counterpart of (2.2) (when r = 1) and (forgetting about the
factor ΥT in (2.23)) (2.24) essentially says that various empirical means in W converge
to their expectation. Hence, we will say that the kernel W is regular along the sequence
of positions X if Assumption 2.11 is satisfied. We give in Section 3.1 some sufficient
conditions for Assumption 2.11 to hold.

We are now in position to state the first main result of the paper:
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Theorem 2.13. Fix T > 0. Suppose that Assumptions 2.1, 2.4, 2.6, 2.9 and 2.11 hold.
In this case,

sup
i∈[n]

E

[
sup
s 6 T

∣∣∣θ(n)
i,s − θ̄i,s

∣∣∣2]→ 0 as n→∞, (2.26)

for almost every realization of the connectivity sequence Ξ given by Definition 1.2.

Theorem 2.13 is proven in Section 4.1. We detail in Section 3 generic examples of
graphs that are regular and convergent in the sense of Assumptions 2.9 and 2.11. The
rest of the present section is organized as follows: a byproduct of Theorem 2.13 concerns
the convergence of the empirical measure of (1.1) (Section 2.4). A different approach to
the macroscopic description of (1.1) is given in Section 2.5 and links between the two
approaches are provided in Section 2.6. A discussion on the notion of graph convergence
encoded by assumption (2.20) is given in Section 2.7. Comments on applications and links
with existing literature are given in Section 2.8.

2.4. Convergence of the empirical measure

It is standard (see e.g. [22] for a similar result in the Erdős-Rényi case) to derive from
Theorem 2.13 the convergence of the empirical measure of the system (1.1)

νn,t(dθ,dx) =
1

n

n∑
i=1

δ
(θ

(n)
i,t ,x

(n)
i )

(dθ,dx), t > 0 (2.27)

to the solution ν to the nonlinear Fokker-Planck equation (1.4).

Assumption 2.14 (Further regularity on W and convergence of `n). We assume the
following:

1. there exist LW > 0 and ι2 ∈ (0, 1] such that

δW(x, y) :=

∫
|W (x, z)−W (y, z)| dz 6 LW |x− y|ι2 , x, y ∈ I. (2.28)

2. Convergence of `n (recall (1.2)): when I is not bounded, we suppose ι1 = ι2 (recall
(2.11)) and denote in any case ι := ι1 ∧ ι2 ∈ (0, 1]. Let Hι be the set of ι-Hölder
functions on I

Hι :=
{
ϕ : I → R, ‖ϕ‖Hι <∞

}
(2.29)

where ‖ϕ‖Hι := supx∈I |ϕ(x)| + supx 6=y
|ϕ(x)−ϕ(y)|
|x−y|ι . Denote by dHι(·, ·) the distance

given by, for every probability measures µ and ν on I,

dHι(µ, ν) = sup
ϕ∈Hι,‖ϕ‖Hι 6 1

|〈µ− ν , ϕ〉| . (2.30)

We suppose that the empirical measure of the positions `n satisfies

dHι(`n, `) −−−→n→∞
0. (2.31)

Under these assumptions, we state the convergence of the empirical measure (2.27) in
the following simple way:
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Theorem 2.15. Suppose that Assumptions 2.1, 2.4, 2.6, 2.9, 2.11 and 2.14 hold. Then
for any continuous function ϕ : Rd× I → R such that for some Cϕ > 0, for any θ, θ̃ ∈ Rd,
x, y ∈ I,

∣∣∣ϕ(θ, x)− ϕ(θ̃, y)
∣∣∣ 6 Cϕ

(∣∣∣θ − θ̃∣∣∣+ |x− y|ι
)

and supx∈I |ϕ(θ, x)| 6 Cϕ(1 + |θ|),
the following convergence holds:

sup
t∈[0,T ]

E
[
|〈νn,t − νt , ϕ〉|2

]
−−−→
n→∞

0, (2.32)

for almost every realization of the connectivity sequence Ξ given by Definition 1.2.

Theorem 2.15 is proven in Section 4.2.

2.5. The nonlinear spatial profile

In [42, 43, 32, 33], a different approach to the large population behavior of (1.1) is
considered. The point of view here is to consider the deterministic macroscopic spatial
profile (ψ(·, t))t∈[0,T ] that, in our context, solves the following nonlinear integro-differential
equation

∂tψ(x, t) = c(ψ(x, t)) +

∫
I

Γ(ψ(x, t), ψ(y, t))W (x, y)`(dy). (2.33)

In the context of [43], (2.33) is referred to as the nonlinear heat equation on the graph
W . For FitzHugh-Nagumo dynamics with linear interaction, (2.33) corresponds to the
reaction-diffusion equation addressed in the recent work [20]. We consider here weak
solutions to (2.33) in the sense of the following definition: if C([0, T ], Lk(I, `)) is the set of
continuous functions with values in Lk(I, `) where k > 2 is given in (2.10),

Definition 2.16. We say that ψ(·, t)t∈[0,T ] ∈ C([0, T ], Lk(I, `)) is a weak solution to (2.33)

if for all regular test functions J : I → Rd, for all t ∈ [0, T ], we have∫
I
〈ψ(x, t) , J(x)〉 `(dx) =

∫
I
〈ψ(x, 0) , J(x)〉 `(dx) +

∫ t

0

∫
I
〈c(ψ(x, s)) , J(x)〉 `(dx)ds

+

∫ t

0

∫
I2
〈Γ(ψ(x, s), ψ(y, s)) , J(x)〉W (x, y)`(dy)`(dx)ds. (2.34)

We first state a uniqueness result for (2.34):

Proposition 2.17. Under the Assumptions 2.1, 2.4 and 2.6, for any ψ0 ∈ Lk(I, `), there
is at most one weak solution in C([0, T ], Lk(I, `)) to (2.34) with initial condition ψ0.

For the rest of Section 2.5, we restrict ourselves to the case I := [0, 1], endowed with

its Lebesgue measure `(dx) := dx and where x
(n)
i := i

n for i ∈ [n] (see Section 3.1 for
further details). Following the approach of [43], it is possible to consider the spatial field:

θn(x, t) := θ
(n)
bnx+1c,t =

n∑
i=1

θ
(n)
i,t 1

[x
(n)
i−1,x

(n)
i )

(x), x ∈ I, t > 0. (2.35)

We restrict here for simplicity to Model 2.5. We suppose that the hypotheses of Section 2.1
hold and that (G(n), κ(n)) converges to W in the sense of Assumption 2.9. We require
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the regularity of (W,X ) in the sense of Assumption 2.11 together with the following
supplementary condition: suppose that

n∑
i,j=1

∫ i
n

i−1
n

∫ j
n

j−1
n

∣∣∣∣W (
i

n
,
j

n

)
−W (x, y)

∣∣∣∣2 dxdy → 0, as n→∞. (2.36)

The convergence is the following:

Theorem 2.18. Restrict to Model 2.5 and suppose that the Assumptions 2.1, 2.6, 2.9,
2.11 and condition (2.36) hold. Then, for almost every realization of the connectivity
sequence Ξ given in Definition 1.2, the spatial field (θn) given in (2.35) converges weakly in
C([0, T ], Lk) to ψ(·, t)t∈[0,T ], unique solution in C([0, T ], Lk) to (2.34) with initial condition

ψ0(x) :=

∫
Rd
θνx0 (dθ). (2.37)

The present result can be seen as a generalization of [42, 43, 32, 33], where the case of
Kuramoto-type interaction (namely Γ of the form Γ(θ− θ̃) with Γ(·) and c(·) Lipschitz and
bounded) in absence of noise (σ = 0) is considered. Theorem 2.18 is proven in Section 5.2.

2.6. Identification

A direct consequence of Theorems 2.15 and 2.18 is the identification between the
spatial profile ψ(·, t), weak solution to (2.34) in terms of the expected value of the solution
νt of (1.4) (see (2.38) and (2.39) below). This identification is straightforward in the
case I = [0, 1], `(dx) = dx, as it based on both convergence of processes (νn,t)n > 1 and
(θn(·, t))n > 1:

Theorem 2.19 (Identification in the compact case). Suppose I = [0, 1], `(dx) = dx
and restrict to Model 2.5. Under the Assumptions 2.1, 2.6, 2.9, 2.11 and 2.14 and con-
dition (2.36), let (νt)t∈[0,T ] be the unique solution to (1.4) with initial condition ν0 and

ψ(·, t)t∈[0,T ] be the unique solution to (2.34) with initial condition ψ0(x) :=
∫
θνx0 (dθ).

Then, for all t ∈ [0, T ], all regular test functions J on [0, 1]∫
[0,1]
〈ψ(x, t) , J(x)〉dx =

∫
[0,1]

〈∫
Rd
θνxt (dθ) , J(x)

〉
dx. (2.38)

Theorem 2.19 is proven in Section 5.2. When I ⊂ Rp is not compact, there is no
natural construction of the spatial profile (θn(·, t)) as in (2.35). However, by a simple
truncation argument, it is still possible to get the following identification result (which
may have an interest of its own, independently of the context of random graphs):

Theorem 2.20 (Identification when I = Rp). Suppose that I = Rp is endowed with
a probability measure `(dx) = `(x)dx that is absolutely continuous w.r.t. the Lebesgue
measure on Rp. Suppose that ` is C1 on Rp and fix a kernel W (x, y) that is C1 on Rp×Rp.
Restrict to Model 2.5 and suppose that Assumptions 2.1 and 2.6 hold.

Then, (2.34) has a unique weak solution ψ(·, t)t∈[0,T ] with initial condition ψ0(x) :=∫
θνx0 (dθ). If (νt)t∈[0,T ] is the unique solution to (1.4) with initial condition ν0, then, for

all t ∈ [0, T ], all test regular functions J with compact support on Rp,∫
Rp
〈ψ(x, t) , J(x)〉 `(dx) =

∫
Rp

〈∫
Rd
θνxt (dθ) , J(x)

〉
`(dx). (2.39)
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Theorem 2.20 is proven in Appendix B, page 52. In the case of FitzHugh-Nagumo
oscillators, (2.39) (i.e. the identification of the expected value of (1.5) as a solution of
(2.33)) can be seen as a weak formulation of a recent work [20] where a similar issue
is addressed, using PDE techniques. Although we consider here a more general class of
model, the present identification is weaker, as it is only valid in the sense of distributions
(in particular, the spatial regularity of (ψ(·, t)) is not addressed here). Another significant
difference with [20] is that we crucially need here to have a probability measure `(dx) on
the spatial variable x, whereas [20] adresses directly the case where ` is Lebesgue on Rp.

2.7. A comment on graph convergence

The aim of this paragraph is to question the notion of graph convergence given by
Assumption 2.9. The point we want to raise here is that this notion of convergence does
not really concern so much the unlabeled and (possibly undirected) graph G(n) constructed
in Definition 1.2, but is rather a notion of convergence of a directed and weighted graph Ḡ(n)

that is coupled to G(n), with weights that depend on the dilution sequence κ(n). The reason

is that, even though the original graph G(n) might be symmetric, the renormalization κ
(n)
i

for each node i in (1.1) induces an asymmetry in the interaction between i and any of its
neighbor j. To be more specific:

Definition 2.21. Let Ḡ(n) be the directed and weighted graph (with vertex set [n]) con-
structed from G(n) in the following way: for any i 6= j ∈ [n], both edges i→ j and j → i are
present in Ḡ(n) if and only if the undirected edge {i, j} is present in G(n). Then, attribute

the weight κ
(n)
i (resp. κ

(n)
j ) to i→ j (resp. j → i) in Ḡ(n).

We suppose here again for simplicity that I := [0, 1], endowed with its Lebesgue

measure `(dx) := dx and where x
(n)
i := i

n for i ∈ [n]. We assume in this paragraph that
Assumption 2.9 holds as well as:

n∑
i,j=1

∫ i
n

i−1
n

∫ j
n

j−1
n

∣∣∣W (x
(n)
i , x

(n)
j )−W (x, y)

∣∣∣dxdy −−−→
n→∞

0. (2.40)

Proposition 2.22. Let Ḡ(n) be given by Definition 2.21. Under the above hypotheses, we
have the following convergence result:

d2

(
Ḡ(n),W

)
−−−→
n→∞

0, (2.41)

where d2(·, ·) is the cut-off distance.

We use here the formalism of graph convergence developed in [36, 9, 6, 7, 8] (and
references therein). The precise definition of the cut-off distance together with the proof
of Proposition 2.22 are given in Appendix C. Note that one needs to slightly generalize
the formalism of [7, 8] to the case of directed graphs and asymmetric kernels W (but this
is of minor difficulty).

An important point concerning Proposition 2.22 is that a lot of the structure of the
microscopic graph G(n) is lost in the limit n→∞: the macroscopic limit (1.5) essentially
captures a dynamics that lives on the renormalized graph Ḡ(n), which may be significantly
different to G(n). More precisely, one of the main contributions of the theory developed in
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[36, 9, 6, 7, 8]) is to show the existence of a large class of generic models of microscopic
graphs G(n) that converge to some graphon P(x, y). The point we want to stress is that
the limit P of G(n) is in general different from the limit W of Ḡ(n) provided by (2.41). This

is due to the presence of the renormalizing coefficients (κ
(n)
i )i∈[n] in (1.1) and typically true

when G(n) has vertices with diverging degree as n→∞, see e.g. Section 3, (Examples 3.7
and 3.11) and Remark 3.13, where we have two different G(n), converging to different P,
such that their renormalized graphs Ḡ(n) converge to the same W .

What is more, even though the graph of interaction G(n) might be of power-law type,
the renormalized graph Ḡ(n) and its macroscopic counterpart W that we consider in this
paper are never of power-law type: a crucial assumption that is constantly used in this
work is (2.2), i.e. the degree of each macroscopic node remains uniformly of order 1 (note
that this uniformity in degrees crucially depends on the choice of the dilution coefficients

(κ
(n)
i )). The situation where this uniform control on macroscopic degrees is discarded

is unclear: to illustrate this, consider the graph G(n) with diverging degrees defined in
Example 3.11 where, instead of (3.17), we choose now

κ
(n)
i =

1

ρn
, i ∈ [n] , (2.42)

that is, the same uniform dilution as for bounded kernels (3.9) (example already considered
in [32], § 6.2). The graph (G(n), κ(n)) remains convergent in the sense of Assumption 2.9
to

W (x, y) := P(x, y) = (1− α)2x−αy−α. (2.43)

Indeed, choosing for simplicity 0 < α < 1
6 and ρn = n−δ with 2α < δ < 1

2 − α in (3.6),

δn(x) = sup
i∈[n]

1

n

n∑
j=1

∣∣∣min
(
nδ, (1− α)2(xixj)

−α
)
− (1− α)2(xixj)

−α
∣∣∣ ,

is equally 0 for all n, since δ > 2α. But now, the uniform renormalization (2.42) (well
adapted to vertices with low degree, with position away from 0) is no longer sufficient to
compensate for vertices with high degree with position close to 0 and the boundedness
assumption (2.2) is no longer satisfied for (2.43): macroscopic nodes x ∈ [0, 1] have di-
verging degrees as x → 0. At the level of generality considered in this work (but even
for Kuramoto-type interaction), it is unclear if the convergence results (Theorem 2.13 or
Theorem 2.18) remain true when assumption (2.2) is discarded.

2.8. Applications and links with the existing literature

Applications

The kind of applications we have in mind are:

1. The Kuramoto model and its variants: take d = 1 and Γ(θ, θ̃) = sin
(
θ̃ − θ

)
. Exam-

ples of local dynamics are usually c(·) ≡ ω or c(θ) = 1+a sin(θ) [28]. In this context,
(1.4) gives rise to a family of Kuramoto models with spatial extension already consid-
ered in the literature (P -nearest neighbor model [49], long-range interactions [30]).
The question of characterizing the synchronized states, as for the original Kuramoto
model, is still an ongoing question (see [1, 29] and references therein). In the case of
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Kuramoto type ODEs (that is when σ = 0), a series of papers (see [42, 32, 33, 16, 43]
and references therein) have addressed similar issues to the ones addressed here. In
addition to the fact that we consider more general hypotheses (e.g. possibly un-
bounded and asymmetric Γ and c being non-Lipschitz), the main difficulty of the
present analysis is that noise is present in (1.1). In particular, the fixed-point ar-
gument [47] used in [33, 16] for the convergence of the empirical measure in the
deterministic case does not seem to generalize easily to the case σ 6= 0.

2. FitzHugh-Nagumo oscillators: this corresponds to d = 2, θ = (V,w), c(V,w) := (V −
V 3

3 −w,
1
τ (V +a−bw)) (for appropriate parameters a, b, τ) and Γ(θ, θ̃) := (V − Ṽ , 0).

Here, V stands for the potential of one neuron and w its recovery variable. We
refer to [11] and references therein for more details on this particular model and its
applications to neuroscience. Once again, (1.4) gives a spatially-extended version
of a Fokker-Planck PDE, already analyzed in the context of neurons interacting
through a deterministic spatial kernel ([52, 38, 39]). The present work gives a new
interpretation of such spatially-extended PDEs in terms of the mean-field limit of
diffusions on random graphs.

Longtime behavior

Theorems 2.13 and 2.15 are the natural extensions of [22] that concerns the case
of homogeneous Erdős-Rényi graphs. One should also mention at this point the recent
work [19] which addresses quenched propagation of chaos and large deviations results on
homogeneous graphs. The result that is closest to this work is the recent [48] where a
similar result of convergence is addressed in the case of bounded and Lipschitz coefficients
c, Γ. The analysis in [48] restricts to bounded kernels W and random positions (that is a
particular case of Section 3.3 below). Note also that the convergence of [48] is annealed
in both disorder (connections and positions), whereas the present analysis is quenched.
Contrary to [48], we do not address large deviation estimates here.

This work comes with all the comments and restrictions raised in [22]: the convergence
results are only valid on bounded time intervals [0, T ], where T is independent of n (al-
though that, with a little more work, it would certainly be possible to extend the result
up to times T which grows logarithmically in n, as in [22], Corollary 1.2). In any case,
the behavior of the empirical measure (2.27) on larger time scales is beyond the scope of
this paper. Even for interactions on the complete graph, the longtime analysis of (1.1)
relies heavily on the dynamical structure of the macroscopic limit (1.5) (e.g. existence
of stable fixed-point or periodic manifolds, see [4, 37, 40] for results in this direction).
The difficulty is here even more present for general graphs, since the interaction in (1.1)
cannot be written as a closed expression of the empirical measure (2.27). One should
mention the recent work [18] addressing longtime dynamics of Kuramoto oscillators on
homogeneous Erdös-Rényi graphs. A trajectorial Central Limit Theorem associated to
Theorem 2.15 remains open (in this direction, see [5] for an annealed fluctuation theorem
in the Erdős-Rényi case).

One point raised in [22] concerned the necessity of the independence of the initial
condition of (1.1) (θ1,0, . . . , θn,0) with respect to the graph G(n) (in [22], the (θ1,0, . . . , θn,0)
are identically distributed; see also [19] where a convergence result is proven in the Erdős-
Rényi case assuming only the convergence of the empirical measure of the initial condition).
Here, we note that the present framework allows for a slight connection between the initial
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condition and the graph: the law νxk0 of θk,0 depends on its position xk which encodes
for the way the graph G(n) is built. A simple illustration is when the graph is made of
two complete disconnected components (one concerning the particles with positions in
[0, 1

2 ], with initial law νx0 = µ1 and one concerning particles with positions in [1
2 , 1], with

initial law νx0 = µ2). In this case, the behavior of the system is governed by (1.5), with
macroscopic kernel W = 1[0, 1

2
]2 + 1[ 1

2
,1]2 .

Neural field equation and traveling waves

In the particular case where d = 1, c(θ) = −αθ (for some α > 0) and Γ(θ, θ̃) = f(θ̃)
(typically f is a sigmoid function), (2.33) becomes:

∂tψ(x, t) = −αψ(x, t) +

∫
I
f(ψ(y, t))W (x, y)`(dy). (2.44)

Equation (2.44) is nothing else than the neural field equation, introduced by Wilson and
Cowan [54] and Amari [3] in order to describe the macroscopic activity of a population of
neurons with spatial extension. Eq. (2.44) has been the subject of an extensive literature
(see [13, 12] and references therein; see in particular the recent work [15] showing that
(2.44) is a proper limit for spatially-extended Hawkes processes). An important issue
here is the existence and stability of traveling waves [27, 50]. The point we want to
raise here is the possibility of studying such traveling waves through the analysis of the
corresponding McKean-Vlasov PDE (1.4) (whose dynamics is, to our knowledge, much
less studied than (2.44), see [41]), through the identification (2.38). An interesting and
open question concerns the possibility of extending this identification beyond finite time
scales (as for the Kuramoto model). In this context, it is reasonable to expect that the
effect of thermal noise will persist on larger time intervals, resulting in stochastic neural
field equations [26, 31, 34, 35].

3. Examples

The point of this section is twofold: to describe generic models (X ,W ) that are reg-
ular in the sense of Assumption 2.11 (Section 3.1 below) and to give examples of graphs
(G(n), κ(n)) that are convergent in the sense of Assumption 2.9 (Sections 3.2, 3.3 and 3.4
below). These examples are directly inspired by the formalism of W -random graphs, in-
troduced in [36, 9, 10, 8, 7] and used in [42, 32, 33, 16, 43] (and references therein) in
the context of Section 2.5. In this framework, a usual setting is to consider the compact
I = [0, 1]. This set-up is particularly well adapted to the choice of deterministic regular
positions (see Assumption 3.1 below). Nonetheless, as already mentioned, it also makes
sense to consider a general state space I endowed with a general probability measure `,
where each xi actually encodes for a real position [14, 15].

3.1. Two classes of regular models

We describe in this paragraph two generic classes of positions X and macroscopic
kernels W and provide simple conditions in both models ensuring that W is regular in the
sense of Assumption 2.11.
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Deterministic positions

A first set of hypotheses corresponds to deterministic positions [42, 14, 15, 46]:

Assumption 3.1 (Deterministic positions). We suppose that I := [0, 1], endowed with

its Lebesgue measure `(dx) := dx. For all n > 1, the sequence x = (x
(n)
1 , . . . , x

(n)
n ) is

deterministic, regularly positioned on I:

x
(n)
i :=

i

n
, n > 1, i ∈ [n] . (3.1)

We set x
(n)
0 := 0 for notational convenience.

A sufficient condition for the regularity of W is to require (2.28) and

sn(W )(x) := sup
i∈[n]

(
n∑
k=1

∫ xk

xk−1

|W (xi, xk)−W (xi, y)| dy

)
−−−→
n→∞

0. (3.2)

Note that (3.2) is in particular true when W is uniformly Lipschitz in (x, y). In the
following, we give examples of discontinuous W still satisfying (3.2).

Proposition 3.2. In the framework of Assumption 3.1, suppose that Assumptions 2.1, 2.4
and 2.6 and conditions (2.28) and (3.2) hold. Then, Assumption 2.11 is verified: the kernel
W is regular along the sequence X .

Proposition 3.2 is proven in Section 4.3.

Random positions

Another general framework concerns the case of random positions [48, 43]:

Assumption 3.3 (Random positions). Let I be a closed subset of Rp that is the support
of a probability measure `(dx). The sequence

X = (x1, x2, . . .) (3.3)

is the realization of i.i.d. random variables with law `(dx) on I.

For any p > 1 denote by ‖W‖Lp = ‖W‖Lp(I2,`⊗`) the usual Lp-norm of W on I2:

‖W‖Lp :=

(∫
I2
W (x, y)p`(dx)`(dy)

) 1
p

. (3.4)

Proposition 3.4. In the framework of Assumption 3.3, suppose that Assumptions 2.1, 2.4
and 2.6 hold, as well as the following moment condition: there exists some χ > 9 such
that

‖W‖Lχ <∞. (3.5)

Then, for `-almost every realization of the sequence X , Assumption 2.11 is verified: the
kernel W is regular along the sequence X .

Proposition 3.4 is proven in Section 4.4.
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3.2. A class of convergent graphs

We give now examples of microscopic graphs G(n) constructed as in Definition 1.2, that
fulfill the requirements of Section 2, in both situations of deterministic (Assumption 3.1)
and random positions (Assumption 3.3). The present examples fall into the framework
of W -random graphs (with possibly unbounded graphons), that is, when the probability
field Wn(x, y) is directly constructed upon a predetermined determinisitic kernel P(x, y).
A general framework may be given by (see [8, 32] for similar definitions)

Definition 3.5 (Generic random graph with graphon P). For fixed (I, `), n > 1 and a
given positive measurable kernel (x, y) 7→ P(x, y) on I2, we define

Wn(x, y) := ρn min

(
1

ρn
,P(x, y)

)
, (3.6)

where ρn ∈ [0, 1].

One important aim of [36, 9, 10, 8, 7] (and references therein) is precisely to prove that,
under various hypotheses, G(n) converges to P. In this context, one generally distinguishes
between bounded graphons P [36, 9, 10] and unbounded graphons (a typical hypothesis
being that P ∈ Lp(I2) for some p > 1 see [8, 7] and references therein). Note that when
the graphon P is bounded (and up to the change ρn ↔ ρn

‖P‖∞
, one can always suppose

that ‖P‖∞ = 1), (3.6) boils down to

Wn(x, y) = ρnP(x, y), x, y ∈ I. (3.7)

When ρn = 1, we are dealing with dense graphs, whereas in the case ρn −−−→
n→∞

0, we

consider diluted graphs. A very simple particular case of (3.7) corresponds to P(x, y) ≡
1 which boils to a (possibly diluted) homogeneous Erdős-Rényi random graph, already
studied in [22, 19]. Thus, one has to think of (3.7) as an inhomogeneous version of the
Erdős-Rényi case. When P is not bounded, one usually assumes in (3.6) that ρn → 0 and
nρn →∞, as n→∞.

Here the distinction is not really on the boundedness of P in (3.6), but rather between
supx

∫
P(x, y)`(dy) < +∞ and supx

∫
P(x, y)`(dy) = +∞. In the first case, there is

uniform control on the asymptotic degree of each node in the graph G(n) whereas in the
second, G(n) has nodes with diverging degree as n → ∞. We treat these two cases in
Section 3.3 and 3.4 below.

3.3. Convergent graphs: the case of graphons with uniformly bounded degrees

We assume in this paragraph that Wn is given by (3.6) for

sup
x∈I

∫
P(x, y)`(dy) < +∞. (3.8)

Here, we adopt a renormalization that is uniform on the nodes i ∈ [n]: set

κ
(n)
i = κn :=

1

ρn
, i = 1, . . . , n and wn = ρn, (3.9)
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satisfying

κn =
1

ρn
= o

(
n

log(n)

)
, as n→∞. (3.10)

In this case, the appropriate limit for (G(n), κn) is simply given by W := P itself. The
verification of the hypotheses of Section 2.1 require that

sup
z∈I

∫
P(z, y)2`(dy) < +∞ and inf

z∈I

∫
P(z, y)`(dy) > 0. (3.11)

We address now the question of the convergence of (G(n), κn) to P (Assumption 2.9)
as well as the regularity of the model (Assumption 2.11) in both cases of deterministic
(Assumption 3.1) and random positions (Assumption 3.3).

Convergence of the graph (G(n), κ(n)):

Note that (2.15), (2.16) and (2.17) are trivially verified here, as well as (2.18), by
(3.10). This dilution condition was already noticed in [22] in the Erdős-Rényi case P ≡ 1:
the microscopic graphs that are relevant for the present work have an averaged degree
larger than log(n). The only point that we need to check is (2.20). Note first that when
P is bounded, (2.20) is immediately verified, since we have δn(x) ≡ 0 for all n. This can
be slightly generalized into the following sufficient condition:

Proposition 3.6. Suppose that the sequence of positions X and the kernel P are such
that for some ε ∈

[
0, 1

2

)
and C > 0, for all n > 1 sufficiently large,

sup
i,j∈[n]

P(xi, xj) 6 Cnε. (3.12)

Choose δ such that ε < δ < 1
2 and define

ρn := n−δ. (3.13)

Then, (G(n), κ(n)) given by (3.6) and (3.9) (with ρn given by (3.13)) converges to W := P
in the sense of Assumption 2.9.

Proof of Proposition 3.6. It suffices to note that by (3.12) and (3.13), we have, for n

sufficiently large, min
(

1
ρn
,P(xi, xk)

)
= P(xi, xk) for all i, k ∈ [n]. Hence, δn(x) = 0 for

such n.

Regular kernels for deterministic positions:

In this paragraph, we suppose that the positions are deterministic xi = i
n (Assump-

tion 3.1). If P is bounded, having in mind Proposition 3.2, a simple sufficient condition
is W = P β-Hölder for some β ∈ (0, 1]: for such P, (2.28) holds for ι2 = β and (3.2) is
straightforward. The supplementary regularity condition (2.36) required for Theorem 2.18
is also valid. Interesting examples include P(x, y) = 1 − max(x, y) or P(x, y) = 1 − xy
which are encountered in the context of dense inhomogeneous graphs (see [7, 6] for many
interesting examples). However, note that the hypotheses (2.28), (3.2) and (2.36) are suffi-
ciently general to capture some interesting cases where P is not continuous: the P -nearest
neighbor model [38] corresponds to ρn = 1 and P(x, y) = 1|x−y| 6 R, x, y ∈ I, for some
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R ∈ (0, 1]. It is immediate to see that (2.28) is true for ι2 = 1, that sn(W ) = O
(
n−1

)
in

(3.2) and that (2.36) holds. Another interesting case of unbounded kernel P (which still
satisfies (3.8)) is P(x, y) := 1

|x−y|α on I = [0, 1] (already considered in [38]). This enters

into the present framework for 0 < α < 1
2 .

In order to compare with Section 3.4, we end this paragraph with the following example:

Example 3.7 ([32]). Let (G(n), κ(n)) be given by (3.6) where

P(x, y) := (1− α)y−α, α ∈
[
0,

1

2

)
, x, y ∈ I = [0, 1], (3.14)

and κ
(n)
i is given by (3.9) and ρn = n−δ for some α < δ < 1

2 . Then, Assumptions 2.9

and 2.11 are satisfied: (G(n), κn) is regular and convergent to P.

Indeed a rough bound gives that supi,j∈[n] P(xi, xj) 6 (1− α)nα, so that (3.12) holds
for ε = α, so that one can conclude about Assumption 2.9 from Proposition 3.6. Moreover,

sn(W )(x) = (1− α)

(∫ 1

0
y−αdy − 1

n1−α

n∑
k=1

k−α

)
= O

(
1

n1−α

)
,

which proves (3.2) since α < 1/2. In a same way, (2.36) is true. Inequality (2.28) (for
ι2 = 1) is trivial, so that Assumption 2.11 is verified.

Regular kernels for random positions:

In this paragraph, we suppose that the positions are random (Assumption 3.3). In
the case of random positions, in addition to (3.11), we need to verify Proposition 3.4
and Proposition 3.6. It turns out that condition (3.5) is sufficient for both: indeed, fix

P ∈ Lχ(I2) with χ > 9 and let ε ∈
(

3
χ ,

1
2

)
. For any i, j ∈ [n],

P (|P(xi, xj)| > nε) 6
E [|P(xi, xj)|χ]

nεχ
=
‖P‖χχ
nεχ

.

A rough union bound on i, j ∈ [n] gives

P

(
sup
i,j∈[n]

|P(xi, xj)| > nε

)
6
‖P‖χχ
nεχ−2

.

Since εχ−2 > 1, by Borel-Cantelli Lemma, we have almost surely that supi,j∈[n] |P(xi, xj)| 6 nε

for n sufficiently large. In particular, any bounded measurable weights P in L∞([0, 1]2)
satisfy the hypotheses. Among interesting examples which have not been addressed so
far, one can highlight the case of kernels with values in {0, 1} (with ρn = 1). This case
corresponds to deterministic graphs (see [42], § 4).
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3.4. Convergent graphs: the case of graphons with diverging degrees

We consider here Wn given by (3.6) for P satisfying

∀x ∈ I,
∫
P(x, y)2`(dy) < +∞ and P∗ := inf

z∈I

∫
P(z, y)`(dy) > 0. (3.15)

The point of the paragraph is to discuss the consequences of having possibly

sup
x∈I

∫
P(x, y)`(dy) = +∞. (3.16)

Here, the uniform renormalization (3.9) is no longer adapted: we consider instead

κ
(n)
i =

n

ρn
∑n

j=1 min
(

1
ρn
,P(xi, xj)

) , i ∈ [n] . (3.17)

This corresponds to renormalizing the interaction in (1.1) by the averaged degree
∑

jWn(xi, xj)
of each vertex. Here, the correct choice for the macroscopic interaction kernel W is ([32])

W (x, y) :=
P(x, y)∫
P(x, z)`(dz)

, x, y ∈ I. (3.18)

Remark 3.8. By construction, supx∈I
∫
W (x, y)`(dy) = 1. Verifying the technical second

moment (2.2) requires to have
∫ P(x,y)2

(
∫
P(x,z)`(dz))

2 `(dy) <∞, which is in particular immediate

for Example 3.11 below. Of course, it could be possible to apply the present renormaliza-
tion (3.17) to the previous case of Section 3.3. However, when P is bounded, the two
renormalizations (3.9) and (3.17) lead to slightly different macroscopic models: in (3.18),
W is renormalized by the factor

∫
P(x, z)`(dz), which is not natural in the bounded case.

On the convergence of the graph (G(n), κ(n)):

The following result is the counterpart of Proposition 3.6:

Proposition 3.9. Suppose that the sequence of positions X and the kernel P are such
that for some ε ∈

[
0, 1

2

)
and C > 0, for all n > 1 sufficiently large, estimate (3.12) holds.

Choose also δ such that ε < δ < 1
2 and define ρn := n−δ as in (3.13). Suppose

sup
i∈[n]

∣∣∣∣∣∣ 1n
n∑
j=1

P(xi, xj)−
∫
P(xi, z)`(dz)

∣∣∣∣∣∣→ 0, as n→∞. (3.19)

Then, (G(n), κ(n)) given by (3.6) and (3.17) converges to W given by (3.18) in the sense

of Assumption 2.9, for the choice of κn := 2nδ

P∗ and wn := 1.

Proof of Proposition 3.9. By (3.12) and (3.13), we have, for n sufficiently large, min
(

1
ρn
,P(xi, xk)

)
=

P(xi, xk) for all i, k ∈ [n]. Hence, for such n, for i ∈ [n], κ
(n)
i = nδ

1
n

∑n
j=1 P(xi,xj)

. Using

(3.19), we have infi∈[n]
1
n

∑n
j=1 P(xi, xj) > 1

2

∫
P(xi, y)`(dy) > P∗

2 , for n sufficiently large.
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This proves (2.15) for κn := 2nδ

P∗ . Condition (2.17) is trivial for wn = 1 and the dilution

condition (2.18) holds since δ < 1
2 . It remains to check (2.20): denote by

Sn(x) :=
1

n

n∑
j=1

P(x, xj), and S(x) :=

∫
P(x, z)`(dz), x ∈ I.

With these notations, 1
n

∑n
k=1

∣∣∣κ(n)
i Wn(xi, xk)−W (xi, xk)

∣∣∣ = |Sn(xi)−S(xi)|
S(xi)

and the result

follows immediately from (3.15) and (3.19).

Regular kernels for random positions (Assumption 3.3):

As for Section 3.3, regularity and convergence holds under sufficient integrability of
the kernel P:

Proposition 3.10. Suppose that Assumption 3.3 holds. For any P ∈ Lχ(I2) with χ > 9
which verifies (3.15), the following is true: for almost every realization of the sequence X ,
(G(n), κ(n)) defined by (3.6) and (3.17) (with ρn = n−δ, 3

χ < δ < 1
2) converges to W given

by (3.18) in the sense of Assumption 2.9, (for the choice of κn = 2nδ

P∗ and wn = 1) and
Assumption 2.11 is verified.

Proof of Proposition 3.10. Once again, we apply Proposition 3.4 and Proposition 3.9 to-

gether with a Borel-Cantelli argument. Let ε ∈
(

3
χ ,

1
2

)
. The same reasoning as before

shows that, since εχ − 2 > 1, we have almost surely that supi,j∈[n] |P(xi, xj)| 6 nε for n
sufficiently large. Secondly, let

P̄(x, y) := P(x, y)−
∫
P(x, z)`(dz). (3.20)

Compute

E

 1

n

n∑
j=1

P̄(xi, xj)

6 =
1

n6

n∑
j1,...,j6=1

E

[
6∏
l=1

P̄(xi, xjl)

]
. (3.21)

Among the sum above, consider the case where one index (for example j1) is such that
j1 /∈ {j2, . . . , j6}. In this case, conditioning w.r.t. (xi, xj , j 6= j1) within the previous

expectation gives E
[∏6

l=1 P̄(xi, xjl)
]

= 0, by independence of the (xk)k∈[n] and by def-

inition of P̄. Hence, the nontrivial contributions to (3.21) are necessarily of the form

E
[∏3

l=1 P̄(xi, xul)
2
]

for any (u1, u2, u3) ∈ [n]3. This means that there exists a constant

C > 0 (independent of i ∈ [n]) such that

E

 1

n

n∑
j=1

P̄(xi, xj)

6 6
C

n3
. (3.22)

By a union bound on i ∈ [n] and Markov inequality, we obtain, for all p > 1

P

sup
i∈[n]

∣∣∣∣∣∣ 1n
n∑
j=1

P̄(xi, xj)

∣∣∣∣∣∣ > 1

p

 6
n∑
i=1

P

∣∣∣∣∣∣ 1n
n∑
j=1

P̄(xi, xj)

∣∣∣∣∣∣ > 1

p

 6
Cp6

n2
.

An application of Borel-Cantelli Lemma shows that (3.19) holds almost surely.
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We finish this section with an example in the deterministic case:

Example 3.11 ([32], Ex. 2.1). Consider here the model (G(n), κ(n)) given by (3.6) and
(3.17) where

P(x, y) := (1− α)2x−αy−α, α ∈
[
0,

1

2

)
, x, y ∈ I = [0, 1]. (3.23)

Proposition 3.12. Suppose that Assumption 3.1 holds. Let α ∈
[
0, 1

2

)
and P defined by

(3.23). There exists δ(α) < 1/2 such that for all δ(α) < δ < 1
2 , the renormalized graph

(G(n), κ(n)) given by (3.6) and (3.17) with ρn := n−δ converges to W (x, y) = (1−α)y−α, for

the choice of κn := nδ

(1−α)2
and wn := 1 and W is regular in the sense of Assumption 2.11.

Remark 3.13. The macroscopic limits in Example 3.7 and Example 3.11 are the same,
although the underlying graphs G(n) have really different structures. In Example 3.7, G(n)

is more or less homogeneous whereas Example 3.11 is much more hub-like: nodes with
positions close to 0 are connected to the whole population with probability close to 1. We
see here the effect of the renormalization (3.17): it compensates for the hubs in the graph
G(n) so that, even though the graphs G(n) might be different, the renormalized graphs Ḡ(n)

are actually quite similar.

Proof of Proposition 3.12. Recall the following simple asymptotics: for α ∈ (0, 1), there
exist some sequence εn →n→∞ 0 and some constant C(α) 6= 0 such that

n∑
k=1

k−α =
n1−α

1− α
+ C(α) + εn, n > 1. (3.24)

We first verify Assumption 2.9. First, the easy case where α ∈
[
0, 1

4

)
can be treated via

Proposition 3.9: the following rough bound supi,j∈[n] P(xi, xj) 6 (1−α)2n2α holds so that

(3.12) is true for ε = 2α < 1
2 . Morever,∣∣∣∣∣∣ 1n

n∑
j=1

P(xi, xj)−
∫
P(xi, z)dz

∣∣∣∣∣∣ = (1− α)x−αi

∣∣∣∣∣∣1− αn1−α

n∑
j=1

j−α − 1

∣∣∣∣∣∣ ,
which, since x−αi 6 nα, is of order n−(1−2α), uniformly in i ∈ [n]. Thus, Proposition 3.9 is
true, for any δ such that 2α < δ < 1

2 .
The case α ∈

[
1
4 ,

1
2

)
is more technical and cannot be dealt via Proposition 3.9 directly.

Choose any δ such that α < δ < 1
2 6 2α < 1. Since xi 6 1, we have

κ
(n)
i =

n1+δ∑n
j=1 min

(
nδ, (1− α)2 1

xαi x
α
j

) 6
nδ

(1− α)2
,

so that (2.15) and (2.17) are true for wn = 1. The choice of δ < 1
2 ensures that (2.18) is

verified. We have δn(x) = supi∈[n] δn,i(x) with

δn,i(x) :=
1

n

n∑
k=1

∣∣∣κ(n)
i Wn(xi, xk)−W (xi, xk)

∣∣∣ , i ∈ [n] .
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Using the notations

jin :=

⌊
(1− α)2/αn

2−δ/α

i

⌋
(3.25)

and

Dn,i :=

n∑
j=1

min

(
nδ, (1− α)2 1

xαi x
α
j

)
= jinn

δ + (1− α)2n
α

xαi

n∑
j=jin+1

1

jα
,

we obtain

δn,i(x) =
1

n

jin∑
k=1

∣∣∣∣n1+δ

Dn,i
− (1− α)

nα

kα

∣∣∣∣+

∣∣∣∣(1− α)n

Dn,ixαi
− 1

∣∣∣∣
1− α
n1−α

n∑
k=jin+1

1

kα

 ,

6
jinn

δ

Dn,i
+

1− α
n1−α

jin∑
k=1

1

kα
+

∣∣∣∣(1− α)n

Dn,ixαi
− 1

∣∣∣∣
1− α
n1−α

n∑
k=jin+1

1

kα

 . (3.26)

By (3.24), we have for any β ∈ (0, 1]

1− α
n1−α

bnβc∑
k=1

1

kα

{
→n→∞ 1 if β = 1,

O
(

1
n(1−α)(1−β)

)
→n→∞ 0 if β ∈ (0, 1).

(3.27)

First observe that for all i = 1, . . . , n jin 6
⌊
n2−δ/α⌋. Since δ > α, 2 − δ/α < 1 and by

(3.27), the second term in (3.26) is such that

sup
i∈[n]

1− α
n1−α

jin∑
k=1

1

kα

→ 0, as n→∞. (3.28)

Moreover we have the existence of n0 > 1 such that for all n > n0

inf
i∈[n]

1− α
n1−α

n∑
k=jin+1

1

kα

 >
1

2
. (3.29)

Let us now concentrate on the first term of (3.26): for all i ∈ [n],

jinn
δ

Dn,i
=

1

1 + (1− α)2 n2α

iαjinn
δ

∑n
j=jin+1

1
jα

,

6
1

1 + (1− α)1−2/αnα−δ−1+δ/α
(

1−α
n1−α

∑n
j=jin+1

1
jα

) , (by (3.25) and since i > 1),

6
1

1 + (1−α)1−2/α

2 nα−δ−1+δ/α
→ 0, by (3.29),
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since α − δ − 1 + δ/α = δ−α
α (1 − α) > 0. This proves that the first term of (3.26)

converges to 0 uniformly in i ∈ [n]. The third term of (3.26) 1−α
n1−α

∑n
k=jin+1

1
kα is smaller

than 1−α
n1−α

∑n
k=1

1
kα which converges (to 1) and hence, bounded. It remains to control∣∣∣ (1−α)n

Dn,ixαi
− 1
∣∣∣. We can write

∣∣∣∣(1− α)n

Dn,ixαi
− 1

∣∣∣∣ =
(1− α)n

Dn,ixαi

∣∣∣∣∣∣− jini
α

(1− α)n1+α−δ + 1− 1− α
n1−α

n∑
j=jin+1

1

jα

∣∣∣∣∣∣ ,
6

(1− α)n

Dn,ixαi

 (1− α)2/α−1

n−1+α−δ+δ/α +
1− α
n1−α

jin∑
j=1

1

jα
+

∣∣∣∣∣∣1− 1− α
n1−α

n∑
j=1

1

jα

∣∣∣∣∣∣
 .

The terms within the brackets converge to 0, uniformly in i ∈ [n], (recall (3.27) and (3.28))
and we have

(1− α)n

Dn,ixαi
=

1− α
jinn

δ−1xαi + (1− α)2nα−1
∑n

j=jin+1
1
jα

6
1

1−α
n1−α

∑n
j=jin+1

1
jα

6 2,

at least for large n, once again by (3.29). This proves (2.20) in the case α ∈
[

1
4 ,

1
2

)
. The

proof of the regularity of W has already been done in Section 3.3. This concludes the
proof of Proposition 3.12.

4. Proofs for the propagation of chaos results

4.1. Proof of Theorem 2.13

For the moment, the sequence of positions X and the associated connectivity sequence
Ξ are fixed. For all n > 1, for fixed x and ξ, we introduce the following quantities

bn(ξ) := sup
i∈[n]

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i ξ

(n)
i,k

∣∣∣∣∣ , (4.1)

dn,t(ξ, x) := sup
i∈[n]

∫ t

0
E

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i

(
ξ

(n)
i,k −Wn(xi, xk)

)
[Γ]u(θ̄i,u, xk)

∣∣∣∣∣
2
du. (4.2)

Proposition 4.1. Suppose that Assumptions 2.1, 2.4 and 2.6 are true. For n > 1 and

T > 0, let (θi,t)i∈[n] := (θ
(n)
i,t )i∈[n] be the solution of (1.1) and (θ̄i,t)i∈[n] := (θ̄xit )i∈[n]

independent copies of (1.3) with the same initial conditions and Brownian motions as
(1.1). There exists a constant C > 0 (independent of n and T ), such that for any fixed
choice of connectivities and positions (ξ, x),

sup
i∈[n]

E

[
sup
s 6 T

∣∣θi,s − θ̄i,s∣∣2] 6 C
(
T + eCT

)
eCbn(ξ)2T

×

(
bn(ξ)

κ
(n)
∞ (x)

n
+ δn(x)2 + dn,T (ξ, x) +

3∑
m=1

ε
(m)
n,T (x)

)
, (4.3)

where we recall the definitions of κ
(n)
∞ (x) in (2.15), of δn(x) in (2.19) and of ε

(m)
n,T (x) in

(2.24).
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Proof of Proposition 4.1. For all s 6 t, i ∈ [n], by the one-sided Lipschitz-continuity (2.6)
of c,

∣∣θi,s − θ̄i,s∣∣2 = 2

∫ s

0

〈
θi,u − θ̄i,u , c(θi,u)− c(θ̄i,u)

〉
du

+ 2

∫ s

0

〈
θi,u − θ̄i,u ,

(
1

n

n∑
k=1

κ
(n)
i ξi,kΓ(θi,u, θk,u)−

∫
W (xi, x̃)Γ(θ̄i,u, θ̃)νu(dθ̃,dx̃)

)〉
du,

6 (2Lc+1)

∫ s

0

∣∣θi,u − θ̄i,u∣∣2 du+

∫ s

0

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i ξi,kΓ(θi,u, θk,u)−

∫
W (xi, x̃)Γ(θ̄i,u, θ̃)νu(dθ̃,dx̃)

∣∣∣∣∣
2

du.

Taking the supremum in s 6 t and the expectation w.r.t. Brownian motions and initial
conditions,

E

[
sup
s 6 t

∣∣θi,s − θ̄i,s∣∣2] 6 (2Lc + 1)

∫ t

0
E

[
sup
v 6 u

∣∣θi,v − θ̄i,v∣∣2]du

+

∫ t

0
E

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i ξi,kΓ(θi,u, θk,u)−

∫
W (xi, x̃)Γ(θ̄i,u, θ̃)νu(dθ̃,dx̃)

∣∣∣∣∣
2
du. (4.4)

It remains to control the last term in (4.4), which can be bounded from above by
∫ t

0

(
6
∑6

k=1A
(k)
n,i,u

)
du,

where, for u 6 t,

A
(1)
n,i,u := E

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i ξi,k

(
Γ(θi,u, θk,u)− Γ(θ̄i,u, θk,u)

)∣∣∣∣∣
2
 , (4.5)

A
(2)
n,i,u := E

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i ξi,k

(
Γ(θ̄i,u, θk,u)− Γ(θ̄i,u, θ̄k,u)

)∣∣∣∣∣
2
 , (4.6)

A
(3)
n,i,u := E

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i ξi,k

(
Γ(θ̄i,u, θ̄k,u)− [Γ]u (θ̄i,u, xk)

)∣∣∣∣∣
2
 , (4.7)

A
(4)
n,i,u := E

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i (ξi,k −Wn(xi, xk)) [Γ]u (θ̄i,u, xk)

∣∣∣∣∣
2
 , (4.8)

A
(5)
n,i,u := E

∣∣∣∣∣ 1n
n∑
k=1

(
κ

(n)
i Wn(xi, xk)−W (xi, xk)

)
[Γ]u (θ̄i,u, xk)

∣∣∣∣∣
2
 , (4.9)

A
(6)
n,i,u := E

∣∣∣∣∣ 1n
n∑
k=1

W (xi, xk) [Γ]u (θ̄i,u, xk)−
∫
W (xi, x̃) [Γ]u (θ̄i,u, x̃)`(dx̃)

∣∣∣∣∣
2
 , (4.10)

where we recall the definition of [Γ]u in (2.21). Note as this point that, dn,t defined in (4.2)

is such that dn,t = supi∈[n]

∫ t
0 A

(4)
n,i,udu. Among the other terms, A

(1)
n and A

(2)
n capture the

approximation of the particle system (θi)i by its mean-field limit (θ̄i)i and A
(3)
n relates
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the empirical measure of the mean-field particle system to its deterministic limit ν. The

convergence of (Wn(xi, xj))i,j to the macroscopic kernel (W (xi, xj))i,j is controlled by A
(5)
n .

By the Lipschitz continuity of Γ (2.4), we have (recall the definition of bn in (4.1)),

A
(1)
n,i,u 6 L2

Γbn(ξ)2 sup
r∈[n]

E

[
sup
v∈[0,u]

∣∣θr,v − θ̄r,v∣∣2] .
In a same way, by (2.4),

A
(2)
n,i,u 6 L2

ΓE

[
1

n

n∑
k=1

κ
(n)
i ξi,k

∣∣θk,u − θ̄k,u∣∣
]2

=
L2

Γ

n2

n∑
k,l=1

(
κ

(n)
i

)2
ξi,kξi,lE

[∣∣θk,u − θ̄k,u∣∣ ∣∣θl,u − θ̄l,u∣∣] ,
6

L2
Γ

2n2

n∑
k,l=1

(
κ

(n)
i

)2
ξi,kξi,lE

[∣∣θk,u − θ̄k,u∣∣2 +
∣∣θl,u − θ̄l,u∣∣2] 6 L2

Γbn(ξ)2 sup
r∈[n]

E

[
sup
v∈[0,u]

∣∣θr,v − θ̄r,v∣∣2] .
Concerning the term A(3), denote by (recall (2.21))

δΓ(θ̄i,u, θ̄k,u) :=
(
Γ(θ̄i,u, θ̄k,u)− [Γ]u (θ̄i,u, xk)

)
=

(
Γ(θ̄i,u, θ̄k,u)−

∫
Γ(θ̄i,u, θ̃)ν

xk
u (dθ̃)

)
.

(4.11)
One has in particular, using (2.5) and Remark 2.8,

E
[∣∣δΓ(θ̄i,u, θ̄k,u)

∣∣2] 6 2E
[∣∣Γ(θ̄i,u, θ̄k,u)

∣∣2]+ 2E

[∫ ∣∣∣Γ(θ̄i,u, θ̃)
∣∣∣ νxku (dθ̃)

]2

,

6 2L2
ΓE
[
1 +

∣∣θ̄i,u∣∣+
∣∣θ̄k,u∣∣]2 + 2L2

ΓE
[
1 +

∣∣θ̄i,u∣∣+ E
∣∣θ̄k,u∣∣]2 ,

6 12L2
Γ

(
1 + E

[∣∣θ̄i,u∣∣2]+ E
[∣∣θ̄k,u∣∣2]) ,

6 12L2
Γ

(
1 + 2 sup

r∈[n]
E

[
sup
v 6 u

∣∣θ̄r,v∣∣2]) 6 12L2
Γ (1 + 2C0) , (4.12)

for C0 given by (2.13). Thus,

A
(3)
n,i,u 6 E

∣∣∣∣∣ 1n
n∑
k=1

κ
(n)
i ξi,kδΓ(θ̄i,u, θ̄k,u)

∣∣∣∣∣
2
 ,

=

(
κ

(n)
i

)2

n2

n∑
k=1

ξi,kE
[∣∣δΓ(θ̄i,u, θ̄k,u)

∣∣2]+

(
κ

(n)
i

)2

n2

n∑
k 6=l

ξi,kξi,lE
[〈
δΓ(θ̄i,u, θ̄k,u) , δΓ(θ̄i,u, θ̄l,u)

〉]
.

Since we have supposed that ξi,i = 0, one can suppose that k 6= i and l 6= i in the second
sum and conditioning by Fk := σ(θ̄r,u, r 6= k) gives

E
[〈
δΓ(θ̄i,u, θ̄k,u) , δΓ(θ̄i,u, θ̄l,u)

〉]
= E

[
E
[〈
δΓ(θ̄i,u, θ̄k,u) , δΓ(θ̄i,u, θ̄l,u)

〉
|Fk
]]
,

= E
[〈
δΓ(θ̄i,u, θ̄l,u) , E

[
δΓ(θ̄i,u, θ̄k,u)|Fk

]〉]
= 0,
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by definition of δΓ(θ̄i,u, θ̄k,u). Consequently, by (4.12) (recall the definition of κ
(n)
∞ (x) in

(2.15)),

A
(3)
n,i,u 6 12L2

Γ (1 + 2C0)

(
κ

(n)
i

)2

n2

n∑
k=1

ξi,k 6 12L2
Γ (1 + 2C0) bn(ξ)

κ
(n)
∞ (x)

n
.

Concerning the term A
(5)
n,i,u, using (A.23) and (2.13) (recall the definition of δn(x) in (2.19)),

we have

A
(5)
n,i,u 6 3L2

Γ (1 + 2C0)

(
1

n

n∑
k=1

∣∣∣κ(n)
i Wn(xi, xk)−W (xi, xk)

∣∣∣)2

6 3L2
Γ (1 + 2C0) δn(x)2.

Finally, let us control the last term A
(6)
n,i,u: using the shortcut

[ΓW ]u(θ, x, y) = W (x, y)[Γ]u(θ, y)−
∫
W (x, z)[Γ]u(θ, z)`(dz) (4.13)

we have (recall the definition of Υt in (2.22))∫ t

0
A

(6)
n,i,udu =

∫ t

0

∫
E
[〈

[ΓW ]u(θ̄i,u, xi, y) , [ΓW ]u(θ̄i,u, xi, z)
〉]
`n(dy)`n(dz)du

=

∫
W (xi, y)W (xi, z)Υt(xi, y, z)`n(dy)`n(dz) +

∫
W (xi, y)W (xi, z)Υt(xi, y, z)`(dy)`(dz)

−
∫
W (xi, y)W (xi, z)Υt(xi, y, z)`n(dy)`(dz)−

∫
W (xi, z)W (xi, y)Υt(xi, y, z)`(dy)`n(dz).

So that (recall the definition of the ε
(m,i)
n,T (x) in (2.23)),

sup
i∈[n]

∫ t

0
A

(6)
n,i,udu 6

3∑
m=1

ε
(m)
n,t (x).

Define now

ft := sup
i∈[n]

E

[
sup
s 6 t

∣∣θi,s − θ̄i,s∣∣2] , t 6 T. (4.14)

Taking the supremum on i ∈ [n] and gathering all the previous estimates in (4.4) gives,
for some constant C = C(Γ, c,W, σ, ν0) > 0,

ft 6 Cbn(ξ)2

∫ t

0
fudu+ C

(
t+ eCt

)(
bn(ξ)

κ
(n)
∞ (x)

n
+ δn(x)2

)
+ dn,t(ξ, x) +

3∑
m=1

ε
(m)
n,t (x), t ∈ [0, T ].

An application of Grönwall’s Lemma gives the conclusion. This proves Proposition 4.1.

At this point of the proof, in (4.3), δn(x) and
∑3

m=1 ε
(m)
n,T (x) go to 0 as n → ∞, by

hypothesis. The point now is to prove that the two remaining terms in (4.3) (that depend
on the realization of the connectivity sequence ξ) are such that, first, bn(ξ) is bounded
and second, that dn,T (ξ, x) goes to 0 as n → ∞, almost surely. This is the purpose
of Proposition 4.4 below. The following concentration estimate may be found in [24],
Corollary 2.4.7:
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Lemma 4.2. Fix n > 1 and (Yl)l=1,...,n real valued random variables defined on a prob-
ability space (Ω,F ,P). Suppose that there exists v > 0 such that, almost surely, for all
l = 1, . . . , n− 1, Yl 6 1, E [Yl+1|Yl] = 0 and E

[
Y 2
l+1|Yl

]
6 v. Then for all x > 0,

P
(
n−1(Y1 + . . .+ Yn) > x

)
6 exp

(
−nH

(
x+ v

1 + v

∣∣∣ v

1 + v

))
, (4.15)

where H(p|q) = p log(p/q) + (1− p) log((1− p)/(1− q)), for p, q ∈ [0, 1].

Using this result, one can prove the following (below X ∼ B(p) stands for a Bernoulli
variable with parameter p ∈ [0, 1]):

Lemma 4.3. Fix n > 1, (p1, . . . , pn) in [0, 1] and a sequence (v1, . . . , vn) such that |vl| 6 1
for all l ∈ [n]. Suppose that there exist κn > 0 and wn ∈ (0, 1], n > 1 satisfying (2.17)
and (2.18) such that pl 6 wn for all l ∈ [n]. Define

ε2
n := 32

κ2
nwn
n

log(n), (4.16)

which goes to 0 as n → ∞, by (2.18). If (U1, . . . , Un) are independent random variable
with Ul ∼ B(pl) for all l ∈ [n], we have the following estimate

P

(∣∣∣∣∣κnn
n∑
l=1

(Ul − pl)vl

∣∣∣∣∣ > εn

)
6 2 exp

(
−16 log(n)B

(
4
√

2

(
log(n)

nwn

)1/2
))

, (4.17)

where
B(u) := u−2 [(1 + u) log(1 + u)− u] . (4.18)

Proof of Lemma 4.3. Fix n > 1, κn > 0, (pl)l∈[n], (vl)l∈[n] and (Ul)l∈[n] previously defined.
Let Yl := (Ul − pl)vl. (Y1, . . . , Yn) are independent random variables such that for all
l ∈ [n], E[Yl] = 0 and E

[
Y 2
l

]
= v2

l V(Ul) = v2
l pl(1 − pl) 6 wn, since |vl| 6 1 and pl 6 wn.

Then, for all ε > 0, by Lemma 4.2,

P

(
κn
n

n∑
l=1

(Ul − pl)vl > ε

)
6 exp

(
−nH

(
εκ−1

n + wn
1 + wn

∣∣∣ wn
1 + wn

))
6 exp

(
− nε2

2wnκ2
n

B

(
ε

wnκn

))
,

where we used the inequality ([24], Exercise 2.4.21)

H

(
x+ v

1 + v

∣∣∣ v

1 + v

)
>
x2

2v
B
(x
v

)
, x, v > 0, (4.19)

so that, for the choice of ε = εn defined by (4.16), we have

P

(
κn
n

n∑
l=1

(Ul − pl)vl > εn

)
6 exp

(
−16 log(n)B

(
4
√

2

(
log(n)

nwn

)1/2
))

Doing the same for the sequence (−vl)l∈[n], one obtains (4.17). This proves Lemma 4.3.

Theorem 2.13 is an immediate consequence of the following result:
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Proposition 4.4. Suppose that Assumptions 2.1, 2.4, 2.6 and 2.9 are true. There exist
a deterministic sequence (εn)n > 1 with εn → 0 as n → ∞, a constant C > 0 such that
for all T > 0, there is an event O ∈ F with P(O) = 1 such that the following is true: for
every ω ∈ O, there exists n0 < +∞, such that for all n > n0,

bn(ξ(ω)) 6 2 + sup
i∈[n]

1

n

n∑
k=1

W (xi, xk), (4.20)

dn,T (ξ(ω), x) 6 εnC
(
T + eCT

)(
1 + sup

i∈[n]

1

n

n∑
k=1

W (xi, xk)

)
. (4.21)

Proof of Proposition 4.4. Introduce the following notations

ξ̄i,k := ξi,k −Wn(xi, xk), (4.22)

γ
(i)
k,l,u = E

[
[Γ]u(θ̄i,u, xk)[Γ]u(θ̄i,u, xl)

]
, k, l ∈ [n] , (4.23)

so that we can rewrite (4.8) as

A
(4)
n,i,u =

(
κ

(n)
i

)2

n2

n∑
k,l=1

ξ̄i,kξ̄i,lγ
(i)
k,l,u. (4.24)

Using (A.23), for some constant C > 0 independent of i, k, l, u,∣∣∣γ(i)
k,l,u

∣∣∣ 6 E
[∣∣[Γ]u(θ̄i,u, xk)[Γ]u(θ̄i,u, xl)

∣∣] 6
1

2
E
[∣∣[Γ]u(θ̄i,u, xk)

∣∣2]+
1

2
E
[∣∣[Γ]u(θ̄i,u, xl)

∣∣2] ,
6 C

(
1 + E

[∣∣θ̄i,u∣∣2]) 6 C

(
1 + sup

r∈[n]
E
[∣∣θ̄r,u∣∣2]) 6 C (1 + C0) , (4.25)

using (2.13). Setting

G
(i)
k,l,t :=

∫ t

0
γ

(i)
k,l,udu, and ‖Gt‖∞ := sup

k,l,i

∣∣∣G(i)
k,l,t

∣∣∣ , (4.26)

one obtains from (4.25) that
‖Gt‖∞ 6 Ct (4.27)

for some appropriate constant C > 0. Let us define now

X
(n)
i,k,t :=

κ
(n)
i

n

n∑
l=1

ξ̄i,l
G

(i)
k,l,t

‖Gt‖∞
(4.28)

we can write∫ t

0
A

(4)
n,i,udu =

κ
(n)
i ‖Gt‖∞

n

n∑
k=1

(ξi,k −Wn(xi, xk))X
(n)
i,k,t,

=
κ

(n)
i ‖Gt‖∞

n

n∑
k=1

(1−Wn(xi, xk))ξi,kX
(n)
i,k,t +

κ
(n)
i ‖Gt‖∞

n

n∑
k=1

(−Wn(xi, xk))(1− ξi,k)X
(n)
i,k,t.
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Consequently, almost surely, for all t > 0, the following inequality holds

dn,t 6 ‖Gt‖∞

(
sup
i,k∈[n]

∣∣∣X(n)
i,k,t

∣∣∣) sup
i∈[n]

(
κ

(n)
i

n

n∑
k=1

ξi,k +
κ

(n)
i

n

n∑
k=1

Wn(xi, xk)

)
. (4.29)

We first derive a uniform bound on
(
X

(n)
i,k,t

)
i,k∈[n]

. For fixed i, k ∈ [n], apply Lemma 4.3

for the choice of Ul = ξi,l, κn = κ
(n)
i , pl = Wn(xi, xl) and vl =

G
(i)
k,l,t

‖Gt‖∞
: inequality (4.17)

together with a simple union bound gives

P

(
sup
i,k∈[n]

∣∣∣X(n)
i,k,t

∣∣∣ > εn

)
6 2n2 exp

(
−16 log(n)B

(
4
√

2

(
log(n)

nwn

)1/2
))

.

Note that under the assumptions (2.17) and (2.18) on κn and wn, we have

log(n)

nwn
6

log(n)κ2
nwn

n
→ 0.

Since B(u) → 1
2 as u → 0, choose a deterministic p > 1 such that for all n > p,

B

(
4
√

2
(

log(n)
nwn

)1/2
)

> 1
4 . For such an n,

P

(
sup
i,k∈[n]

∣∣∣X(n)
i,k,t

∣∣∣ > εn

)
6 2n2 exp (−4 log(n)) =

2

n2
.

Hence, by Borel-Cantelli Lemma, there exists O1 ∈ F with P(O1) = 1 such that, on O1,
there exists n1 < +∞ such that for all n > n1,

sup
i,k∈[n]

∣∣∣X(n)
i,k,t

∣∣∣ 6 εn. (4.30)

Secondly, apply once again Lemma 4.3 for the choice of Ul = ξi,l, κn = κ
(n)
i , pl = Wn(xi, xl)

and vl ≡ 1. The same reasoning as above gives for n > p,

P

(
sup
i∈[n]

∣∣∣∣∣κ(n)
i

n

n∑
k=1

ξ̄i,k

∣∣∣∣∣ > εn

)
6 2n exp (−4 log(n)) =

2

n3
,

so that, there exists O2 ∈ F such that P(O2) = 1, such that on O2, there exists n2 < +∞,
such that for all n > n2,

sup
i∈[n]

(
κ

(n)
i

n

n∑
k=1

ξi,k

)
6 εn+ sup

i∈[n]

κ
(n)
i

n

n∑
k=1

Wn(xi, xk) 6 1+ sup
i∈[n]

κ
(n)
i

n

n∑
k=1

Wn(xi, xk). (4.31)

On the event O := O1 ∩ O2 (of probability 1), the inequality (4.29) together with (4.30)
and (4.31) gives, for n > max(n1, n2)

dn,T 6 Cεn(T + eCT )

(
1 + 2 sup

i∈[n]

κ
(n)
i

n

n∑
k=1

Wn(xi, xk)

)
. (4.32)

Using now the fact that δn(x) → 0 as n → ∞, supi∈[n]
κ
(n)
i
n

∑n
k=1Wn(xi, xk) is smaller

than 1+supi∈[n]
1
n

∑n
k=1W (xi, xk) at least for large n. This concludes the proof of Propo-

sition 4.4.
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4.2. Proof of Theorem 2.15

Recall that `n below is the empirical measure of the positions (1.2). We first show
that the convergence (2.31) is true for both deterministic positions (Assumption 3.1) and
random positions (Assumption 3.3):

Lemma 4.5. In the deterministic case (Assumption 3.1) (resp. in the random case,
Assumption 3.3), the convergence (2.31) holds (resp. almost surely).

Proof of Lemma 4.5. In the deterministic case, it is immediate to see that for any ϕ ∈ Hι
with ‖ϕ‖Hι 6 1, |〈`n − ` , ϕ〉| 6 1

(1+ι)nι so that (2.31) follows directly. We now focus
on the random case. First note that the following holds: for all ε > 0, there exists a
finite set Hει ⊂ Hι such that, for all n > 1, dHι(`n, `) 6 ε + maxϕ∈Hει |〈`n − ` , ϕ〉|. The
proof of this point follows closely the proof of [25], Th.11.3.3: for any ε > 0, take Kε ⊂ I
compact such that `(Kε) > 1− ε. The set of functions B :=

{
ϕ, ‖ϕ‖Hι 6 1

}
, restricted

to Kε, is compact, by Ascoli-Arzelà theorem. Thus there exists k > 1 and ϕ1, . . . , ϕk ∈ B
such that for all ϕ ∈ B, there exists j 6 k such that supy∈Kε |ϕ(y)− ϕj(y)| < ε, so that
supx∈Kε |ϕ(x)− ϕj(x)| < 3ε. Set g(x) := max (0, 1− d(x,Kε)/ε). Then g ∈ Hι and for n
large enough, `n(Kε) >

∫
gd`n > 1− 2ε. Thus

|〈`n − ` , ϕ〉| 6
∫
|ϕ− ϕj |d(`n + `) + |〈`n − ` , ϕj〉| 6 12ε+ max

j=1,...,k
|〈`n − ` , ϕj〉| .

Thus, the result follows from the fact that almost surely, for every bounded continuous
function ϕ (and hence, for all ϕ ∈ Hι) we have |〈`n − ` , ϕ〉| −−−→

n→∞
0 ([25], Th. 11.4.1).

Proof of Theorem 2.15. For t ∈ [0, T ] and ϕ : Rd×I → R satisfying, for θ, θ̃ ∈ Rd, x, y ∈ I,∣∣∣ϕ(θ, x)− ϕ(θ̃, y)
∣∣∣ 6 Cϕ

(∣∣∣θ − θ̃∣∣∣+ |x− y|
)

and supx∈I |ϕ(θ, x)| 6 Cϕ(1 + |θ|), we have

E
[
|〈νn,t − νt , ϕ〉|2

]
6 2E

[
|〈νn,t − ν̄n,t , ϕ〉|2

]
+ 2E

[
|〈ν̄n,t − νt , ϕ〉|2

]
.

Introducing the empirical measure of the nonlinear processes (θ̄i)i∈[n] defined in Section 2.3:

ν̄n,t =
1

n

n∑
i=1

δ
(θ̄i,t,x

(n)
i )

, t > 0, (4.33)

we can estimate the first term above as

E
[
|〈νn,t − ν̄n,t , ϕ〉|2

]
6

1

n

n∑
i=1

E
[∣∣ϕ(θi,t, xi)− ϕ(θ̄i,t, xi)

∣∣2] 6
C

n

n∑
i=1

E
[∣∣θi,t − θ̄i,t∣∣2] ,

6 C sup
i∈[n]

E

[
sup
s∈[0,T ]

∣∣θi,s − θ̄i,s∣∣2] −−−→
n→∞

0,

by Theorem 2.13. Concerning the second term

E
[
|〈ν̄n,t − νt , ϕ〉|2

]
6 2E

∣∣∣∣∣ 1n
n∑
i=1

(
ϕ(θ̄i,t, xi)−

∫
ϕ(θ, xi)ν

xi
t (dθ)

)∣∣∣∣∣
2
 (4.34)

+ 2

∣∣∣∣∣ 1n
n∑
i=1

∫
ϕ(θ, xi)ν

xi
t (dθ)−

∫
ϕ(θ, x)νxt (dθ)`(dx)

∣∣∣∣∣
2

. (4.35)
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The first term (4.34) above can be computed as

E

∣∣∣∣∣ 1n
n∑
i=1

(
ϕ(θ̄i,t, xi)−

∫
ϕ(θ, xi)ν

xi
t (dθ)

)∣∣∣∣∣
2
 =

1

n2

n∑
i=1

E

[(
ϕ(θ̄i,t, xi)−

∫
ϕ(θ, xi)ν

xi
t (dθ)

)2
]
,

6
1

n2

n∑
i=1

∫
ϕ(θ, xi)

2νxit (dθ) 6
C2
ϕ

n2

n∑
i=1

∫
(1 + |θ|)2 νxit (dθ),

which goes to 0 as n→∞, uniformly in t ∈ [0, T ], by (2.13). For the last term (4.35), write
for simplicity ut(x) :=

∫
ϕ(θ, x)νxt (dθ). Note first that |ut(x)| 6 Cϕ

∫
(1 + |θ|) νxt (dθ)

which, by (2.13), is bounded by some C1(ϕ, T ) uniformly in t ∈ [0, T ] and x ∈ I. Secondly,
(recall the definition of δW in (2.28)), for some constant C2(ϕ, T ) > 0 sufficiently large
that changes from one line to the other,

|ut(x)− ut(y)| 6
∫
|ϕ(θ, x)− ϕ(θ, y)| νxt (dθ) +

∣∣∣∣∫ ϕ(θ, y)νxt (dθ)−
∫
ϕ(θ, y)νyt (dθ)

∣∣∣∣ ,
6 Cϕ |x− y|ι + C2(ϕ, T ) (δW(x, y) + w1(νx0 , ν

y
0 )) 6 C2(ϕ, T ) |x− y|ι ,

where we used (A.16), (2.11) and (2.28). Thus, for C(ϕ, T ) = C1(ϕ, T ) +C2(ϕ, T ), for all

t ∈ [0, T ],
∥∥∥ ut
C(ϕ,T )

∥∥∥
Hι

6 1. Hence, the term (4.35) can be estimated as

∣∣∣∣∣ 1n
n∑
i=1

ut(xi)−
∫
ut(x)`(dx)

∣∣∣∣∣
2

= |〈`n − ` , ut〉|2 6 C(ϕ, T )2dH(`n, `)
2

which goes to 0 as n→∞ by (2.31).

4.3. Proof of Proposition 3.2: regularity of the kernel in the deterministic case

We suppose here that Assumption 3.1 holds. Since for all n > 1,∣∣∣∣∣ 1n
n∑
k=1

W (xi, xk)−
∫
W (xi, y)dy

∣∣∣∣∣ 6
n∑
k=1

∫ xk

xk−1

|W (xi, xk)−W (xi, y)| dy 6 sn(W ),

this inequality together with (3.2) and (2.2) implies (2.25). So we are left with proving
(2.24). For i ∈ [n], we have∣∣∣ε(1,i)n,T

∣∣∣ 6 n∑
k,l=1

∫ xl

xl−1

∫ xk

xk−1

|W (xi, xk)W (xi, xl)ΥT (xi, xk, xl)−W (xi, y)W (xi, z)ΥT (xi, y, z)| dydz

6
n∑

k,l=1

∫ xl

xl−1

∫ xk

xk−1

|W (xi, xk)W (xi, xl)−W (xi, y)W (xi, z)| |ΥT (xi, xk, xl)|dydz

+
n∑

k,l=1

∫ xl

xl−1

∫ xk

xk−1

|ΥT (xi, xk, xl)−ΥT (xi, y, z)|W (xi, y)W (xi, z)dydz := (I) + (II).

(4.36)
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Concerning the first term above, we have, by Lemma A4:

(I) 6 C
n∑

k,l=1

∫ xl

xl−1

∫ xk

xk−1

|W (xi, xk)W (xi, xl)−W (xi, y)W (xi, z)| dydz,

6 C

(
1

n

n∑
l=1

W (xi, xl) +

∫ 1

0
W (xi, y)dy

)
sn(W ). (4.37)

By (2.2), (2.25) and (3.2), this last quantity converges to 0 as n→∞, uniformly in i ∈ [n].
Concerning the second term in (4.36):

(II) 6
n∑

k,l=1

∫ xl

xl−1

∫ xk

xk−1

|ΥT (xi, xk, xl)−ΥT (xi, y, xl)|W (xi, y)W (xi, z)dydz,

+

n∑
k,l=1

∫ xl

xl−1

∫ xk

xk−1

|ΥT (xi, y, xl)−ΥT (xi, y, z)|W (xi, y)W (xi, z)dydz.

Using Lemma A4 again, we have

(II) 6 C

n∑
k,l=1

∫ xl

xl−1

∫ xk

xk−1

(δW(xk, y) + w1(νxk0 , νy0 ))W (xi, y)W (xi, z)dydz,

+ C
n∑

k,l=1

∫ xl

xl−1

∫ xk

xk−1

(δW(xl, z) + w1(νxl0 , ν
z
0))W (xi, y)W (xi, z)dydz.

Using now (2.28) and (2.11), we obtain for L = max(L0, LW )

(II) 6 2CL

(
1

nι2
+

1

nι1

)∫
W (xi, y)W (xi, z)dydz 6 2CL ‖W‖2∞

(
1

nι2
+

1

nι1

)
. (4.38)

Taking supi∈[n] in (4.36), we conclude by (4.37) and (4.38) that ε
(1)
n,T (x) −−−→

n→∞
0. The two

other terms ε
(2)
n,T (x) and ε

(3)
n,T (x) can be dealt in a similar way, we leave the proof to the

reader. This proves Proposition 3.2.

4.4. Proof of Proposition 3.4: regularity of the kernel in the random case

We assume here that Assumption 3.3 holds. For simplicity of notations, we will write

ε
(m,i)
n in place of ε

(m,i)
n,T (x) and ε

(m)
n in place of ε

(m)
n,T (x) in (2.24). Introduce the following

truncation:
WM : (x, y) 7→W (x, y) ∧M, M > 0 (4.39)

and define ε
(m,i)
n,M (resp. ε

(m)
n,M ) as the truncated version of ε

(m,i)
n (resp. ε

(m)
n ), that is, when

W is replaced by WM .
Claim 1: there exists a constant C > 0 such that for any M > 0, i ∈ [n], m = 1, 2, 3,

∣∣∣ε(m,i)n − ε(m,i)n,M

∣∣∣ 6 C

(
1

n

n∑
l=1

W (xi, xl) + 1

)
(

1

n

n∑
k=1

|W (xi, xk)−WM (xi, xk)|+
∫
|WM (xi, y)−W (xi, y)| `(dy)

)
. (4.40)
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To prove Claim 1, we only consider m = 1 and leave the other cases to the reader. Fix
M > 0 and i ∈ [n]. Then, using Lemma A4,

∆
(1)
n,i :=

∣∣∣∣∣∣ 1

n2

n∑
k,l=1

{W (xi, xk)W (xi, xl)−WM (xi, xk)WM (xi, xl)}ΥT (xi, xk, xl)

∣∣∣∣∣∣ ,
6
C

n2

n∑
k,l=1

|W (xi, xk)W (xi, xl)−WM (xi, xk)WM (xi, xl)| ,

6 C

(
1

n

n∑
k=1

W (xi, xk) +
1

n

n∑
k=1

WM (xi, xk)

)(
1

n

n∑
k=1

|W (xi, xk)−WM (xi, xk)|

)
,

6 2C

(
1

n

n∑
k=1

W (xi, xk)

)(
1

n

n∑
k=1

|W (xi, xk)−WM (xi, xk)|

)
,

and, in a similar way (recall (2.2))

∆
(2)
n,i :=

∣∣∣∣∫ {W (xi, y)W (xi, z)−WM (xi, y)WM (xi, z)}ΥT (xi, y, z)`(dy)`(dz)

∣∣∣∣ ,
6 C

∫
|W (xi, y)W (xi, z)−WM (xi, y)WM (xi, z)| `(dy)`(dz),

6 2C ‖W1‖∞
∫
|W (xi, y)−WM (xi, y)| `(dy).

Doing the same for m = 2, 3, this proves Claim 1. The next point is now to show that
the quantities in (4.40) can be almost surely controlled for large n, choosing carefully the
truncation parameter M .

Claim 2: Let us fix parameters δ1, δ2 > 0 (to be chosen later) and define

M := nδ1 . (4.41)

For this choice of M , we have (recall the hypothesis on the norm of W (3.5)), for some
constant C > 0 independent of n,

P

(
sup
i∈[n]

1

n

n∑
k=1

|W (xi, xk)−WM (xi, xk)| > n−δ2

)
6

3 ‖W‖χ
Lχ(I2)

nδ1(χ−1)−δ2−1
, (4.42)

P

(
sup
i∈[n]

∫
|WM (xi, x̃)−W (xi, x̃)| `(dx̃) > n−δ2

)
6

3 ‖W‖χ
Lχ(I2)

nδ1(χ−1)−δ2−1
, (4.43)

P

(
sup
i∈[n]

∣∣∣∣∣ 1n
n∑
l=1

W (xi, xl)

∣∣∣∣∣ > 1 + ‖W1‖∞

)
6
C

n2
. (4.44)

Let us prove Claim 2: we have

E

[
1

n

n∑
k=1

|W (xi, xk)−WM (xi, xk)|

]
=

1

n

n∑
k=1

E
[
|W (xi, xk)−M |1W (xi,xk)>M

]
,

6
1

n

n∑
k=1

E
[
W (xi, xk)1W (xi,xk)>M

]
.
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Now, for any independent X,Y on I with law `,

E
[
W (X,Y )1W (X,Y )>M

]
=

+∞∑
l=0

E
[
W (X,Y )12lM<W (X,Y ) 6 2l+1M

]
,

6M
+∞∑
l=0

2l+1
(
P
(
W (X,Y ) > 2lM

)
− P

(
W (X,Y ) > 2l+1M

))
,

= M

(
2P (W (X,Y ) > M) +

+∞∑
l=1

2lP
(
W (X,Y ) > 2lM

))
,

6
E [W (X,Y )χ]

Mχ−1

(
2 +

+∞∑
l=1

2−(χ−1)l

)
6

3 ‖W‖χ
Lχ(I2)

Mχ−1
.

This gives, for M given by (4.41):

E

[
1

n

n∑
k=1

|W (xi, xk)−WM (xi, xk)|

]
6

3 ‖W‖χ
Lχ(I2)

nδ1(χ−1)
.

Hence, (4.42) follows immediately from Markov inequality and a union bound. In a same
way, we have

E
[∫
|WM (xi, x̃)−W (xi, x̃)| `(dx̃)

]
6

3 ‖W‖χ
Lχ(I2)

nδ1(χ−1)
,

so that inequality (4.43) holds. Inequality

P

(
sup
i∈[n]

∣∣∣∣∣ 1n
n∑
l=1

W (xi, xl)−
∫
W (xi, z)`(dz)

∣∣∣∣∣ > 1

)
6
C

n2
(4.45)

follows directly from Markov inequality and the fact that χ > 9 > 6 in (3.5) and the
independence of the variables (xk)k∈[k]. Then (4.44) is a consequence of the inequality
supi∈[n]

∫
W (xi, z)`(dz) 6 ‖W1‖∞ < +∞. This proves Claim 2.

Claim 3: Let δ3 > 0 be a last constant to be defined later. There exists a constant
C = CT > 0 such that, for the choice of M = nδ1 defined in (4.41),

P
(
ε
(1)
n,M + ε

(2)
n,M + ε

(3)
n,M > C

(
1

nδ3−2δ1
+

1

n1−2δ1

))
6 Cn exp

(
−n

1−2δ3

8

)
. (4.46)

Let us prove Claim 3: we only control ε
(1)
n,M and leave the two other terms to the reader.

Since for fixed x ∈ I, (y, z) 7→ ΥT (x, y, z) is symmetric, we have, for i ∈ [n]

ε
(1,i)
n,M :=

1

n2

n∑
k=1

{
WM (xi, xk)

2ΥT (xi, xk, xk)−
∫
WM (xi, y)WM (xi, z)ΥT (xi, y, z)`(dy)`(dz)

}
+

2

n2

∑
1 6 l<k 6 n

{
WM (xi, xk)WM (xi, xl)ΥT (xi, xk, xl)−

∫
WM (xi, y)WM (xi, z)ΥT (xi, y, z)`(dy)`(dz)

}
,

= (I) + (II).
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Using Lemma A4, the first term is easily bounded (almost surely for all t) by CM2

n = C
n1−2δ1

.
We now turn to the control of the second term:

(II) =
2

n2

n∑
1 6 l<k 6 n

WM (xi, xl)

{
WM (xi, xk)ΥT (xi, xk, xl)−

∫
WM (xi, y)ΥT (xi, y, xl)`(dy)

}

+
2

n2

n∑
1 6 l<k 6 n

{
WM (xi, xl)

∫
WM (xi, y)ΥT (xi, y, xl)`(dy)−

∫
WM (xi, y)WM (xi, z)ΥT (xi, y, z)`(dy)`(dz)

}
:= ζ

(1,i)
n,M + ζ

(2,i)
n,M .

We only make the calculations for the ζ
(1,i)
n,M and leave the (easier) term ζ

(2,i)
n,M to the reader.

Denote by

πi,Mk,l = WM (xi, xl)

{
WM (xi, xk)ΥT (xi, xk, xl)−

∫
WM (xi, y)ΥT (xi, y, xl)`(dy)

}
.

By definition of WM in (4.39) and using Lemma A4, ΠM
n := supk,l,i

∣∣∣πi,Mk,l ∣∣∣ 6 CTM
2 =

CTn
2δ1 . Writing differently the summation in the definition of ζ

(1,i)
n,M leads to

ζ
(1,i)
n,M =

2ΠM
n

n

n∑
r=2

Y
(M)
i,r =

2ΠM
n

n
Y

(M)
i,i +

2ΠM
n

n

∑
r∈[n], r 6=i

Y
(M)
i,r , (4.47)

where we have defined Y
(M)
i,r := 1

n

∑r−1
p=1

πi,Mr,p
ΠMn

, r ∈ [n]. The first term in (4.47) is easily

bounded (almost surely for all t 6 T ) by 2ΠMn
n 6 2C

n1−2δ1
. We now turn to the second

term of (4.47): for each for all r = 2, . . . , n, r 6= i, denote by F (i)
r the σ-field F (i)

r :=
σ (xi, xk; k = 1, . . . , r). Then,

E
[
Y

(M)
i,r |F

(i)
r−1

]
=

1

nΠM
n

r−1∑
p=1

E
[
π(i,M)
r,p

∣∣∣F (i)
r−1

]
,

=
1

nΠM
n

r−1∑
p=1

E
[
WM (xi, xp)

{
WM (xi, xr)ΥT (xi, xr, xp)−

∫
WM (xi, y)ΥT (xi, y, xp)`(dy)

} ∣∣∣F (i)
r−1

]
,

so that by independence of the (xk)k∈[n], E
[
Y

(M)
i,r |F

(i)
r−1

]
= 0. Since Y

(M)
i,r−1 is measurable

w.r.t. F (i)
r−1 we obtain that E

[
Y

(M)
i,r |Y

(M)
i,r−1

]
= 0. Note that this calculation only works

for r 6= i (this is why we have treated the term Y
(M)
i,i apart in (4.47)). Since we have by

construction
∣∣∣Y (M)
i,r

∣∣∣ 6 1, we have obviously E
[(
Y

(M)
i,r

)2
|Y (M)
i,r−1

]
6 1 for all r = 2, . . . , n.

We are now in position to apply Lemma 4.2: for all ε > 0,

P

2ΠM
n

n

∑
r∈[n], r 6=i

Y
(M)
i,r > ε

 = P

 1

n

∑
r∈[n], r 6=i

Y
(M)
i,r,t >

ε

2ΠM
n

 ,

6 exp

(
−nH

(
ε
2

(
ΠM
n

)−1
+ 1

2

∣∣∣∣∣12
))

6 exp

(
− nε2

8 (ΠM
n )2

)
.
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Doing the same for −Yi,r and by a union bound, we obtain finally, for the choice ε :=
n−δ3ΠM

n ,

P

sup
i∈[n]

∣∣∣∣∣∣2ΠM
n

n

∑
r∈[n], r 6=i

Y
(M)
i,r

∣∣∣∣∣∣ > n−δ3ΠM
n

 6 2n exp

(
−n

1−2δ3

8

)
. (4.48)

This proves Claim 3.
Conclusion: let ε0 := χ− 9 > 0. Define

δ1 :=
1

4
− ε0

8(ε0 + 6)
> 0, δ2 :=

ε0

2(ε0 + 6)
> 0 and δ3 :=

1

2
− ε0

8(ε0 + 6)
> 0. (4.49)

For this choice of parameters, one has obviously 1− 2δ1 > 0, 1− 2δ3 > 0 and δ3− 2δ1 > 0,
and it is easy to verify that δ1(χ − 1) − δ2 − 1 > 1. This means that the probabilities in
(4.42), (4.43), (4.46) are summable in n and that both n−(δ3−2δ1) and n−(1−2δ1) go to 0 as
n→∞. From (4.40), (4.42), (4.43), (4.44), (4.46), we deduce from Borel Cantelli Lemma
that there exists an event of probability 1, such that on this event,

3∑
m=1

ε
(m)
n,T (x) 6 C

(
n−δ2 + n−(δ3−2δ1) + n−(1−2δ1)

)
(4.50)

and

sup
i∈[n]

1

n

n∑
k=1

W (xi, xk) 6 1 + ‖W1‖∞ . (4.51)

This concludes the proof of Proposition 3.4.

5. The spatial field and the nonlinear heat equation

5.1. Uniqueness of a solution

Here, we consider the general case where I is a closed subset of Rp and ` a probability
measure with support I. We suppose here that the hypotheses of Proposition 2.17 hold.

Proof of Proposition 2.17. Let ϕ,ψ be two weak solutions in C
(
[0, T ], Lk(I, `)

)
with the

same initial condition and denote by ρ := ϕ−ψ the difference. Since ϕ ∈ C([0, T ], Lk(I, `))
(resp. ψ) is a weak solution, then ϕ (resp. ψ) belongs to H1([0, T ], Lk(I, `)) and we have,
for all test function J , for almost every t ∈ [0, T ],〈

dϕ

dt
(·, t) , J

〉
L2(I,`)

=

〈
c(ϕ(·, t)) +

∫
I

Γ(ϕ(·, t), ϕ(y, t))W (·, y)`(dy) , J

〉
L2(I,`)

. (5.1)

By density, this also true for all test function (t, x) 7→ J(x, t) in L2([0, T ]×I). Substracting
the two equations for ϕ and ψ and choosing the test function J(·, t) = ϕ(·, t)− ψ(·, t), we
obtain

d

dt
‖ρ(·, t)‖2L2(I,`) = 〈c(ϕ(·, t))− c(ψ(·, t)) , ρ(·, t)〉L2(I,`)

+

〈∫
I
{Γ(ϕ(·, t), ϕ(y, t))− Γ(ψ(·, t), ψ(y, t))}W (·, y)`(dy) , ρ(·, t)

〉
L2(I,`)

.
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The first term is bounded by Lc ‖ρ(·, t)‖2L2(I,`). The second can be evaluated as, by the
properties of Γ∣∣∣∣∣
〈∫

I
{Γ(ϕ(·, t), ϕ(y, t))− Γ(ψ(·, t), ψ(y, t))}W (·, y)`(dy) , ρ(·, t)

〉
L2(I,`)

∣∣∣∣∣
6 LΓ

∫
I

∫
I
|ρ(x, t)|2W (x, y)`(dy)`(dx) + LΓ

∫
I
|ρ(x, t)|

∫
I
|ρ(y, t)|W (x, y)`(dy)`(dx).

The first term is bounded by LΓ ‖W1‖∞ ‖ρ(·, t)‖2L2(I,`). Concerning the second, by Cauchy-
Schwarz inequality,

∫
I
|ρ(x, t)|

∫
I
|ρ(y, t)|W (x, y)`(dy)`(dx) 6

∫
I
|ρ(x, t)|

(∫
I
|ρ(y, t)|2 `(dy)

) 1
2
(∫

I
W (x, y)2`(dy)

) 1
2

`(dx)

6 ‖W2‖
1
2∞ ‖ρ(·, t)‖L2(I,`) ‖ρ(·, t)‖L1(I,`) 6 ‖W2‖

1
2∞ ‖ρ(·, t)‖2L2(I,`) .

Using that ρ(·, 0) ≡ 0, we obtain uniqueness by a Grönwall’s Lemma.

5.2. Convergence of the spatial profile

The point of this paragraph is to prove Theorem 2.18. Recall that I = [0, 1], `(dx) = dx
with regular deterministic positions (Assumption 3.1) and we suppose that the hypotheses
of Theorem 2.18 hold. We use the shortcut {x}n := bnx+ 1c for any x ∈ I. Recall the

definition of the spatial field θn(x, t) = θ
(n)
{x}n,t

in (2.35). Introduce the coupling (where

the initial conditions and Brownian motions are the same as for (1.1)):

dψ
(n)
i,t = c(ψ

(n)
i,t )dt+

1

n

n∑
j=1

W (xi, xj)Γ
(
ψ

(n)
i,t , ψ

(n)
j,t

)
dt+ σdBi,t, 0 6 t 6 T, i ∈ [n] , (5.2)

as well as its corresponding spatial field (recall that x0 = 0 by definition):

ψn(x, t) :=

n∑
i=1

ψ
(n)
i,t 1[xi−1,xi)(x) = ψ

(n)
{x}n,t

, x ∈ I. (5.3)

With these notations at hand, we directly see that (θn(x, t), ψn(x, t)) are solutions to

dθn(x, t) = c(θn(x, t))dt+

∫
I

Γ(θn(x, t), θn(y, t))Ξ(n)
x,ydydt+ σdB{x}n,t, (5.4)

dψn(x, t) = c(ψn(x, t))dt+

∫
I

Γ(ψn(x, t), ψn(y, t))Ŵn(x, y)dydt+ σdB{x}n,t, (5.5)

where
Ξ(n)
x,y := κ

(n)
{x}n

ξ
(n)
{x}n,{y}n

and Ŵn(x, y) := W ({x}n , {y}n). (5.6)

Proposition 5.1. Under the hypotheses of Section 2.5, the process (θn(·, t))n > 1,t∈[0,T ] is

tight in C([0, T ], Lk([0, 1])).
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Proof. Apply Ito’s formula:

|θn(x, u)|k = |θn(x, 0)|k + k

∫ u

0
|θn(x, s)|k−2 〈θn(x, s) , c(θn(x, s))〉 ds

+ k

∫ u

0
|θn(x, s)|k−2

〈
θn(x, s) ,

∫
Γ (θn(x, s), θn(y, s)) Ξ(n)

x,ydy

〉
ds

+ k

∫ u

0
|θn(x, s)|k−2

〈
θn(x, s) , σdB{x}n,s

〉
+

∫ u

0
k

(
k

2
− 1

)
|θn(x, s)|k−4

〈
σσ†θn(x, s) , θn(x, s)

〉
ds+ kd

∫ u

0
|θn(x, s)|k−2 ds.

Let
θ∗n(x, t) := sup

s∈[0,t]
|θn(x, s)| .

Using the hypothesis on c and Γ in Section 2.1, we obtain

θ∗n(x, t)k 6 |θn(x, 0)|k + k

∫ t

0
θ∗n(x, s)k−2

((
Lc +

1

2

)
θ∗n(x, s)2 +

|c(0)|2

2

)
ds

+ kLΓ

∫ t

0
θ∗n(x, s)k−1

∫
I

(1 + θ∗n(x, s) + θ∗n(y, s)) Ξ(n)
x,ydyds

+k

(
(
k

2
− 1)

∣∣∣σσ†∣∣∣+ d

)∫ t

0
θ∗n(x, s)k−2ds+k sup

u 6 t

∣∣∣∣∫ u

0
|θn(x, s)|k−2

〈
θn(x, s) , σdB{x}n,s

〉∣∣∣∣ .
Taking the square, using Jensen’s inequality and taking the expectation, we obtain, for
some constant C > 0 depending on k, T, c,Γ, σ, d:

E
[
θ∗n(x, t)2k

]
6 CE

[
|θn(x, 0)|2k

]
+ C

(
1 +

(
sup
x∈I

∫
I

Ξ(n)
x,ydy

)2
)∫ t

0

(
E
[
θ∗n(x, s)2k−4

]
+ E

[
θ∗n(x, s)2k−2

]
+ E

[
θ∗n(x, s)2k

])
ds,

+ CE

[∫ t

0
θ∗n(x, s)2k−2

(∫
I
θ∗n(y, s)Ξ(n)

x,ydy

)2

ds

]
(5.7)

+ CE

[
sup
u 6 t

∣∣∣∣∫ u

0
|θn(x, s)|k−2

〈
θn(x, s) , σdB{x}n,s

〉∣∣∣∣2
]
. (5.8)

Concentrate on the term (5.7): for any x ∈ I, setting i = {x}n, note that

(∫
I
θ∗n(y, s)Ξ(n)

x,ydy

)2

=

 n∑
j=1

κ
(n)
i ξi,j

∫ xj

xj−1

θ∗n(y, s)dy

2

,

6

 1

n

n∑
j=1

κ
(n)
i ξi,j

 n∑
j=1

κ
(n)
i ξi,j

∫ xj

xj−1

θ∗n(y, s)2dy,
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applying Jensen’s inequality for the probability measure on I ρn =

∑n
j=1 κ

(n)
i ξi,j1[xj−1,xj)

(y)dy

1
n

∑n
j=1 κ

(n)
i ξi,j

.

Note also that by Hölder’s inequality,

E
[
θ∗n(x, s)2k−2θ∗n(y, s)2

]
6 E

[
θ∗n(x, s)2k

] 2k−2
2k

E
[
θ∗n(y, s)2k

] 1
k
.

Hence, if we define

Θn(t) := sup
x∈I

E
[
θ∗n(x, t)2k

]
(5.9)

the term (5.7) may be bounded by
(∫

I Ξ
(n)
x,ydy

)2 ∫ t
0 Θn(s)ds. Finally, concerning the last

term (5.8), an application of Burkholder-Davis-Gundy inequality gives, for some constant
C > 0 that depends on σ,

E

[
sup
u 6 t

∣∣∣∣∫ u

0
|θn(x, s)|k−2

〈
θn(x, s) , σdB{x}n,s

〉∣∣∣∣2
]
6 C

∫ t

0
E
[
|θ∗n(x, s)|2k−2

]
ds.

Putting everything together and using the fact that there exist a universal constant Ck > 0
(only depending on k) such that |x|2k−4 + |x|2k−2 6 Ck + |x|2k, we obtain finally that for
some constant C ′ > 0 depending on T, k, σ, c,Γ,

Θn(t) 6 C ′Θn(0) + C ′

(
1 + sup

x∈I

(∫
I

Ξ(n)
x,ydy

)2
)

+ C ′

(
1 + sup

x∈I

(∫
I

Ξ(n)
x,ydy

)2
)∫ t

0
Θn(s)ds.

Since we have almost surely supx∈I

(∫
Ξ

(n)
x,ydy

)2
= supi∈[n]

(
1
n

∑n
j=1 κ

(n)
i ξi,j

)2
<∞ (recall

(4.1), (4.20) and (2.25)) as well as the hypothesis on the initial condition (2.10), we obtain
from Grönwall’s Lemma that

sup
n > 1

sup
x∈I

E

[
sup
t∈[0,T ]

|θn(x, t)|2k
]
<∞. (5.10)

This implies in particular that, by two successive applications of Jensen’s inequality,

sup
n > 1

E

[
sup
t∈[0,T ]

‖θn(·, t)‖2Lk(I)

]
= sup

n > 1
E

[
sup
t∈[0,T ]

(∫
|θn(x, t)|k dx

) 2
k

]
,

6 sup
n > 1

E

(∫ sup
t∈[0,T ]

|θn(x, t)|2k dx

) 1
k

 6 sup
n > 1

E

[∫
sup
t∈[0,T ]

|θn(x, t)|2k dx

] 1
k

,

= sup
n > 1

(∫
E

[
sup
t∈[0,T ]

|θn(x, t)|2k
]

dx

) 1
k

6

(
sup
n > 1

sup
x∈I

E

[
sup
t∈[0,T ]

|θn(x, t)|2k
]) 1

k

<∞.

(5.11)

We now turn to a similar estimate concerning the modulus of continuity: set δ > 0 and
s < t ∈ [0, T ] such that |t− s| 6 δ. Set

∆n,s,t(x) := |θn(x, t)− θn(x, s)| (5.12)
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and
∆∗n,δ(x) := sup

s
∆n,s,s+δ(x) (5.13)

Then, by the same calculations as before, it is straightforward to see that, for another
constant C ′ > 0,

sup
x∈I

E
[
∆∗n,δ(x)2k

]
6 C ′

(
1 +

(
sup
x∈I

∫
I

Ξ(n)
x,ydy

)2
)∫ δ

0
sup
x∈I

E
[
∆∗n,u(x)2k

]
du

+ C ′E

[
sup

s,t,|t−s| 6 δ

∣∣∣∣∫ t

s
|θn(x, u)− θn(x, s)|k−2

〈
θn(x, u)− θn(x, s) , σdB{x}n,u

〉∣∣∣∣2
]
.

Hence, once again by Hölder and Burkholder-Davis-Gundy inequalities,

sup
x

E
[
∆∗n,δ(x)2k

]
6 C ′′δ + C ′′

(
1 + sup

x∈I

(∫
Ξ(n)
x,ydy

)2
)∫ δ

0
sup
x∈I

E
[
∆∗n,u(x)2k

]
du.

Grönwall’s Lemma gives directly that

sup
n > 1

sup
x∈I

E

[
sup
|t−s| 6 δ

|θn(x, t)− θn(x, s)|2k
]
−−−→
δ↘0

0, (5.14)

which finally gives

sup
n > 1

E

[
sup
|t−s| 6 δ

‖θn(·, t)− θn(·, s)‖2Lk(I)

]
−−−→
δ↘0

0. (5.15)

The required tightness result follows directly from (5.11) and (5.15) (see for example
[45]).

Proposition 5.2. Under the assumption of Section 2.5, any accumulation point of (θn(·, t))n > 1,t∈[0,T ]

in C([0, T ], Lk(I)) is a weak solution to (2.34).

Proof. Let us consider the field ψn (5.3) corresponding to the particle system (5.2) driven
by the same Brownian motions as (1.1) with the same initial condition. By calculations
similar to the previous proof, the difference θn − ψn verifies, using the assumptions on c,

E
[
|θn(x, t)− ψn(x, t)|2k

]
6 C

∫ t

0
E
[
|θn(x, u)− ψn(x, u)|2k

]
du+CE

∫ t

0
|θn(x, u)− ψn(x, u)|2k−2〈

θn(x, u)− ψn(x, u) ,

∫ (
Γ (θn(x, u), θn(y, u)) Ξ(n)

x,y − Γ (ψn(x, u), ψn(y, u)) Ŵn(x, y)
)

dy

〉
du

Using the assumptions on Γ, (2.4), the difference in the last term above can be bounded
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by C(A1 +A2) where A1 and A2 are given below. First,

A1 :=

∫ t

0
E |θn(x, u)− ψn(x, u)|2k−2∫

I
〈θn(x, u)− ψn(x, u) , Γ(θn(x, u), θn(y, u))− Γ(ψn(x, u), ψn(y, u))〉Ξ(n)

x,ydydu,

6 C

∫ t

0
E |θn(x, u)− ψn(x, u)|2k−1

∫ 1

0
(|θn(x, u)− ψn(x, u)|+ |θn(y, u)− ψn(y, u)|) Ξ(n)

x,ydydu,

6 2C

∫ 1

0
Ξ(n)
x,ydy

∫ t

0
E |θn(x, u)− ψn(x, u)|2k du

+ 2C

∫ t

0

∫ 1

0
E |θn(x, u)− ψn(x, u)|2k−1 |θn(y, u)− ψn(y, u)|Ξ(n)

x,ydydu.

By Hölder’s inequality followed by Young’s inequality,

E
[
|θn(x, u)− ψn(x, u)|2k−1 |θn(y, u)− ψn(y, u)|

]
6 E

[
|θn(x, u)− ψn(x, u)|2k

] 2k−1
2k

E
[
|θn(y, u)− ψn(y, u)|2k

] 1
2k
,

6
2k − 1

2k
E
[
|θn(x, u)− ψn(x, u)|2k

]
+

1

2k
E
[
|θn(y, u)− ψn(y, u)|2k

]
,

6 sup
z∈[0,1]

E
[
|θn(z, u)− ψn(z, u)|2k

]
.

Hence,

A1 6 4C

(
sup
x∈I

∫
I

Ξ(n)
x,ydy

)∫ t

0
sup
z∈I

E
[
|θn(z, u)− ψn(z, u)|2k

]
du.

Secondly,

A2 :=

∫ t

0
E

∫
I
〈θn(x, u)− ψn(x, u) , Γ(ψn(x, u), ψn(y, u))〉

(
Ξ(n)
x,y − Ŵn(x, y)

)
dydu.

For i = {x}n, we have

A2 := 2

∫ t

0

1

n

n∑
j=1

ζ
(n)
i,j,u

(
κ

(n)
i ξi,j −W (xi, xj)

)
du,

= 2

∫ t

0

1

n

n∑
j=1

ζ
(n)
i,j,uκ

(n)
i (ξi,j −Wn(xi, xj)) du+ 2

∫ t

0

1

n

n∑
j=1

ζ
(n)
i,j,u

(
κ

(n)
i Wn(xi, xj)−W (xi, xj)

)
du,

where ζ
(n)
i,j,s := E

[〈
θ

(n)
i,s − ψ

(n)
i,s , Γ(ψ

(n)
i,s , ψ

(n)
j,s )
〉]

. The same reasoning (together with the

apriori control (2.14)) as in Proposition 4.4 shows that the supremum in i ∈ [n] of the
first term in the sum above goes almost surely to 0 as n → ∞. The second term in

the sum is bounded above by supi∈[n]
C
n

∑n
j=1

∣∣∣κ(n)
i Wn(xi, xj)−W (xi, xj)

∣∣∣, which goes to
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0 uniformly in i as n → ∞, by (2.19). From the previous estimates and a Grönwall’s
Lemma, we conclude that supx∈I,t∈[0,T ] E |θn(x, t)− ψn(x, t)|2k →n→∞ 0. In particular,

sup
t∈[0,T ]

E

∫
I
|θn(x, t)− ψn(x, t)|2k dx→ 0, as n→∞. (5.16)

It now remains to identify the limit. By (5.16), any limit point of (θn(·, t))n > 1 in
C([0, T ], Lk(I)) is also a limit point of (ψn(·, t))n > 1. Recall that, for any C1-bounded
test function J : I → Rd with bounded derivative∫

I
〈ψn(x, t) , J(x)〉dx =

∫
I
〈ψn(x, 0) , J(x)〉 dx+

∫ t

0

∫
I
〈c(ψn(x, s)) , J(x)〉 dxds

+

∫ t

0

∫
I2

〈
Γ(ψn(x, s), ψn(y, s))Ŵn(x, y) , J(x)

〉
dxdyds+

∫
I

〈
σB{x}n,t , J(x)

〉
dx.

(5.17)

Concerning the initial condition θn(x, 0) = ψn(x, 0) (recall the definition of ψ0 in (2.37)):

E

∣∣∣∣∫
I
〈θn(x, 0) , J(x)〉dx−

∫
I
〈ψ0(x) , J(x)〉 dx

∣∣∣∣2
6 3E

∣∣∣∣∣ 1n
n∑
k=1

〈
θ

(n)
k,0 −E

[
θ

(n)
k,0

]
, n

∫ xk

xk−1

J(u)du

〉∣∣∣∣∣
2

+ 3

∣∣∣∣∣ 1n
n∑
k=1

〈∫
θνxk0 (dθ) , n

∫ xk

xk−1

J(u)du− J(xk)

〉∣∣∣∣∣
2

+ 3

∣∣∣∣∣ 1n
n∑
k=1

〈∫
θνxk0 (dθ) , J(xk)

〉
−
∫
I
〈ψ0(x) , J(x)〉dx

∣∣∣∣∣
2

,

6
3 ‖J‖2∞
n

sup
x∈I

∫ ∣∣∣∣θ − ∫ θνx0 (dθ)

∣∣∣∣2 νx0 (dθ) + 3 sup
x∈I

∣∣∣∣∫ θνx0 (dθ)

∣∣∣∣2 ‖J ′‖2∞4n2

+ 3

∣∣∣∣∣ 1n
n∑
k=1

〈∫
θνxk0 (dθ) , J(xk)

〉
−
∫
I
〈ψ0(x) , J(x)〉 dx

∣∣∣∣∣
2

.

The two first terms above converge to 0, by (2.10). It is straightforward to see that
the third term is 3

∣∣∫
I 〈ψ0(·) , J(·)〉 (d`n − d`)

∣∣ where x 7→ 〈ψ0(x) , J(x)〉 is ι1-Hölder, by
(2.11). Hence, this term also goes to 0 as n → ∞. Concerning the noise term in (5.17),
we have, for some constant C > 0

E

[∣∣∣∣∫
I

〈
σB{x}n,t , J(x)

〉
dx

∣∣∣∣2
]

= E

∣∣∣∣∣∣
n∑
j=1

∫ xj

xj−1

〈σBj,t , J(x)〉dx

∣∣∣∣∣∣
2 ,

=

n∑
i,j=1

∫ xi

xi−1

∫ xj

xj−1

E [〈σBi,t , J(x)〉 〈σBj,t , J(y)〉] dxdy,

6 Ct

n∑
i=1

(∫ xi

xi−1

|J(x)|dx

)2

6
CT

n

n∑
i=1

∫ xi

xi−1

|J(x)|2 dx =
C(σ)T

n

∫
I
|J(x)|2 dx,
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which goes to 0 as n→∞, uniformly on t ∈ [0, T ].
Let (ψ(x, t))x∈I,t∈[0,T ] ∈ C([0, T ], Lk(I)) an accumulation point of (ψn): there exists a

subsequence (nk)k > 1 (that we rename n for simplicity of exposition) such that (ψn)n > 1

converges in law to ψ in C([0, T ], Lk(I)). By the Skhorokhod representation theorem
(C([0, T ], Lk(I)) is separable, [2], p.125), one can suppose that (ψn) converges almost
surely in C([0, T ], Lk(I)) to ψ. Since we have convergence in C([0, T ], Lk(I)), we have
that

∫
I 〈ψn(x, t) , J(x)〉 dx −−−→

n→∞

∫
I 〈ψ(x, t) , J(x)〉 dx, uniformly in t ∈ [0, T ]. For the

same reason,
∫ t

0

∫
I 〈c(ψn(x, s)) , J(x)〉dxds −−−→

n→∞

∫ t
0

∫
I 〈c(ψ(x, s)) , J(x)〉dxds (by an ap-

plication of dominated convergence theorem when c is bounded or using the convergence
in C([0, T ], Lk(I)) when c is polynomial). We now turn the interaction term in (5.17).
Assume first that Γ is bounded. Then,∣∣∣∣∫ t

0

∫
I2

〈
Γ(ψn(x, s), ψn(y, s))

(
Ŵn(x, y)−W (x, y)

)
, J(x)

〉
dxdyds

∣∣∣∣ 6
‖Γ‖∞ ‖J‖∞ T

∫
I2

∣∣∣Ŵn(x, y)−W (x, y)
∣∣∣ dxdy,

which goes to 0 as n→∞, by (2.36). Moreover,∣∣∣∣∫ t

0

∫
I2
〈(Γ(ψn(x, s), ψn(y, s))− Γ(ψ(x, s), ψ(y, s)))W (x, y) , J(x)〉 dxdyds

∣∣∣∣
6
∫ t

0

∫
I2
|Γ(ψn(x, s), ψn(y, s))− Γ(ψ(x, s), ψ(y, s))|W (x, y) |J(x)|dxdyds,

which goes to 0 as n → ∞, by dominated convergence theorem. In the case where
Γ(θ, θ′) = Γ · (θ − θ′) is linear, we have firstly∣∣∣∣∫ t

0

∫
I2

〈
(ψn(x, s)− ψ(x, s)) Ŵn(x, y) , J(x)

〉
dxdyds

∣∣∣∣
6 sup

z∈I

(∫
I
Ŵn(z, y)dy

)
‖J‖∞

∫ t

0

∫
I
|ψn(x, s)− ψ(x, s)|dxds

which goes to 0 as n → ∞, by (2.25) and since we have convergence in C([0, T ], Lk(I)).
Secondly,∣∣∣∣∫ t

0

∫
I2
〈ψ(x, s) , J(x)〉

(
Ŵn(x, y)−W (x, y)

)
dxdyds

∣∣∣∣ ,
6

∣∣∣∣∣
∫ t

0

(∫
I
|〈ψ(x, s) , J(x)〉|2 dx

) 1
2
(∫

I2

(
Ŵn(x, y)−W (x, y)

)2
dydx

) 1
2

ds

∣∣∣∣∣ ,
which goes to 0 as n→∞, by (2.36) and since ψ ∈ C([0, T ], Lk(I)). Thirdly,∣∣∣∣∫ t

0

∫
I2
〈(ψn(y, s)− ψ(y, s)) , J(x)〉 Ŵn(x, y)dxdyds

∣∣∣∣
6 ‖J‖∞

∣∣∣∣∣
∫ t

0

(∫
I
|ψn(y, s)− ψ(y, s)|2 dy

) 1
2
(∫

I2
Ŵn(x, y)2dxdy

) 1
2

ds

∣∣∣∣∣ ,
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which goes to 0 as n→∞. Finally,∣∣∣∣∫ t

0

∫
I2

(
Ŵn(x, y)−W (x, y)

)
〈ψ(y, s) , J(x)〉dxdyds

∣∣∣∣ ,
6 ‖J‖∞

∫ t

0

(∫
I
|ψ(y, s)|2dy

) 1
2
(∫

I2

∣∣∣Ŵn(x, y)−W (x, y)
∣∣∣2 dxdy

) 1
2

ds,

which also goes to 0 as n → ∞. These estimates altogether give the convergence of the
interaction term in (5.17). Putting everything together, we obtain that any accumulation
point of (θn)n > 1 in C([0, T ], Lk(I)) is a weak solution to (2.34).

5.3. Identification in the compact case

We prove Theorem 2.19. Let x 7→ J(x) be a regular (C1) test function on [0, 1]. Then,∫
I
〈θn(x, t) , J(x)〉 dx =

1

n

n∑
i=1

〈
θ

(n)
i,t , J̄

(
i

n

)〉
, (5.18)

where J̄
(
i
n

)
:= n

∫ i
n
i−1
n

J(x)dx. The expression J̄
(
i
n

)
is not an actual function of i

n , but

one can replace J̄
(
i
n

)
by J

(
i
n

)
:

E

[
1

n

n∑
i=1

〈
θ

(n)
i,t , J̄

(
i

n

)
− J

(
i

n

)〉]2

6
1

n

n∑
i=1

E
∣∣∣θ(n)
i,t

∣∣∣2 ∣∣∣∣J̄ ( in
)
− J

(
i

n

)∣∣∣∣2 ,
6
C

n

n∑
i=1

∣∣∣∣J̄ ( in
)
− J

(
i

n

)∣∣∣∣2 6
C ‖J ′‖2∞

4n2
,

using (2.14). So the limit of
∫
I 〈θn(x, t) , J(x)〉 dx as n→∞ is the same as

Un,t(J) :=
1

n

n∑
i=1

〈
θ

(n)
i,t , J

(
i

n

)〉
=

∫
〈θ , J(x)〉 νn,t(dθ,dx). (5.19)

Taking the limit as n → ∞ in (5.18), using Theorem 2.15, one obtains that, for all
t ∈ [0, T ], ∫

I
〈ψ(x, t) , J(x)〉 dx =

∫
I

∫
〈θ , J(x)〉 νxt (dθ)dx. (5.20)

Theorem 2.19 follows.
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A. Well-posedness and regularity results for the nonlinear Fokker-Planck PDE

The aim of this section is to prove Proposition 2.7, as well as some regularity estimates
concerning the solution ν to (1.4).

A.1. Existence of a solution to the nonlinear Fokker-Planck PDE

We prove here the existence part of Proposition 2.7 and the result of Remark 2.8.
Recall the definition of the set M in Section 2.2. For any m ∈ M, consider the solution
to

dθxt = c(θxt )dt+

∫
Γ(θxt , θ̃)W (x, y)mt(dθ̃,dy)dt+ σdBt, (A.1)

with initial condition θx0 ∼ νx0 . Consider Θ : M → M the functional which maps any
measure m(dθ,dx) to the law Θ(m) of (θx, x), where θx solves (A.1). The point is to
prove that Θ admits a fixed-point inM, which gives the existence of a solution ν to (1.4).
Recall the definition of the Wasserstein metric in (2.12) and the definition of k in (2.7).
Then, for two driving measures m1 and m2 in M, for the coupling (θ1, θ2) with same
initial conditions and Brownian noise, using the properties on c and Γ, we get

|θ1,t − θ2,t|2 6 C

∫ t

0
|θ1,s − θ2,s|2 ds

+ C

∫ t

0
|θ1,s − θ2,s|

∫ ∣∣∣Γ(θ1,s, θ̃)− Γ(θ2,s, θ̃)
∣∣∣W (x, y)m1,s(dθ̃,dy)ds

+ C

∫ t

0
|θ1,s − θ2,s|

∣∣∣∣∫ {Γ(θ2,s, u)− Γ(θ2,s, v)} pys(du,dv)W (x, y)`(dy)

∣∣∣∣ds,
where py(du,dv) is any coupling of my

1 and my
2. Hence,

|θ1,t − θ2,t|2 6 C (1 + ‖W1‖∞)

∫ t

0
|θ1,s − θ2,s|2 ds

+ C

∫ t

0
|θ1,s − θ2,s|

∫
|u− v| pys(du,dv)W (x, y)`(dy)ds.

Elevating everything to the power k > 1, using Jensen’s inequality and taking the supre-
mum in s 6 t and the expectation, one obtains, for another constant C = C(T )

E

[
sup
s 6 t
|θ1,s − θ2,s|2k

]
6 C

(
1 + ‖W1‖k∞

)∫ t

0
E

[
sup
u 6 s
|θ1,s − θ2,s|2k

]
ds

+ C

∫ t

0
E

[
sup
u 6 s
|θ1,u − θ2,u|k

]{∫
|u− v| pys(du,dv)W (x, y)`(dy)

}k
ds.

Using
∫ t

0 u(s)v(s)ds 6 1
2

∫ t
0 u(s)2ds+ 1

2

∫ t
0 v(s)2ds and Jensen’s inequality for the last term,

we obtain, for another constant C,

E

[
sup
s 6 t
|θ1,s − θ2,s|2k

]
6 C

(
1 + ‖W1‖k∞

)∫ t

0
E

[
sup
u 6 s
|θ1,s − θ2,s|2k

]
ds

+ C

∫ t

0

{
sup
u 6 s

∫
|u− v| pyu(du,dv)W (x, y)`(dy)

}2k

ds.
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Applying Jensen’s inequality to the probability measure (for fixed x ∈ I) W (x,y)∫
W (x,z)`(dz)

`(dy)

(recall (2.3)), we can bound the last term above by

C ‖W1‖2k−1
∞

∫ t

0
sup
u 6 s

∫
|u− v|2k pyu(du,dv)W (x, y)`(dy)ds.

Since this is true for all coupling, we obtain

E

[
sup
s 6 t
|θ1,s − θ2,s|2k

]
6 C (1 + ‖W1‖∞)k

∫ t

0
E

[
sup
u 6 s
|θ1,s − θ2,s|2k

]
ds+ C ‖W1‖2k∞

∫ t

0
δs(m1,m2)2kds.

Hence, by Grönwall’s Lemma, we obtain finally, for constant C depending on T and
‖W1‖∞,

δt(Θ(m1),Θ(m2))2k 6 C

∫ t

0
δs(m1,m2)2kds.

Iterating this estimate gives, for all l > 1, δT (Θl+1(ν0),Θl(ν0))2k 6 C l T
l

l! δT (Θ(ν0), ν0)2k,
so that

(
Θl(ν0)

)
is a Cauchy sequence, and hence, converging to ν, solution to (1.4).

A.2. Uniqueness of a solution to the nonlinear Fokker-Planck PDE

We now turn to the uniqueness part of Proposition 2.7. Let µ = {µt}t∈[0,T ] be any
other weak solution to (1.5) in M such that ν0 = µ0. The point is to prove that µt = νt
for t ∈ [0, T ].

Definition A1. For m ∈ {ν, µ}, for `-almost every x ∈ I, for any 0 6 s 6 t, any θ ∈ Rd,
denote by

{
ϕm,ts (θ, x)

}
s 6 t 6 T

the unique solution of

dϑm,xt =

(
c(ϑm,xt ) +

∫
Γ
(
ϑm,xt , θ̃

)
W (x, y)mt(dθ̃,dy)

)
dt+ σdBt , (A.2)

with position x and initial condition ϕm,ss = θ at t = s. In the case m = ν, define finally,
for any test function f : θ 7→ f(θ), θ ∈ Rd and `-almost every x ∈ I,

Ps,tf(θ, x) := Ef
(
ϕν,ts (θ, x)

)
. (A.3)

Let us suppose that c is uniformly Lispchitz on Rd (one can remove this assumption
by replacing c(·) by its Yosida approximation, we refer to [38], Section 7, where the same
procedure is carried out). Under the assumptions made on the model, the propagator P
satisfies the following Backward Kolmogorov equation (see [21], Remark 2.3): for θ ∈ Rd
and x ∈ I,

∂sPs,tf+
1

2
∇θ ·

(
σσ†∇θPs,tf

)
+

((
c(θ) +

∫
Γ(θ, θ̃)W (x, y)νt(dθ̃,dy)

)
· ∇θ

)
Ps,tf = 0.

(A.4)
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For any regular test function f , applying Ito formula to t 7→ Pt,T f(ϑµ,xt , x), where ϑµ,x

solves (A.2) for the choice of m = µ, gives:

Ps,tf(ϑµ,xs , x) = P0,tf(ϑµ,x0 , x) +

∫ s

0
∂vPv,tf(ϑµ,xv , x)dv

+

∫ s

0
∇θPv,tf(ϑµ,xv , x) ·

(
c(ϑµ,xv ) +

∫
Γ
(
ϑµ,xv , θ̃

)
W (x, y)µv(dθ̃,dy)

)
dv

+
1

2

∫ s

0
∇θ ·

(
σσ†∇θPv,tf

)
(ϑµ,xv , x)dv +

∫ s

0
∇θPv,tf(ϑµ,xv , x) · σdBv. (A.5)

Using (A.4), this simplifies into

Ps,tf(ϑµ,xt , x) = P0,tf(ϑµ,x0 , x) +

∫ s

0
∇θPv,tf(ϑµ,xv , x) · σdBv

+

∫ s

0
∇θPv,tf(ϑµ,xv , x) ·

∫
Γ
(
ϑµ,xv , θ̃

)
W (x, y)(µv(dθ̃,dy)− νv(dθ̃,dy))dv. (A.6)

Since the law of ϑµ,xv is µxv(dθ), taking the expectation w.r.t. the Brownian motion, we
obtain for s = t (recall that Ps,sf = f),∫

f(θ)µxs (dθ) =

∫
P0,sf(θ, x)µx0(dθ)

+

∫ s

0

∫ {∫
∇θPv,sf(θ, x) · Γ

(
θ, θ̃
)
W (x, y)µxv(dθ)

}
(µv(dθ̃,dy)− νv(dθ̃,dy))dv. (A.7)

Furthermore, taking in (1.4) test functions of the form ϕ(θ, x) = φ(θ)ψ(x) shows that for
every regular test function θ 7→ φ(θ), for `-almost every x,∫

φ(θ)νxs (dθ) =

∫
φ(θ)νx0 (dθ) +

∫ s

0

∫ {
1

2
∇θ
(
σσ†∇θφ(θ)

)
+∇θφ(θ) · c(θ)

}
νxv (dθ)dv

+

∫ s

0

∫
∇θφ(θ) ·

∫
W (x, y)Γ(θ, θ̃)νv(dθ̃,dy)νxv (dθ)dv. (A.8)

From this, we get

∂v

∫
Pv,tf(θ, x)νxv (dθ) =

∫
∂vPv,tf(θ, x)νxv (dθ) +

∫
Pv,tf(θ, x)∂vν

x
v (dθ) = 0. (A.9)

We obtain finally, for `-almost every x,∫
f(θ) {µxs (dθ)− νxs (dθ)} =

∫
P0,sf(θ, x) {µx0(dθ)− νx0 (dθ)}

+

∫ s

0

∫ {∫
∇θPv,sf(θ, x) · Γ

(
θ, θ̃
)
W (x, y)µxv(dθ)

}
(µyv(dθ̃)− νyv (dθ̃))`(dy)dv. (A.10)

Let us recall the definition of the Wasserstein metric w1(·, ·) in (2.8). By the Kantorovich-
Rubinstein duality, an equivalent expression of this distance is

w1(µ, ν) = sup
‖f‖Lip 6 1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ . (A.11)
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An important point is to note that there exists a constant C > 0 such that, uniformly in
(θ, x), |∇θPv,sf(θ, x)| 6 C, where C is uniform on v, s ∈ [0, T ] and f such that ‖f‖Lip 6 1
(see [38], Lemma 4.4 for more details). Thus, for fixed x, y ∈ I and v, s ∈ [0, T ], the

function θ̃ 7→ Ix,y(θ̃) :=
∫
∇θPv,sf(θ, x) · Γ

(
θ, θ̃
)
W (x, y)µxv(dθ) is Lipschitz:

|Ix,y(θ1)− Ix,y(θ2)| =
∣∣∣∣∫ ∇θPv,sf(θ, x) · (Γ (θ, θ1)− Γ (θ, θ2))W (x, y)µxv(dθ)

∣∣∣∣
6 CLΓW (x, y) |θ1 − θ2| .

Hence, we obtain∣∣∣∣∫ f(θ) {µxs (dθ)− νxs (dθ)}
∣∣∣∣ 6 ∣∣∣∣∫ P0,sf(θ, x) {µx0(dθ)− νx0 (dθ)}

∣∣∣∣
+ CLΓ

∫ s

0

∫
sup
u 6 v

w1(µyu, ν
y
u)W (x, y)`(dy)dv. (A.12)

Taking the supremum on f with ‖f‖Lip 6 1 and using the fact that µ0 = ν0, we obtain

w1 (µxs , ν
x
s ) 6 CLΓ

∫ s

0

∫
sup
u 6 v

w1(µyu, ν
y
u)W (x, y)`(dy)dv.

By Cauchy-Schwarz and Jensen inequalities,

w1 (µxs , ν
x
s )2 6 C2L2

Γ

(∫ s

0

(∫
sup
u 6 v

w1(µyu, ν
y
u)2`(dy)

) 1
2
(∫

W (x, y)2`(dy)

) 1
2

dv

)2

6 C2L2
ΓT ‖W2‖∞

∫ s

0

∫
sup
u 6 v

w1(µyu, ν
y
u)2`(dy)dv.

Taking the supremum in s 6 t and integrating w.r.t. x gives∫
sup
s 6 t

w1 (µxs , ν
x
s )2 `(dx) 6 C2L2

ΓT ‖W2‖∞
∫ t

0

∫
sup
u 6 v

w1(µyu, ν
y
u)2`(dy)dv

so that Grönwall’s Lemma gives uniqueness.

A.3. A priori estimates and spatial regularity

We now gather some estimates concerning the solution ν to (1.4). Recall Definition A1:
in the following, for θ ∈ Rd, x ∈ I, we set ϕts(θ, x) := ϕν,ts (θ, x) (now m = ν).

Lemma A2. For all θ1, θ2 ∈ Rd, x, y ∈ I, t 6 T , consider ϕt0(θ1, x) and ϕt0(θ2, y) coupled
in such a way that they are driven by the same Brownian motion B in (A.2). Under the
Assumptions 2.1, 2.4 and 2.6, there exists a constant C1 depending only on Γ, σ, c,W, ν0

such that for all t > 0,

E

[
sup
u∈[0,t]

|ϕu0(θ1, x)− ϕu0(θ2, y)|2
]

6 C1e
C1t
(
δW(x, y)2 + |θ1 − θ2|2

)
, (A.13)

where we recall the definition of δW in (2.28).
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Proof of Lemma A2. Set for simplicity Φu := ϕu0(θ1, x) and Ψu := ϕu0(θ2, y). Then, for all
s 6 t,

|Φs −Ψs|2 = |θ1 − θ2|2 + 2

∫ s

0
〈Φu −Ψu , c(Φu)− c(Ψu)〉du

+ 2

∫ s

0

〈
Φu −Ψu ,

∫ (
W (x, z)Γ(Φu, θ̃)−W (y, z)Γ(Ψu, θ̃)

)
νu(dθ̃,dz)

〉
du. (A.14)

Since c is one-sided Lipschitz (2.6), taking the supremum in s ∈ [0, t]

sup
s∈[0,t]

|Φs −Ψs|2 6 |θ1 − θ2|2 + (2Lc + 1)

∫ t

0
sup
v∈[0,u]

|Φv −Ψv|2 du

+

∫ t

0

∣∣∣∣∫ (W (x, z)Γ(Φu, θ̃)−W (y, z)Γ(Ψu, θ̃)
)
νu(dθ̃,dz)

∣∣∣∣2 du. (A.15)

The last term within the last integral can be estimated above by 2(a
(1)
u + a

(2)
u ) where

a(1)
u =

∣∣∣∣∫ W (x, z)
(

Γ(Φu, θ̃)− Γ(Ψu, θ̃)
)
νu(dθ̃,dz)

∣∣∣∣2 6 L2
Γ ‖W‖

2
∞ sup
v∈[0,u]

|Φv −Ψv|2 ,

and where

a(2)
u =

(∫ {∫
Γ(Ψu, θ̃)ν

z
u(dθ̃)

}
|W (x, z)−W (y, z)| `(dz)

)2

6 L2
Γ

(
1 + |Ψu|2 + sup

z∈I
E

[
sup
v 6 u

∣∣θ̄zv∣∣2]) δW(x, y)2.

Taking the expectation, using (2.13) and Grönwall’s Lemma, one obtains (A.13).

Lemma A3. Let f : θ 7→ f(θ) be such that |f(θ)− f(θ′)| 6 c
(1)
f |θ − θ

′| and |f(θ)| 6 c
(2)
f (1 + |θ|).

Then, Under the Assumptions 2.1, 2.4 and 2.6, for the same constant C1 as in (A.13),
for all t > 0, for x, y ∈ [0, 1],∣∣∣∣∫ f(θ)νxt (dθ)−

∫
f(θ)νyt (dθ)

∣∣∣∣ 6 c
(1)
f C1e

C1t (δW(x, y) + w1(νx0 , ν
y
0 )) . (A.16)

Proof of Lemma A3. Recall Definition A1 (in particular the definition of P in (A.3)) and
the calculations made in the proof of uniqueness in Section A.2. Apply (A.10) to the case
µ = ν: for any regular test function f satisfying the hypotheses of Lemma A3,∫

f(θ)νxt (dθ) =

∫
P0,tf(θ, x)νx0 (dθ). (A.17)

In particular, for x, y ∈ I,∣∣∣∣∫ f(θ)νxt (dθ)−
∫
f(θ)νyt (dθ)

∣∣∣∣ 6 ∫
|P0,tf(θ, x)− P0,tf(θ, y)| νx0 (dθ) (A.18)

+

∣∣∣∣∫ P0,tf(θ, y)νx0 (dθ)−
∫
P0,tf(θ, y)νy0 (dθ)

∣∣∣∣ . (A.19)
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For the first term (A.18), we have∫
|P0,tf(θ, x)− P0,tf(θ, y)| νx0 (dθ) =

∫ ∣∣E [f(ϕt0(θ, x))
]
−E

[
f(ϕt0(θ, y))

]∣∣ νx0 (dθ),

6 c
(1)
f

∫
E
∣∣ϕt0(θ, x)− ϕt0(θ, y)

∣∣ νx0 (dθ), (A.20)

where the coupling (ϕt0(θ, x), ϕt0(θ, y)) is given by Lemma A2. By (A.13), one obtains that∫
|P0,tf(θ, x)− P0,tf(θ, y)| νx0 (dθ) 6 c

(1)
f C1e

C1tδW(x, y). (A.21)

As far as the second term (A.19) is concerned, for any fixed (θ1, θ2), applying once again

Lemma A2 gives |P0,tf(θ1, y)− P0,tf(θ2, y)| 6 c
(1)
f C1e

C1t |θ1 − θ2|. In particular, for any

coupling (θ̄x0 , θ̄
y
0),∣∣∣∣∫ P0,tf(θ, y)νx0 (dθ)−

∫
P0,tf(θ, y)νy0 (dθ)

∣∣∣∣ =
∣∣E [P0,tf(θ̄x0 , y)− P0,tf(θ̄y0 , y)

]∣∣ ,
6 E

∣∣P0,tf(θ̄x0 , y)− P0,tf(θ̄y0 , y)
∣∣ 6 c

(1)
f C1e

C1tE
∣∣θ̄x0 − θ̄y0∣∣ .

Since this true for all coupling of the initial conditions (θ̄x0 , θ̄
y
0), one obtains finally that∣∣∣∣∫ P0,tf(θ, y)νx0 (dθ)−

∫
P0,tf(θ, y)νy0 (dθ)

∣∣∣∣ 6 c
(1)
f C1e

C1tw1(νx0 , ν
y
0 ) (A.22)

This concludes the proof of Lemma A3.

Lemma A4. Recall the definition of [Γ]u in (2.21) and of Υu in (2.22) (u > 0). Under
the Assumptions 2.1, 2.4 and 2.6, there exists a constant C > 0 (that depends only on T ,
c, Γ and σ) such that for all u ∈ [0, T ], θ ∈ Rd, x, y, y′, z, z′ ∈ I,

sup
u∈[0,T ]

sup
x∈I
|[Γ]u (θ, x)| 6 C(1 + |θ|), (A.23)

sup
u∈[0,T ]

sup
x,y,z∈I

|Υu(x, y, z)| 6 C (A.24)

as well as

sup
u∈[0,T ]

|[Γ]u(θ, x)− [Γ]u(θ, y)| 6 C (δW(x, y) + w1(νx0 , ν
y
0 )) , (A.25)

sup
u∈[0,T ]

sup
x,z∈I

∣∣Υu(x, y, z)−Υu(x, y′, z)
∣∣ 6 C

(
δW(y, y′) + w1(νy0 , ν

y′

0 )
)
, (A.26)

sup
u∈[0,T ]

sup
x,y∈I

∣∣Υu(x, y, z)−Υu(x, y, z′)
∣∣ 6 C

(
δW(z, z′) + w1(νz0 , ν

z′
0 )
)
. (A.27)

Proof of Lemma A4. The estimates on Υ are an easy consequence of the estimates on [Γ].
The bound (A.23) on [Γ] is a direct consequence of (2.5) and the uniform estimates we
have on θ̄ (2.13). Let us now prove (A.25): apply the results of Lemma A3 to the test
function f := θ̃ 7→ Γ(θ, θ̃) (for fixed θ ∈ Rd). The test function f satisfies the hypothesis
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of Lemma A3 for c
(1)
f := LΓ (and some c

(2)
f that depends on θ, but note that c

(2)
f does not

enter into account in the estimates of Lemma A3). In particular, uniformly in θ,

|[Γ]u(θ, x)− [Γ]u(θ, y)| =
∣∣∣∣∫ Γ(θ, θ̃)νxu(dθ̃)−

∫
Γ(θ, θ̃)νyu(dθ̃)

∣∣∣∣ 6 C (δW(x, y) + w1(νx0 , ν
y
0 )) ,

which gives the result.

B. Identification in the general case: proof of Theorem 2.20

The point of this section is to prove Theorem 2.20. Recall that I = Rp endowed with
a probability measure `(dx) := `(x)dx with a C1 density `. We fix a C1-kernel W (x, y) on
Rp × Rp. We proceed by truncation from the compact case (Theorem 2.19): fix M > 0,
define

BM := [−M,M ]p and ΛM := BM ×BM , (B.1)

and introduce the following probability measure, whose support is BM :

`(M)(dx) := `(M)(x)dx := `(x)
1BM (x)

`(BM )
dx. (B.2)

In what follows, we choose M sufficiently large so that

`(BM ) >
1

2
. (B.3)

What has been done in Section 5.3 for I = [0, 1] with deterministic regular positions can
be transposed without difficulties (up to obvious notational changes) to I = BM , endowed
with its renormalized Lebesgue measure dx

|BM | , where |BM | = (2M)p. Hence, we can apply
the result of Section 5.3 for I = BM and deterministic positions, for the choice of kernel
on B2

M

W̃M (x, y) := W (x, y)`(M)(y) |BM | , x, y ∈ BM . (B.4)

Indeed, the kernel (x, y) 7→ W̃M (x, y) is bounded and C1 on B2
M so that W̃M satisfies the

assumptions of Section 2.1. Moreover, we see from Section 3.3 that W̃M can be realized
as the macroscopic limit of a graph (G(n), κ(n)) constructed as in (3.7) and (3.9). Since
W and ` are regular, Assumptions 2.9 and 2.11 are satisfied. Hence, both solutions ν(M)

to (1.4) (with initial condition ν
(M)
0 (dθ,dx) = νx0 (dθ)`(M)(dx)) and ψ(M) to (2.34) (with

initial condition ψ
(M)
0 (x) =

∫
θν

x,(M)
0 (dθ)) in the case I = BM endowed with dx

|BM | , for the

kernel W̃M are well posed and satisfy the identification∫
BM

〈
ψ(M)(x, t) , J(x)

〉 dx

|BM |
=

∫
BM

∫
〈θ , J(x)〉 ν(M),x

t (dθ)
dx

|BM |
, (B.5)

for all regular test functions J on BM . The point of the remaining is to make M →∞ in
(B.5). We treat the two sides of (B.5) separately. Concerning the lefthand, ψ(M) is the
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unique weak solution to∫
BM

〈
ψ(M)(x, t) , J(x)

〉 dx

|BM |
=

∫
BM

〈
ψ

(M)
0 (x) , J(x)

〉 dx

|BM |

+

∫ t

0

∫
BM

〈
c(ψ(M)(x, s)) , J(x)

〉 dx

|BM |
ds

+

∫ t

0

∫
B2
M

〈
Γ(ψ(M)(x, s), ψ(M)(y, s)) , J(x)

〉
W̃M (x, y)

dy

|BM |
dx

|BM |
ds. (B.6)

Multiplying everything by |BM | and choosing test functions of the form J(x)`(M)(x) gives,
by definition of W̃M ,∫

Rp

d

dt

〈
ψ(M)(x, t) , J(x)

〉
`(M)(dx) =

∫
Rp

〈
c(ψ(M)(x, t)) , J(x)

〉
`(M)(dx)

+

∫
Rp

∫
Rp

〈
Γ(ψ(M)(x, t), ψ(M)(y, t)) , J(x)

〉
W (x, y)`(M)(dy)`(M)(dx). (B.7)

We first give some a priori bound on ψ(M): by density, (B.7) is also true for all test functions

J(x, t) and for J(x, t) =
∣∣ψ(M)(x, t)

∣∣2k−2
ψ(M)(x, t), we obtain, using the properties on c

and Γ

1

2k

d

dt

∫
Rp

∣∣∣ψ(M)(x, t)
∣∣∣2k `(M)(dx) =

∫
Rp

〈
c(ψ(M)(x, t)) , ψ(M)(x, t)

〉 ∣∣∣ψ(M)(x, t)
∣∣∣2k−2

`(M)(dx)

+

∫
R2p

〈
Γ(ψ(M)(x, t), ψ(M)(y, t)) , ψ(M)(x, t)

〉 ∣∣∣ψ(M)(x, t)
∣∣∣2k−2

W (x, y)`(M)(dy)`(M)(dx),

6

(
Lc +

1

2

)∫
Rp

∣∣∣ψ(M)(x, t))
∣∣∣2k `(M)(dx) +

|c(0)|2

2

∫
Rp

∣∣∣ψ(M)(x, t))
∣∣∣2k−2

`(M)(dx)

+ LΓ

∫
R2p

(∣∣∣ψ(M)(x, t)
∣∣∣2k−1

+
∣∣∣ψ(M)(x, t)

∣∣∣2k)W (x, y)`(M)(dy)`(M)(dx)

+ LΓ

∫
R2p

∣∣∣ψ(M)(y, t)
∣∣∣ ∣∣∣ψ(M)(x, t)

∣∣∣2k−1
W (x, y)`(M)(dy)`(M)(dx). (B.8)

The last term in (B.8) is bounded by

∫
Rp

∣∣∣ψ(M)(x, t)
∣∣∣2k−1

(∫
Rp

∣∣∣ψ(M)(y, t)
∣∣∣2 `(M)(dy)

) 1
2
(∫

Rp
W (x, y)2`(M)(dy)

) 1
2

`(M)(dx),

6
√

2 ‖W2‖
1
2∞

(∫
Rp

∣∣∣ψ(M)(y, t)
∣∣∣2 `(M)(dy)

) 1
2
∫
Rp

∣∣∣ψ(M)(x, t)
∣∣∣2k−1

`(M)(dx),
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where we used (B.3) and (2.2). Applying Young’s inequality for p = 2k and q = p∗ = 2k
2k−1 ,

the last quantity is smaller than

√
2 ‖W2‖

1
2∞

{
1

2k

(∫
Rp

∣∣∣ψ(M)(y, t)
∣∣∣2 `(M)(dy)

)k
+

2k − 1

2k

(∫
Rp

∣∣∣ψ(M)(x, t)
∣∣∣2k−1

`(M)(dx)

) 2k
2k−1

}
,

6
√

2 ‖W2‖
1
2∞

{
1

2k

∫
Rp

∣∣∣ψ(M)(y, t)
∣∣∣2k `(M)(dy) +

2k − 1

2k

∫
Rp

∣∣∣ψ(M)(x, t)
∣∣∣2k `(M)(dx)

}
,

=
√

2 ‖W2‖
1
2∞

∫
Rp

∣∣∣ψ(M)(y, t)
∣∣∣2k `(M)(dy),

by Jensen’s inequality. Using this bound in (B.8), the fact that there are constants c0, c1 >
0 such that |x|2k−2 + |x|2k−1 + |x|2k 6 c0 + c1 |x|2k and Grönwall’s Lemma gives

sup
t∈[0,T ]

sup
M > 1

∫
Rp

∣∣∣ψ(M)(x, t)
∣∣∣2k `(M)(dx) < +∞. (B.9)

We now prove that (ψ(M)1BM ) is Cauchy: for N > M , set

ρ(x, t) = ρN,M (x, t) := ψ(N)(x, t)1BN (x)− ψ(M)(x, t)1BM (x). (B.10)

Multiplying by `(BM ) in (B.7), we have,∫
Rp

d

dt

〈
ψ(M)(x, t)1BM (x) , J(x, t)

〉
`(dx) =

∫
Rp

〈
c(ψ(M)(x, t))1BM (x) , J(x, t)

〉
`(dx)

+
1

`(BM )

∫
R2p

〈
Γ(ψ(M)(x, t), ψ(M)(y, t)) , J(x, t)

〉
W (x, y)1ΛM (x, y)`(dy)`(dx).

Use the notation c̃(θ) = c(θ)− c(0). Note that c̃ also satisfies (2.6) for the same constant
Lc. Since c̃(0) = 0, one has c̃(θ)1BM (x) = c̃(θ1BM (x)). In a same way, for all θ1, θ2,
Γ (θ1, θ2) 1ΛM (x, y) = Γ (θ11BM (x), θ21BM (y)) 1ΛM (x, y). Hence, we can write∫

Rp

d

dt

〈
ψ(M)(x, t)1BM (x) , J(x, t)

〉
`(dx) =

∫
Rp

〈
c̃(ψ(M)(x, t)1BM (x)) , J(x, t)

〉
`(dx)

+

∫
Rp
〈c(0) , J(x, t)〉1BM (x)`(dx)

+
1

`(BM )

∫
R2p

〈
Γ(ψ(M)(x, t)1BM (x), ψ(M)(y, t)1BM (y)) , J(x, t)

〉
W (x, y)1ΛM (x, y)`(dy)`(dx).
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Taking the difference between ψ(M) and ψ(N) gives for J(x, t) = ρ(x, t) |ρ(x, t)|k−2:

d

dt

∫
Rp
|ρ(x, t)|k `(dx) =

∫
Rp

〈
c̃(ψ(N)(x, t)1BN (x))− c̃(ψ(M)(x, t)1BM (x)) , J(x, t)

〉
`(dx)

+

∫
Rp
〈c(0) , J(x, t)〉1BN\BM (x)`(dx)

+
1

`(BM )

∫
R2p

〈
Γ(ψ(N)(x, t)1BN (x), ψ(N)(y, t)1BN (y)) , J(x, t)

〉
W (x, y)1ΛN\ΛM (x, y)`(dy)`(dx)

+

(
1

`(BN )
− 1

`(BM )

)∫
R2p

〈
Γ(ψ(N)(x, t)1BN (x), ψ(N)(y, t)1BN (y)) , J(x, t)

〉
W (x, y)1ΛN (x, y)`(dy)`(dx)

+
1

`(BM )

∫
R2p

〈
Γ(ψ(N)(x, t)1BN (x), ψ(N)(y, t)1BN (y))

− Γ(ψ(M)(x, t)1BM (x), ψ(M)(y, t)1BM (y)) , J(x, t)
〉
W (x, y)1ΛM (x, y)`(dy)`(dx)

:= (I) + (II) + (III) + (IV ) + (V ). (B.11)

Concerning the first term in (B.11), we have, by the property of c, |(I)| 6 Lc
∫
Rp |ρ(x, t)|k `(dx).

The second term is controlled as

|(II)| 6 |c(0)|
(∫

Rp
|ρ(x, t)|k `(dx)

)1− 1
k

`(BN\BM )
1
k 6 |c(0)|

{
k − 1

k

∫
Rp
|ρ(x, t)|k `(dx) +

1

k
`(BN \BM )

}
.

We now turn to (III): by (B.3) and (2.5),

|(III)| 6 2LΓ

∫
R2p

|ρ(x, t)|k−1W (x, y)1ΛN\ΛM (x, y)`(dy)`(dx)

+ 2LΓ

∫
R2p

∣∣∣ψ(N)(x, t)1BN (x)
∣∣∣ |ρ(x, t)|k−1W (x, y)1ΛN\ΛM (x, y)`(dx)`(dy)

+ 2LΓ

∫
R2p

∣∣∣ψ(N)(y, t)1BN (y)
∣∣∣ |ρ(x, t)|k−1W (x, y)1ΛN\ΛM (x, y)`(dy)`(dx)

:= (i) + (ii) + (iii). (B.12)

The term (i) is bounded by

(i) 6 2LΓ

(∫
Rp
|ρ(x, t)|k `(dx)

)1− 1
k

(∫
Rp

(∫
Rp
W (x, y)1ΛN\ΛM (x, y)`(dy)

)k
`(dx)

) 1
k

6
2(k − 1)LΓ

k

∫
Rp
|ρ(x, t)|k `(dx) +

2LΓ

k
‖W2‖

k
2∞ `(ΛN \ ΛM )

k
2 .
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Secondly,

(ii) 6 2k−1LΓ

∫
BN

∣∣∣ψ(N)(x, t)
∣∣∣k (∫

Rp
W (x, y)1ΛN\ΛM (x, y)`(dy)

)
`(dx)

+ 2k−1LΓ

∫
BM

∣∣∣ψ(N)(x, t)
∣∣∣ ∣∣∣ψ(M)(x, t)

∣∣∣k−1
(∫

Rp
W (x, y)1ΛN\ΛM (x, y)`(dy)

)
`(dx),

6 2k−1LΓ

(∫
BN

∣∣∣ψ(N)(x, t)
∣∣∣2k `(dx)

) 1
2

‖W2‖
1
2∞ `(ΛN \ ΛM )

1
2

+ 2k−1LΓ

(∫
BN

∣∣∣ψ(N)(x, t)
∣∣∣qr `(dx)

) 1
qr
(∫

BM

∣∣∣ψ(M)(x, t)
∣∣∣qr∗(k−1)

`(dx)

) 1
qr∗

(∫
Rp

(∫
Rp
W (x, y)1ΛN\ΛM (x, y)`(dy)

)q∗
`(dx)

) 1
q∗

,

by two successive applications of Hölder’s inequality for the last term. Choosing q =
q∗ = 2 and (r, r∗) = (k, k

k−1), using (B.9), we see that the term (ii) is finally bounded by

C ‖W2‖
1
2∞ `(ΛN \ ΛM )

1
2 . Finally, the last term in (B.12) is controlled as

(iii) 6 2k−1LΓ

∫
B2
N

∣∣∣ψ(N)(y, t)
∣∣∣ ∣∣∣ψ(N)(x, t)

∣∣∣k−1
W (x, y)1ΛN\ΛM (x, y)`(dy)`(dx)

+ 2k−1LΓ

∫
BM

∫
BN

∣∣∣ψ(N)(y, t)
∣∣∣ ∣∣∣ψ(M)(x, t)

∣∣∣k−1
W (x, y)1ΛN\ΛM (x, y)`(dy)`(dx),

:= (a) + (b).

By Hölder’s inequality, the term (a) is controlled as

(a) 6 2k−1LΓ

(∫
BN

∣∣∣ψ(N)(y, t)
∣∣∣q `(dy)

) 1
q
(∫

BN

∣∣∣ψ(N)(x, t)
∣∣∣r(k−1)

`(dx)

) 1
r

∫
Rp

(∫
Rp
W (x, y)q

∗
1ΛN\ΛM (x, y)`(dy)

) r∗
q∗

`(dx)

 1
r∗

.

For the choice (r, r∗) = ( 2k
k−1 ,

2k
k+1), (q, q∗) = (2−δ

1−δ , 2− δ) for δ ∈ (0, 1),

(a) 6 2k−1LΓ

(∫
BN

∣∣∣ψ(N)(y, t)
∣∣∣ 2−δ1−δ

`(dy)

) 1−δ
2−δ
(∫

BN

∣∣∣ψ(N)(x, t)
∣∣∣2k `(dx)

) k−1
2k

(∫
Rp

(∫
Rp
W (x, y)2−δ1ΛN\ΛM (x, y)`(dy)

) 2k
(2−δ)(k+1)

`(dx)

) k+1
2k

.

Choosing δ sufficiently small so that 2−δ
1−δ < 2k (possible since k > 1), we obtain

(a) 6 2k−1LΓ sup
N > 1

sup
t∈[0,T ]

(∫
BN

∣∣∣ψ(N)(y, t)
∣∣∣2k `(dy)

) 1
2

‖W2‖
1
2∞ `(ΛN \ ΛM )

δ
2(2−δ) .
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The same calculation gives the same estimate for (b). Concerning the term (IV ), we have

obviously
∣∣∣ 1
`(BN ) −

1
`(BM )

∣∣∣ 6 4`(BN \BM ) so that it only suffices to have a uniform bound

on the integral term in (IV ). This is indeed true, by the same calculations as for (III)
(with 1ΛN\ΛM (x, y) replaced by 1ΛN (x, y) 6 1). It remains to control (V ): by (2.4),

|(V )| 6 2LΓ

∫
(Rp)2

|ρ(x, t)|kW (x, y)1ΛM (x, y)`(dy)`(dx)

+ 2LΓ

∫
(Rp)2

|ρ(y, t)| |ρ(x, t)|k−1W (x, y)1ΛM (x, y)`(dy)`(dx).

The first term in the sum above si easily bounded by 2LΓ ‖W1‖∞
∫
Rp |ρ(x, t)|k `(dx). The

second is controlled by

2LΓ ‖W2‖
1
2∞

(∫
Rp
|ρ(y, t)|2 `(dy)

) 1
2
∫
Rp
|ρ(x, t)|k−1 `(dx)

6 2LΓ ‖W2‖
1
2∞

{
1

k

(∫
Rp
|ρ(y, t)|2 `(dy)

) k
2

+
k − 1

k

(∫
Rp
|ρ(x, t)|k−1 `(dx)

) k
k−1

}

6 2LΓ ‖W2‖
1
2∞

∫
Rp
|ρ(x, t)|k `(dx),

by Jensen’s inequality (since k > 2).
Gathering all these estimates into (B.11), by a Grönwall’s Lemma and the fact that

`(ΛN \ ΛM ) 6 `(ΛcM ) −−−−→
M→∞

0, we see that the sequence
(
ψ(M)1BM

)
M > 1

is Cauchy

in C([0, T ], Lk(I, `)) and hence converges to some ψ(·, t). By the same argument as be-
fore, it is easy to show that ψ is a weak solution (and hence, by Proposition 2.17 the
only solution) to (2.34). Moreover, the convergence in C([0, T ], Lk(I, `)) implies that∫
Rp
〈
ψ(M)(x, t) , J(x)

〉
dx −−−−→

M→∞

∫
Rp 〈ψ(x, t) , J(x)〉 dx for all t ∈ [0, T ] and every test

functions J with compact support.

We now turn to the righthand side of (B.5): we apply the same propagator technique
as in Section A.2 to the process ν(M) in (B.5). By the same procedure as in Section A.2,
it is possible to prove that, for all test functions θ 7→ f(θ), for `(M)-almost every x,∫

f(θ)
{
ν(M),x
s (dθ)− νxs (dθ)

}
=

∫
P0,sf(θ, x)

{
ν

(M),x
0 (dθ)− νx0 (dθ)

}
+

∫ s

0

∫
Rd×Rp

{∫
Rd
∇θPv,tf(θ, x) · Γ

(
θ, θ̃
)
ν(M),x
v (dθ)

}
W (x, y)

{
ν(M),y
v (dθ̃)− νyv (dθ̃)

}
`(M)(dy)dv

+

∫ s

0

∫
Rd×Rp

{∫
Rd
∇θPv,tf(θ, x) · Γ

(
θ, θ̃
)
ν(M),x
v (dθ)

}
W (x, y)νyv (dθ̃)

{
1BM (x)

`(BM )
− 1

}
`(dy)dv

:= (A) + (B). (B.13)

57



Concerning the first term: it is bounded by

|(A)| 6 CLΓ

`(BM )

∫ s

0

∫
sup
u 6 v

w1

(
ν(M),y
u , νyu

)
W (x, y)`(dy)dv

6
CLΓ ‖W2‖

1
2∞

`(BM )

∫ s

0

(∫
sup
u 6 v

w1

(
ν(M),y
u , νyu

)2
`(dy)

) 1
2

dv.

Concerning the second term, using the fact that sups 6 T,M > 1,y∈I
∫
|θ| νM,y

s (dθ) <∞, for
some constant C > 0

|(B)| 6 C

∫ s

0

∣∣∣∣1BM (x)

`(BM )
− 1

∣∣∣∣ ∫ ∫ (1 + |θ|+
∣∣∣θ̃∣∣∣) ν(M),x

v (dθ)νyv (dθ̃)W (x, y)`(dy)dv

6 C ‖W1‖∞

∣∣∣∣1BM (x)

`(BM )
− 1

∣∣∣∣ s.
These estimates and Grönwall Lemma gives that supx sups∈[0,T ]

∫
f(θ)

{
ν

(M),x
s (dθ)− νxs (dθ)

}
−−−−→
M→∞

0.

C. Convergence of graphs: proof of Proposition 2.22

The point of this section is to prove Proposition 2.22. To do so, define first two other
auxiliary (directed and weighted) graphs:

1. H(n)
1 , with vertex set [n]: in H(n)

1 , for all i 6= j ∈ [n], both directed edges i→ j and

j → i are present and associated with the respective weights κ
(n)
i Wn(x

(n)
i , x

(n)
j ) and

κ
(n)
j Wn(x

(n)
i , x

(n)
j ),

2. H(n)
2 , with vertex set [n]: in H(n)

2 , for all i 6= j ∈ [n], the edge i→ j (resp. j → i) is

present and associated with the weight W (x
(n)
i , x

(n)
j ) (resp. W (x

(n)
i , x

(n)
j )).

C.1. Some distances and norms on graphs and kernels

Before proving Proposition 2.22, we need to introduce the necessary definitions coming
from graph convergence theory (see [36, 9, 6] and references therein). Concerning the
notion of cut-off distance considered in Proposition 2.22 and other related definitions, we
follow here closely [7, 8]. In particular, we generalize here the definitions of [8], § 2.3
to the case of directed graphs and non-symmetric kernels: let G = (V (G), E(G)) be a
possibly directed weighted graph, where each vertex i ∈ V (G) is associated to a weight
αi and each edge i → j is associated to a weight βi,j (where possibly βi,j 6= βj,i). We
define αG =

∑
i∈V (G) αi and the kernel WG on [0, 1]2 in the following way: divide [0, 1]

into intervals I1, . . . , I|V (G)| of length |Ii| = αi
αG

and define

WG(x, y) =
∑

i,j∈V (G)

βi,j1(x,y)∈Ii×Ij . (C.1)

For one kernel W define

‖W‖∞→1 := sup
‖f‖∞,‖g‖∞ 6 1

∣∣∣∣∣
∫

[0,1]2
W (x, y)f(x)g(y)dxdy

∣∣∣∣∣ (C.2)
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as well as the cut norm

‖W‖2 := sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣ . (C.3)

Note that the norms ‖·‖∞→1 and ‖·‖2 are equivalent (see [8], Eq. (2.3)): for some C > 0,
for any kernel W ,

‖W‖2 6 ‖W‖∞→1 6 C ‖W‖2 . (C.4)

For any weighted directed graphs G and G′ with vertex set [n], the same nodeweights αi
and with respective weights (βi,j)i,j∈[n] and (β′i,j)i,j∈[n], define the cut-off distance

d2(G,G′) :=
∥∥∥WG −WG′

∥∥∥
2

= max
S,T⊂[n]

∣∣∣∣∣∣
∑

i∈S,j∈T

αiαj
α2
G

(βi,j − β′i,j)

∣∣∣∣∣∣ . (C.5)

Finally, we define the following L1-distance between two kernels W and W ′ (not necessarily
symmetric):

d1(W,W ′) :=
∥∥W −W ′∥∥

1
:=

∫
[0,1]2

∣∣W (x, y)−W ′(x, y)
∣∣dxdy. (C.6)

C.2. Proof of Proposition 2.22

Proposition 2.22 is a direct consequence of Propositions C1, C3 and C4 below.

Proposition C1. Under the hypotheses of Section 2.7, we have

d2

(
Ḡ(n),H(n)

1

)
−−−→
n→∞

0, with probability 1. (C.7)

Proof of Proposition C1. Let S, T ⊆ [n]: we have

P

∣∣∣∣∣∣ 1

n2

∑
i∈S,j∈T

κ
(n)
i ξ̄i,j

∣∣∣∣∣∣ > ε

 6 P

∣∣∣∣∣∣ 1

n2

∑
i∈S,j∈T,i<j

κ
(n)
i ξ̄i,j

∣∣∣∣∣∣ > ε

2

+ P

∣∣∣∣∣∣ 1

n2

∑
i∈S,j∈T,i>j

κ
(n)
i ξ̄i,j

∣∣∣∣∣∣ > ε

2

 .

Let U+ :=
{

(i, j) ∈ [n]2, i ∈ S, j ∈ T, i < j
}

. We have |U+| 6 |S| |T |. We use the follow-
ing result ([17], Th 3.3):

Proposition C2. Let X1, . . . , Xn be independent random variables with Xi ∼ B(pi). For
X =

∑n
i=1 aiXi with ai > 0, define ν =

∑n
i=1 a

2
i pi. Then, for a = max {a1, . . . , an},

P (X − E[X] < −λ) 6 e−
λ2

2ν , (C.8)

P (X − E[X] > λ) 6 e
− λ2

2(ν+aλ/3) , (C.9)

Since, by definition the variables (ξi,j)(i,j)∈U+
are independent (recall that ξ̄i,j = ξi,j −

Wn(xi, xj), apply (C.8) with ai = κ
(n)
i , so that

P

 1

n2

∑
(i,j)∈U+

κ
(n)
i ξ̄i,j < −

ε

2

 6 exp

− ε2n4

8
∑

(i,j)∈U+

(
κ

(n)
i

)2
Wn(xi, xj)

 .
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Since

1

n2κn

∑
(i,j)∈U+

(
κ

(n)
i

)2
Wn(xi, xj) 6

1

n2

n∑
i,j=1

κ
(n)
i Wn(xi, xj) 6 δn(x) +

1

n2

n∑
i,j=1

W (xi, xj),

using the fact that 1
n2

∑n
i,j=1W (xi, xj) −−−→

n→∞

∫
W (x, y)dxdy = ‖W‖L1 > 0, we have for

n sufficiently large,

1

n2κn

∑
(i,j)∈U+

(
κ

(n)
i

)2
Wn(xi, xj) 6 1 +

3 ‖W‖L1

2
.

For such n,

P

 1

n2

∑
(i,j)∈U+

κ
(n)
i ξ̄i,j < −

ε

2

 6 exp

− ε2n2

8κn

(
1 +

3‖W‖L1

2

)
 .

Moreover, by similar arguments, for n sufficiently large and ε < 6, we have

P

 1

n2

∑
(i,j)∈U+

κ
(n)
i ξ̄i,j >

ε

2

 = P

 ∑
(i,j)∈U+

κ
(n)
i ξ̄i,j >

εn2

2

 6 exp

− ε2n2

8κn

(
2 +

3‖W‖L1

2

)
 .

Putting things together, we obtain

P

∣∣∣∣∣∣ 1

n2

∑
(i,j)∈U+

κ
(n)
i ξ̄i,j

∣∣∣∣∣∣ > ε

2

 6 2 exp

− ε2n2

8κn

(
2 +

3‖W‖L1

2

)
 .

By the same argument on U−, we have

P

∣∣∣∣∣∣ 1

n2

∑
i∈S,j∈T

κ
(n)
i ξ̄i,j

∣∣∣∣∣∣ > ε

 6 4 exp

− ε2n2

8κn

(
2 +

3‖W‖L1

2

)
 .

Writing wnκ
2
n = un

n
log(n) with un −−−→

n→∞
0 (recall (2.18)), we have from 1

κn
6 wn (recall

(2.17)) that κn 6 un
n

log(n) . Hence, for ε := εn = u
1
2
n −−−→

n→∞
0, a union bound on S, T ⊆ [n]

gives:

P

 max
S,T⊆[n]

∣∣∣∣∣∣ 1

n2

∑
i∈S,j∈T

κ
(n)
i ξ̄i,j

∣∣∣∣∣∣ > εn

 6 4n+1 exp

− n log(n)

8
(

2 +
3‖W‖L1

2

)
 .

Borel-Cantelli Lemma gives the convergence (C.7).

Proposition C3. With the previous definitions, assuming that (2.19) holds, we have

d2

(
H(n)

1 ,H(n)
2

)
−−−→
n→∞

0. (C.10)
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Proof of Proposition C3. For the norm (C.2), we have

∥∥∥WH(n)
1 −WH

(n)
2

∥∥∥
∞→1

= sup
‖f‖∞,‖g‖∞ 6 1

∣∣∣∣∣
∫

[0,1]2

(
WH

(n)
1 (x, y)−WH

(n)
2 (x, y)

)
f(x)g(y)dxdy

∣∣∣∣∣ ,
6

n∑
k,l=1

∫
Ik×Il

∣∣∣WH(n)
1 (x, y)−WH

(n)
2 (x, y)

∣∣∣dxdy 6 δn(x) −−−→
n→∞

0.

Hence, we obtain from (C.4) and (C.5) the required convergence (C.10).

Proposition C4. Under (2.40), we have

d2

(
H(n)

2 ,W
)
−−−→
n→∞

0. (C.11)

Proof of Proposition C4. Note that by (C.2), we have that ‖W‖∞→1 6 ‖W‖1, so that,
by (C.4), the convergence w.r.t. the distance d1(·, ·) implies the convergence w.r.t. the
distance d2(·, ·). This, it suffices to prove that

d1

(
H(n)

2 ,W
)
−−−→
n→∞

0. (C.12)

But this is exactly equivalent to (2.40).
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