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Abstract1

The advent of high throughput sequencing and genotyping tech-2

nologies enables the comparison of patterns of polymorphisms at a3

very large number of markers. While the characterization of genetic4

structure from individual sequencing data remains expensive for many5

non-model species, it has been shown that sequencing pools of indi-6

vidual DNAs (Pool-seq) represents an attractive and cost-effective al-7

ternative. However, analyzing sequence read counts from a DNA pool8

instead of individual genotypes raises statistical challenges in deriving9

correct estimates of genetic differentiation. In this article, we pro-10

vide a method-of-moments estimator of FST for Pool-seq data, based11

on an analysis-of-variance framework. We show, by means of simula-12

tions, that this new estimator is unbiased, and outperforms previously13

proposed estimators. We evaluate the robustness of our estimator to14

model misspecification, such as sequencing errors and uneven contri-15

butions of individual DNAs to the pools. Finally, by reanalyzing pub-16

lished Pool-seq data of different ecotypes of the prickly sculpin Cottus17

asper, we show how the use of an unbiased FST estimator may ques-18

tion the interpretation of population structure inferred from previous19

analyses.20
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INTRODUCTION21

It has long been recognized that the subdivision of species into subpopu-22

lations, social groups and families fosters genetic differentiation (Wahlund23

1928; Wright 1931). Characterizing genetic differentiation as a means to infer24

unknown population structure is therefore fundamental to population genet-25

ics, and finds applications in multiple domains, including conservation biol-26

ogy, invasion biology, association mapping and forensics, among many others.27

In the late 1940s and early 1950s, Malécot (1948) and Wright (1951) intro-28

duced F -statistics to partition genetic variation within and between groups29

of individuals (Holsinger and Weir 2009; Bhatia et al. 2013). Since then, the30

estimation of F -statistics has become standard practice (see, e.g., Weir 1996;31

Weir and Hill 2002; Weir 2012), and the most commonly used estimators of32

FST have been developed in an analysis-of-variance framework (Cockerham33

1969, 1973; Weir and Cockerham 1984), which can be recast in terms of prob-34

abilities of identity of pairs of homologous genes (Cockerham and Weir 1987;35

Rousset 2007; Weir and Goudet 2017).36

Assuming that molecular markers are neutral, estimates of FST are typ-37

ically used to quantify genetic structure in natural populations, which is38

then interpreted as the result of demographic history (Holsinger and Weir39

2009): large FST values are expected for small populations among which40

dispersal is limited (Wright 1951), or between populations that have long41

diverged in isolation from each other (Reynolds et al. 1983); when dispersal42

is spatially restricted, a positive relationship between FST and the geograph-43

ical distance for pairs of populations generally holds (Slatkin 1993; Rousset44

1997). It has also been proposed to characterize the heterogeneity of FST45
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estimates across markers for identifying loci that are targeted by selection46

(Cavalli-Sforza 1966; Lewontin and Krakauer 1973; Beaumont and Nichols47

1996; Vitalis et al. 2001; Akey et al. 2002; Beaumont 2005; Weir et al. 2005;48

Lotterhos and Whitlock 2014, 2015; Whitlock and Lotterhos 2015).49

Next-generation sequencing (NGS) technologies provide unprecedented50

amounts of polymorphism data in both model and non-model species (Elle-51

gren 2014). Although the sequencing strategy initially involved individually52

tagged samples in humans (The International HapMap Consortium 2005),53

whole-genome sequencing of pools of individuals (Pool-seq) is being increas-54

ingly used for population genomic studies (Schlötterer et al. 2014). Because55

it consists in sequencing libraries of pooled DNA samples and does not re-56

quire individual tagging of sequences, Pool-seq provides genome-wide poly-57

morphism data at considerably lower cost than sequencing of individuals58

(Schlötterer et al. 2014). However, non-equimolar amounts of DNA from all59

individuals in a pool and stochastic variation in the amplification efficiency60

of individual DNAs have raised concerns with respect to the accuracy of the61

so-obtained allele frequency estimates, particularly at low sequencing depth62

and with small pool sizes (Cutler and Jensen 2010; Ellegren 2014; Anderson63

et al. 2014). Nonetheless, it has been shown that, at equal sequencing effort,64

Pool-seq provides similar, if not more accurate, allele frequency estimates65

than individual-based analyses (Futschik and Schlötterer 2010; Gautier et al.66

2013). The problem is different for diversity and differentiation parameters,67

which depend on second moments of allele frequencies or, equivalently, on68

pairwise measures of genetic identity: with Pool-seq data, it is indeed im-69

possible to distinguish pairs of reads that are identical because they were70
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sequenced from a single gene, from pairs of reads that are identical because71

they were sequenced from two distinct genes that are identical in state (IIS)72

(Ferretti et al. 2013).73

Appropriate estimators of diversity and differentiation parameters must74

therefore be sought, to account for both the sampling of individual genes75

from the pool and the sampling of reads from these genes. There has been76

several attempts to define estimators for the parameter FST for Pool-seq data77

(Kofler et al. 2011; Ferretti et al. 2013), from ratios of heterozygosities (or78

from probabilities of genetic identity between pairs of reads) within and be-79

tween pools. In the following, we will argue that these estimators are biased80

(i.e., they do not converge towards the expected value of the parameter),81

and that some of them have undesired statistical properties (i.e., the bias82

depends upon sample size and coverage). Here, following Cockerham (1969),83

Cockerham (1973), Weir and Cockerham (1984), Weir (1996), Weir and Hill84

(2002) and Rousset (2007), we define a method-of-moments estimator of the85

parameter FST using an analysis-of-variance framework. We then evaluate86

the accuracy and the precision of this estimator, based on the analysis of sim-87

ulated datasets, and compare it to estimates defined in the software package88

PoPoolation2 (Kofler et al. 2011), and in Ferretti et al. (2013). Furthermore,89

we test the robustness of our estimators to model misspecifications (including90

unequal contributions of individuals in pools, and sequencing errors). Finally,91

we reanalyze the prickly sculpin (Cottus asper) Pool-seq data (published by92

Dennenmoser et al. 2017), and show how the use of biased FST estimators in93

previous analyses may challenge the interpretation of population structure.94

Note that throughout this article, we use the term “gene” to designate a95
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segregating genetic unit (in the sense of the “Mendelian gene” from Orgogozo96

et al. 2016). We further use the term“read” in a narrow sense, as a sequenced97

copy of a gene. For the sake of simplicity, we will use the term “Ind-seq” to98

refer to analyses based on individual data, for which we further assume that99

individual genotypes are called without error.100
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MODEL101

F -statistics may be described as intra-class correlations for the probability of102

identity in state (IIS) of pairs of genes (Cockerham and Weir 1987; Rousset103

1996, 2007), and FST is best defined as:104

FST ≡
Q1 −Q2

1−Q2

(1)

where Q1 is the IIS probability for genes sampled within subpopulations, and105

Q2 is the IIS probability for genes sampled between subpopulations. In the106

following, we develop an estimator of FST for Pool-seq data, by decomposing107

the total variance of read frequencies in an analysis-of-variance framework.108

A complete derivation of the model is provided in the Supplemental File S1.109

For the sake of clarity, the notation used throughout this article is given in110

Table 1. We first derive our model for a single locus, and eventually provide111

a multilocus estimator of FST. Consider a sample of nd subpopulations, each112

of which is made of ni genes (i = 1, . . . , nd) sequenced in pools (hence ni is113

the haploid sample size of the ith pool). We define cij as the number of reads114

sequenced from gene j (j = 1, . . . , ni) in subpopulation i at the locus consid-115

ered. Note that cij is a latent variable, that cannot be directly observed from116

the data. Let Xijr:k be an indicator variable for read r (r = 1, . . . , cij) from117

gene j in subpopulation i, such that Xijr:k = 1 if the rth read from the jth118

gene in the ith deme is of type k, and Xijr:k = 0 otherwise. In the following,119

we use standard dot notations for sample averages, i.e.: Xij·:k ≡
∑

rXijr:k/cij,120

Xi··:k ≡
∑

j

∑
rXijr:k/

∑
j cij and X···:k ≡

∑
i

∑
j

∑
rXijr:k/

∑
i

∑
j cij. The121

analysis of variance is based on the computation of sums of squares, as fol-122

8
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lows:123

nd∑
i

ni∑
j

cij∑
r

(Xijr:k −X···:k)2 =

nd∑
i

ni∑
j

cij∑
r

(Xijr:k −Xij·:k)2

+

nd∑
i

ni∑
j

cij∑
r

(Xij·:k −Xi··:k)2

+

nd∑
i

ni∑
j

cij∑
r

(Xi··:k −X···:k)2

≡ SSR:k + SSI:k + SSP:k (2)

As is shown in the Supplemental File S1, the expected sums of squares depend124

on the expectation of the allele frequency πk over all replicate populations125

sharing the same evolutionary history, as well as on the IIS probability Q1:k126

that two genes in the same pool are both of type k, and the IIS probability127

Q2:k that two genes from different pools are both of type k. Taking expecta-128

tions (see the detailed computations in the Supplemental File S1), one has:129

E(SSR:k) = 0 (3)

for reads within individual genes, since we assume that there is no sequencing130

error, i.e. all the reads sequenced from a single gene are identical and Xijr:k =131

Xij·:k for all r. For reads between genes within pools, we get:132

E(SSI:k) = (C1 −D2) (πk −Q1:k) (4)

where C1 ≡
∑

i

∑
j cij =

∑
iC1i is the total number of reads in the full sample133

(total coverage), C1i is the coverage of the ith pool andD2 ≡
∑

i (C1i + ni − 1) /ni.134

D2 arises from the assumption that the distribution of the read counts cij135

is multinomial (i.e., that all genes contribute equally to the pool of reads;136

9
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see Equation A15 in Supplemental File S1). For reads between genes from137

different pools, we have:138

E(SSP:k) =

(
C1 −

C2

C1

)
(Q1:k −Q2:k) + (D2 −D?

2) (πk −Q1:k) (5)

where C2 ≡
∑

iC
2
1i and D?

2 ≡ [
∑

iC1i (C1i + ni − 1) /ni] /C1 (see Equa-139

tion A16 in Supplemental File S1). Rearranging Equations 4–5, and summing140

over alleles, we get:141

Q1 −Q2 =
(C1 −D2)E(SSP )− (D2 −D?

2)E(SSI)

(C1 −D2) (C1 − C2/C1)
(6)

and:142

1−Q2 =
(C1 −D2)E(SSP ) + (nc − 1) (D2 −D?

2)E(SSI)

(C1 −D2) (C1 − C2/C1)
(7)

where nc ≡ (C1 − C2/C1) / (D2 −D?
2). Let MSI ≡ SSI/ (C1 −D2) and143

MSP ≡ SSP/ (D2 −D?
2). Then, using the definition of FST from Equation 1,144

we have:145

FST ≡
Q1 −Q2

1−Q2

=
E(MSP )− E(MSI)

E(MSP ) + (nc − 1)E(MSI)
(8)

which yields the method-of-moments estimator:146

F̂ pool
ST =

MSP −MSI

MSP + (nc − 1)MSI
(9)

where147

MSI =
1

C1 −D2

∑
k

nd∑
i

C1iπ̂i:k (1− π̂i:k) (10)

10
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and:148

MSP =
1

D2 −D?
2

∑
k

nd∑
i

C1i (π̂i:k − π̂k)2 (11)

(see Equations A25 and A26 in Supplemental File S1). In Equations 10149

and 11, π̂i:k ≡ Xi··:k is the average frequency of reads of type k within the ith150

pool, and π̂k ≡ X···:k is the average frequency of reads of type k in the full sam-151

ple. Note that from the definition ofX···:k, π̂k ≡
∑

i

∑
j

∑
rXijr:k/

∑
i

∑
j cij =152 ∑

iC1iπ̂i:k/
∑

iC1i is the weighted average of the sample frequencies with153

weights equal to the pool coverage. This is equivalent to the weighted154

analysis-of-variance in Cockerham (1973) (see also Weir and Cockerham 1984;155

Weir 1996; Weir and Hill 2002; Rousset 2007; Weir and Goudet 2017). Fi-156

nally, the full expression of F̂ pool
ST in terms of sample frequencies reads:157

F̂ pool
ST =

∑
k

[
(C1 −D2)

∑nd

i C1i (π̂i:k − π̂k)2 − (D2 −D?
2)
∑nd

i C1iπ̂i:k (1− π̂i:k)
]∑

k

[
(C1 −D2)

∑nd

i C1i (π̂i:k − π̂k)2 + (nc − 1) (D2 −D?
2)
∑nd

i C1iπ̂i:k (1− π̂i:k)
]
(12)

If we take the limit case where each gene is sequenced exactly once, we158

recover the Ind-seq model: assuming cij = 1 for all (i, j), then C1 =
∑nd

i ni,159

C2 =
∑nd

i n2
i , D2 = nd andD?

2 = 1. Therefore, nc = (C1 − C2/C1) / (nd − 1),160

and Equation 9 reduces exactly to the estimator of FST for haploids: see Weir161

(1996), p. 182, and Rousset (2007), p. 977.162

As in Reynolds et al. (1983), Weir and Cockerham (1984), Weir (1996)163

and Rousset (2007), a multilocus estimate is derived as the sum of locus164

specific numerators over the sum of locus-specific denominators:165

F̂ST =

∑
lMSPl −MSIl∑

lMSPl + (nc − 1)MSIl
(13)

11
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where MSI and MSP are subscripted with l to denote the lth locus. For166

Ind-seq data, Bhatia et al. (2013) refer to this multilocus estimate as a “ratio167

of averages”by opposition to an“average of ratios”, which would consist in av-168

eraging single-locus FST over loci. This approach is justified in the Appendix169

of Weir and Cockerham (1984) and in Bhatia et al. (2013), who analyzed170

both estimates by means of coalescent simulations. Note that Equation 13171

assumes that the pool size is equal across loci. Also note that the construc-172

tion of the estimator in Equation 13 is different from Weir and Cockerham’s173

(1984). These authors defined their multilocus estimator as a ratio of sums174

of components of variance (a, b and c in their notation) over loci, which give175

the same weight to all loci, whatever the number of sampled genes at each lo-176

cus. Equation 13 follows Genepop’s rationale (Rousset 2008) instead, which177

gives instead more weight to loci that are more intensively covered.178

12
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MATERIALS AND METHODS179

Simulation study180

Generating individual genotypes: we first generated individual genotypes us-181

ing ms (Hudson 2002), assuming an island model of population structure182

(Wright 1931). For each simulated scenario, we considered 8 demes, each183

made of N = 5, 000 haploid individuals. The migration rate (m) was fixed184

to achieve the desired value of FST (0.05 or 0.2), using Equation 6 in Rousset185

(1996) leading, e.g., toM ≡ 2Nm = 16.569 for FST = 0.05 andM = 3.489 for186

FST = 0.20. The mutation rate was set at µ = 10−6, giving θ ≡ 2Nµ = 0.01.187

We considered either fixed, or variable sample sizes across demes. In the lat-188

ter case, the haploid sample size n was drawn independently for each deme189

from a Gaussian distribution with mean 100 and standard deviation 30; this190

number was rounded up to the nearest integer, with min. 20 and max. 300191

haploids per deme. We generated a very large number of sequences for each192

scenario, and sampled independent single nucleotide polymorphisms (SNPs)193

from sequences with a single segregating site. Each scenario was replicated194

50 times (500 times for Figures 3 and S2).195

Pool sequencing: for each ms simulated dataset, we generated Pool-seq data196

by drawing reads from a binomial distribution (Gautier et al. 2013). More197

precisely, we assume that for each SNP, the number ri:k of reads of allelic198

type k in pool i follows:199

ri:k ∼ Bin

(
yi:k
ni

, δi

)
(14)

13
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where yi:k is the number of genes of type k in the ith pool, ni is the total200

number of genes in pool i (haploid pool size), and δi is the simulated total201

coverage for pool i. In the following, we either consider a fixed coverage,202

with δi = ∆ for all pools and loci, or a varying coverage across pools and203

loci, with δi ∼ Pois(∆).204

Sequencing error: we simulated sequencing errors occurring at rate µe =205

0.001, which is typical of Illumina sequencers (Glenn 2011; Ross et al. 2013).206

We assumed that each sequencing error modifies the allelic type of a read to207

one of three other possible states with equal probability (there are therefore208

four allelic types in total, corresponding to four nucleotides). Note that209

only biallelic markers are retained in the final datasets. Also note that,210

since we initiated this procedure with polymorphic markers only, we neglect211

sequencing errors that would create spurious SNPs from monomorphic sites.212

However, such SNPs should be rare in real datasets, since markers with a213

low minimum read count (MRC) are generally filtered out.214

Experimental error: non-equimolar amounts of DNA from all individuals in215

a pool and stochastic variation in the amplification efficiency of individual216

DNAs are sources of experimental errors in pool sequencing. To simulate217

experimental errors, we used the model derived by Gautier et al. (2013). In218

this model, it is assumed that the contribution ηij = cij/C1i of each gene j219

to the total coverage of the ith pool (C1i) follows a Dirichlet distribution:220

{ηij}1≤j≤ni
∼ Dir

(
ρ

ni

)
(15)

14
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where the parameter ρ controls the dispersion of gene contributions around221

the value ηij = 1/ni, expected if all genes contributed equally to the pool of222

reads. For convenience, we define the experimental error ε as the coefficient223

of variation of ηij, i.e. ε ≡
√
V(ηij)/E(ηij) =

√
(ni − 1)/(ρ+ 1) (see Gautier224

et al. 2013). When ε tends toward 0 (or equivalently when ρ tends to infinity),225

all individuals contribute equally to the pool, and there is no experimental226

error. We tested the robustness of our estimates to values of ε comprised227

between 0.05 and 0.5. The case ε = 0.5 could correspond, for example, to a228

situation where (for ni = 10) 5 individuals contribute 2.8× more reads than229

the other 5 individuals.230

Other estimators231

For the sake of clarity, a summary of the notation of the FST estimators used232

throughout this article is given in Table 2.233

PP2d : this estimator of FST is implemented by default in the software234

package PoPoolation2 (Kofler et al. 2011). It is based on a definition of235

the parameter FST as the overall reduction in average heterozygosity relative236

to the total combined population (see, e.g., Nei and Chesser 1983):237

PP2d ≡
ĤT − ĤS

ĤT

(16)

where ĤS is the average heterozygosity within subpopulations, and ĤT is the238

average heterozygosity in the total population (obtained by pooling together239

all subpopulation to form a single virtual unit). In PoPoolation2, ĤS is240

15



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Hivert, V., Leblois, R., Petit, E., Gautier, M., Vitalis, R. (2018). Measuring Genetic

Differentiation from Pool-seq Data. Genetics, 210 (1), 315-330. , DOI : 10.1534/genetics.118.300900

the unweighted average of within-subpopulation heterozygosities:241

ĤS =
1

nd

nd∑
i

(
ni

ni − 1

)(
C1i

C1i − 1

)(
1−

∑
k

π̂2
i:k

)
(17)

(using the notation from Table 1). Note that in PoPoolation2, PP2d is242

restricted to the case of two subpopulations only (nd = 2). The two ratios in243

the right-hand side of Equation 17 are presumably borrowed from Nei (1978)244

to provide an unbiased estimate, although we found no formal justification245

for the expression in Equation 17 for Pool-seq data. The total heterozygosity246

is computed as (using the notation from Table 1):247

ĤT =

(
mini(ni)

mini(ni)− 1

)(
mini(C1i)

mini(C1i)− 1

)(
1−

∑
k

π̂2
k

)
(18)

PP2a : this is the alternative estimator of FST provided in the software248

package PoPoolation2. It is based on an interpretation by Kofler et al.249

(2011) of Karlsson et al.’s (2007) estimator of FST, as:250

PP2a ≡
Q̂r

1 − Q̂r
2

1− Q̂r
2

(19)

where Q̂r
1 and Q̂r

2 are the frequencies of identical pairs of reads within and251

between pools, respectively, computed by simple counting of IIS pairs. These252

are estimates of Qr
1, the IIS probability for two reads in the same pool253

(whether they are sequenced from the same gene or not) and Qr
2, the IIS254

probability for two reads in different pools. Note that the IIS probabiliy Qr
1255

is different from Q1 in Equation 1, which, from our definition, represents256

the IIS probability between distinct genes in the same pool. This approach257

therefore confounds pairs of reads within pools that are identical because258
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they were sequenced from a single gene, from pairs of reads that are identical259

because they were sequenced from distinct, yet IIS genes.260

FRP13 : this estimator of FST was developed by Ferretti et al. (2013) (see261

their Equations 3 and 10–13). Ferretti et al. (2013) use the same definition of262

FST as in Equation 16 above, although they estimate heterozygosities within263

and between pools as “average pairwise nucleotide diversities”, which, from264

their definitions, are formally equivalent to IIS probabilities. In particular,265

they estimate the average heterozygosity within pools as (using the notation266

from Table 1):267

ĤS =
1

nd

nd∑
i

(
ni

ni − 1

)(
1− Q̂r

1i

)
(20)

and the total heterozygosity among the nd populations as:268

ĤT =
1

n2
d

[
nd∑
i

(
ni

ni − 1

)(
1− Q̂r

1i

)
+

nd∑
i6=i′

(
1− Q̂r

2ii′

)]
(21)

Analyses of Ind-seq data:269

For the comparison of Ind-seq and Pool-seq datasets, we computed FST on270

subsamples of 5,000 loci. These subsamples were defined so that only those271

loci that were polymorphic in all coverage conditions were retained, and the272

same loci were used for the analysis of the corresponding Ind-seq data. For273

the latter, we used either the Nei and Chesser’s (1983) estimator based on a274

ratio of heterozygosity (see Equation 16 above), hereafter denoted by NC83, or275

the analysis-of-variance estimator developed by Weir and Cockerham (1984),276

hereafter denoted by WC84.277

All the estimators were computed using custom functions in the R soft-278
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ware environment for statistical computing, version 3.3.1 (R Core Team279

2017). All these functions were carefully checked against available software280

packages, to ensure that they provided strictly identical estimates.281

Application example: Cottus asper282

Dennenmoser et al. (2017) investigated the genomic basis of adaption to283

osmotic conditions in the prickly sculpin (Cottus asper), an abundant eury-284

haline fish in northwestern North America. To do so, they sequenced the285

whole-genome of pools of individuals from two estuarine populations (CR,286

Capilano River Estuary; FE, Fraser River Estuary) and two freshwater pop-287

ulations (PI, Pitt Lake and HZ, Hatzic Lake) in southern British Columbia288

(Canada). We downloaded the four corresponding BAM files from the Dryad289

Digital Repository (doi: 10.5061/dryad.2qg01) and combined them into a sin-290

gle mpileup file using SAMtools version 0.1.19 (Li et al. 2009) with default291

options, except the maximum depth per BAM that was set to 5,000 reads.292

The resulting file was further processed using a custom awk script, to call293

SNPs and compute read counts, after discarding bases with a Base Align-294

ment Quality (BAQ) score lower than 25. A position was then considered295

as a SNP if: (i) only two different nucleotides with a read count > 1 were296

observed (nucleotides with ≤ 1 read being considered as a sequencing error);297

(ii) the coverage was comprised between 10 and 300 in each of the four align-298

ment files; (iii) the minor allele frequency, as computed from read counts,299

was ≥ 0.01 in the four populations. The final data set consisted of 608,879300

SNPs.301

Our aim here was to compare the population structure inferred from pair-302

wise estimates of FST, using the estimator F̂ pool
ST on the one hand (Equa-303
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tion 12), and PP2d on the other hand. Then, to conclude on which of the304

two estimators performs better, we compared the population structure in-305

ferred from F̂ pool
ST and PP2d to that inferred from the Bayesian hierarchical306

model implemented in the software package BayPass (Gautier 2015). Bay-307

Pass allows the robust estimation of the scaled covariance matrix of allele308

frequencies across populations for Pool-seq data, which is known to be infor-309

mative about population history (Pickrell and Pritchard 2012). The elements310

of the estimated matrix can be interpreted as pairwise and population-specific311

estimates of differentiation (Coop et al. 2010), and therefore provide a com-312

prehensive description of population structure that makes full use of the313

available data.314

Data availability315

The authors state that all data necessary for confirming the conclusions316

presented in this article are fully represented within the article, figures,317

and tables. Supplemental Tables S1–S3 and Figures S1–S4 are available at318

FigShare, along with a complete derivation of the model in the Supplemental319

File S1 at FigShare.320
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RESULTS321

Comparing Ind-seq and Pool-seq estimates of FST322

Single-locus estimates F̂ pool
ST are highly correlated with the classical estimates323

WC84 (Weir and Cockerham 1984) computed on the individual data that were324

used to generate the pools in our simulations (see Figure 1). The variance of325

F̂ pool
ST across independent replicates decreases as the coverage increases. The326

correlation between F̂ pool
ST and WC84 is stronger for multilocus estimates (see327

Figure S1A).328

Comparing Pool-seq estimators of FST329

We found that our estimator F̂ pool
ST has extremely low bias (< 0.5% over330

all scenarios tested: see Tables 3 and S1-S3). In other words, the average331

estimates across multiple loci and replicates closely equal the expected value332

of the FST parameter, as given by Equation 6 in Rousset (1996), which is333

based on the computation of IIS probabilities in an island model of population334

structure. In all the situations examined, the bias does neither depend on335

the sample size (i.e., the size of each pool) nor on the coverage (see Figure 2).336

Only the variance of the estimator across independent replicates decreases as337

the sample size increases and/or as the coverage increases. At high coverage,338

the mean and root mean squared error (RMSE) of F̂ pool
ST over independent339

replicates are virtually indistinguishable from that of the WC84 estimator340

(see Table S1).341

Figure 3 shows the RMSE of FST estimates for a wide range of pool sizes342

and coverages. The RMSE decreases as the pool size and/or the coverage343

increases. The FST estimates are more precise and accurate when differen-344
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tiation is low. Figure 3 provides some clues to evaluate the pool size and345

the coverage that is necessary to achieve the same RMSE than for Ind-seq346

data. Consider, for example, the case of samples of n = 20 haploids. For347

FST ≤ 0.05 (in the conditions of our simulations), the RMSE of FST estimates348

based on Pool-seq data tends to the RMSE of FST estimates based on Ind-seq349

data either by sequencing pools of ca. 200 haploids at 20X, or by sequencing350

pools of 20 haploids at ca. 200X. However, the same precision and accuracy351

are achieved by sequencing ca. 50 haploids at ca. 50X.352

Conversely, we found that PP2d (the default estimator of FST imple-353

mented in the software package PoPoolation2) is biased when compared354

to the expected value of the parameter. We observed that the bias depends355

on both the sample size, and the coverage (see Figure 2). We note that, as the356

coverage and the sample size increase, PP2d converges to the estimator NC83357

(Nei and Chesser 1983) computed from individual data (see Figure S1B).358

This argument was used by Kofler et al. (2011) to validate the approach,359

even though the estimates PP2d depart from the true value of the parameter360

(Figure S1B–C).361

The second of the two estimators of FST implemented in PoPoolation2,362

that we refer to as PP2a, is also biased (see Figure 2). We note that the bias363

decreases as the sample size increases. However, the bias does not depend364

on the coverage (only the variance over independent replicates does). The365

estimator developed by Ferretti et al. (2013), that we refer to as FRP13, is366

also biased (see Figure 2). However, the bias does neither depend on the pool367

size, nor on the coverage (only the variance over independent replicates does).368

FRP13 converges to the estimator NC83, computed from individual data (see369
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Figure 2). At high coverage, the mean and RMSE over independent replicates370

are virtually indistinguishable from that of the NC83 estimator.371

Last, we stress out that our estimator F̂ pool
ST provides estimates for multiple372

populations, and is therefore not restricted to pairwise analyses, contrary to373

PoPoolation2’s estimators. We show that, even at low sample size and low374

coverage, Pool-seq estimates of differentiation are virtually indistinguishable375

from classical estimates for Ind-seq data (see Table 3).376

Robustness to unbalanced pool sizes and variable sequencing cov-377

erage378

We evaluated the accuracy and the precision of the estimator F̂ pool
ST when sam-379

ple sizes differ across pools, and when the coverage varies across pools and loci380

(see Figure 4). We found that, at low coverage, unequal sampling or variable381

coverage causes a negligible departure from the median of WC84 estimates382

computed on individual data, which vanishes as the coverage increases. At383

100X coverage, the distribution of F̂ pool
ST estimates is almost indistinguishable384

from that of WC84 (see Figure 4 and Tables S2–S3).385

Robustness to sequencing and experimental errors386

Figure 5 shows that sequencing errors cause a negligible negative bias for387

F̂ pool
ST estimates. Filtering (using a minimum read count of 4) improves es-388

timation slightly, but only at high coverage (Figure 6B). It must be noted,389

though, that filtering increases the bias in the absence of sequencing error,390

especially at low coverage (Figure 6A). With experimental error, i.e., when391

individuals do not contribute evenly to the final set of reads, we observed a392

positive bias for F̂ pool
ST estimates (Figure 5). We note that the bias decreases393
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as the size of the pools increases. Figure S2 shows the RMSE of FST esti-394

mates for a wider range of pool sizes, coverage and experimental error rate395

(ε). For ε ≥ 0.25, increasing the coverage cannot improve the quality of the396

inference, if the pool size is too small. When Pool-seq experiments are prone397

to large experimental error rates, increasing the size of pools is the only way398

to improve the estimation of FST. Filtering (using a minimum read count of399

4) does not improve estimation (Figure 6C).400

Application example401

The reanalysis of the prickly sculpin data revealed larger pairwise estimates of402

multilocus FST using PP2d estimator, as compared to F̂ pool
ST (see Figure 7A).403

Furthermore, we found that F̂ pool
ST estimates are smaller for within-ecotype404

pairwise comparisons as compared to between-ecotype comparisons. There-405

fore, the inferred relationships between samples based on pairwise F̂ pool
ST esti-406

mates show a clear-cut structure, separating the two estuarine samples from407

the freshwater ones (see Figure 7C). We did not recover the same structure408

using PP2d estimates (see Figure 7B). Supportingly, the scaled covariance409

matrix of allele frequencies across samples is consistent with the structure410

inferred from F̂ pool
ST estimates (see Figure 7D).411

23



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Hivert, V., Leblois, R., Petit, E., Gautier, M., Vitalis, R. (2018). Measuring Genetic

Differentiation from Pool-seq Data. Genetics, 210 (1), 315-330. , DOI : 10.1534/genetics.118.300900

DISCUSSION412

Whole-genome sequencing of pools of individuals is increasingly popular for413

population genomic research on both model and non-model species (Schlöt-414

terer et al. 2014). The development of dedicated software packages (reviewed415

in Schlötterer et al. 2014) has undoubtedly something to do with the breadth416

of research questions that have been tackled using pool-sequencing. Yet, the417

analysis of population structure from Pool-seq data is complicated by the418

double sampling process of genes from the pool and sequence reads from419

those genes (Ferretti et al. 2013).420

The naive approach that consists in computing FST from read counts, as421

if they were allele counts (e.g., as in Chen et al. 2016), ignores the extra422

variance brought by the random sampling of reads from the gene pool dur-423

ing Pool-seq experiments. Furthermore, such computation fails to consider424

the actual number of lineages in the pool (haploid pool size). Altogether,425

these limits may result in severely biased estimates of differentiation when426

the pool size is low (see Figure S3). A possible alternative is to compute FST427

from allele counts imputed from read counts using a maximum-likelihood428

approach conditional on the haploid size of the pools (e.g., as in Smadja429

et al. 2012; Leblois et al. 2018), or from allele frequencies estimated using a430

model-based method that accounts for the sampling effects and the sequenc-431

ing error probabilities inherent to pooled NGS experiments (see Fariello et al.432

2017). However, these latter approaches may only be accurate in situations433

where the coverage is much larger than pool size, allowing to reduce sam-434

pling variance of reads (see Figure S3). Here, we therefore developed a new435

estimator of the parameter FST for Pool-seq data, in an analysis-of-variance436
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framework (Cockerham 1969, 1973). The accuracy of this estimator is barely437

distinguishable from that of the Weir and Cockerham’s (1984) estimator for438

individual data. Furthermore, it does neither depend on the pool size nor on439

the coverage, and is robust to unequal pool sizes and varying coverage across440

demes and loci.441

In our analysis, the frequency of reads within pools is a weighted av-442

erage of the sample frequencies, with weights equal to the pool coverage.443

Therefore, our approach follows Cockerham’s (1973) one, which he referred444

to as a weighted analysis-of-variance (see also Weir and Cockerham 1984;445

Weir 1996; Weir and Hill 2002; Weir and Goudet 2017). With unequal pool446

sizes, weighted and unweighted analyses differ. As discussed recently in Weir447

and Goudet (2017), the unweighted approach seems appropriate when the448

between component exceeds the within component, i.e. when FST is large449

(Tukey 1957). It turns out that optimal weighting depends upon the param-450

eter to be estimated (Cockerham 1973) and is only efficient at lower levels of451

differentiation (Robertson 1962). In a likelihood analysis of the island model,452

Rousset (2007) derived asymptotically efficient weights that are proportional453

to n2
i for the sum of squares of different samples (see also Robertson 1962). To454

the best of our knowledge, such optimal weighting has never been considered455

in the literature.456

Analysis of variance and probabilities of identity457

In the analysis-of-variance framework, FST is defined in Equation 1 as an458

intraclass correlation for the probability of identity in state (Cockerham and459

Weir 1987; Rousset 1996). Extensive statistical literature is available on460

estimators of intraclass correlations. Beside analysis-of-variance estimators,461
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introduced in population genetics by Cockerham (1969, 1973), estimators462

based on the computation of probabilities of identical response within and463

between groups have been proposed (see, e.g., Fleiss 1971; Fleiss and Cuzick464

1979; Mak 1988; Ridout et al. 1999; Wu et al. 2012), which were originally465

referred to as kappa-type statistics (Fleiss 1971; Landis and Koch 1977).466

These estimators have later been endorsed in population genetics, where the467

“probability of identical response” was then interpreted as the frequency with468

which the genes are alike (Cockerham 1973; Cockerham and Weir 1987; Weir469

1996; Rousset 2007; Weir and Goudet 2017).470

This suggests that, with Pool-seq data, another strategy could consist in471

computing FST from IIS probabilities between (unobserved) pairs of genes,472

which requires that unbiased estimates of such quantities are derived from473

read count data. We have done so in the second section of the Supplemental474

File S1, and we provide alternative estimators of FST for Pool-seq data (see475

Equations A44 and A48 in Supplemental File S1). These estimators (denoted476

by F̂ pool−PID
ST and F̃ pool−PID

ST ) have exactly the same form as the analysis-of-477

variance estimator if the pools have all the same size and if the number of478

reads per pool is constant (Equation A33). This echoes the derivations by479

Rousset (2007) for Ind-seq data, who showed that the analysis-of-variance480

approach (Weir and Cockerham 1984) and the simple strategy of estimat-481

ing IIS probabilities by counting identical pairs of genes provide identical482

estimates when sample sizes are equal (see Equation A28 and also Cock-483

erham and Weir 1987; Weir 1996; Karlsson et al. 2007). With unbalanced484

samples, we found that analysis-of-variance estimates have better precision485

and accuracy than IIS-based estimates, particularly for low levels of differ-486
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entiation (see Figure S4). Interestingly, we found that IIS-based estimates487

of FST for Pool-seq data have generally lower bias and variance if the over-488

all estimates of IIS probabilities within and between pools are computed as489

unweighted averages of population-specific or pairwise estimates (see Equa-490

tions A39 and A43), as compared to weighted averages (Equations A46–A47).491

Equation A28 further shows that our estimator may be rewritten as a func-492

tion close to
(
Q̂1 − Q̂2

)
/
(

1− Q̂2

)
, except that it also depends on the sum493 ∑

i

(
Q̂1i − Q̂1

)
in both the numerator and the denominator. This suggests494

that if the Q1i’s differ among subpopulations, then our estimator provides an495

estimate of an average of population-specific FST (Weir and Hill 2002; Weir496

and Goudet 2017).497

It follows from the derivations in the Supplemental File S1 that the es-498

timator PP2a (Equation 19) is biased because the IIS probability between499

pairs of reads within a pool
(
Q̂r

1

)
is a biased estimator of the IIS probability500

between pairs of distinct genes in that pool (see Equations A34–A36 in Sup-501

plemental File S1). This is so, because the former confounds pairs of reads502

that are identical because they were sequenced from a single gene, from pairs503

of reads that are identical because they were sequenced from distinct, yet IIS504

genes.505

A more justified estimator of FST has been proposed by Ferretti et al.506

(2013), based on previous developments by Futschik and Schlötterer (2010).507

Note that, although they defined FST as a ratio of functions of heterozygosi-508

ties, they actually worked with IIS probabilities (see Equations 20 and 21).509

However, although Equation 20 is strictly identical to Equation A39 in Sup-510

plemental File S1, we note that they computed the total heterozygosity by511
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integrating over pairs of genes sampled both within and between subpopula-512

tions (compare Equation 21 with A43), which may explain the observed bias513

(see Figure 2).514

Comparison with alternative estimators515

An alternative framework to Weir and Cockerham’s (1984) analysis-of-variance516

has been developed by Masatoshi Nei and coworkers to estimate FST from517

gene diversities (Nei 1973, 1977; Nei and Chesser 1983; Nei 1986). The es-518

timator PP2d (see Equations 16–18) implemented in the software package519

PoPoolation2 (Kofler et al. 2011) follows this logic. However, it has long520

been recognized that both frameworks are fundamentally different in that the521

analysis-of-variance approach considers both statistical and genetic (or evo-522

lutionary) sampling, whereas Nei and coworkers’ approach do not (Weir and523

Cockerham 1984; Excoffier 2007; Holsinger and Weir 2009). Furthermore,524

the expectation of Nei and coworkers’ estimators depend upon the number525

of sampled populations, with a larger bias for lower numbers of sampled pop-526

ulations (Goudet 1993; Excoffier 2007; Weir and Goudet 2017). This is so,527

because the computation of the total diversity in Equations 18 and 21 includes528

the comparison of pairs of genes from the same subpopulation, whereas the529

computation of IIS probabilities between subpopulations do not (see, e.g.,530

Excoffier 2007). Therefore, we do not recommend using the estimator PP2d531

implemented in the software package PoPoolation2 (Kofler et al. 2011).532

Applications in evolutionary ecology studies533

Pool-seq is being increasingly used in many application domains (Schlöt-534

terer et al. 2014), such as conservation genetics (see, e.g., Fuentes-Pardo and535
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Ruzzente 2017), invasion biology (see, e.g., Dexter et al. 2018) and evolution-536

ary biology in a broader sense (see, e.g., Collet et al. 2016). These studies537

use a large range of methods, which aim at characterizing fine-scaled popula-538

tion structure (see, e.g., Fischer et al. 2017), reconstructing past demography539

(see, e.g., Chen et al. 2016; Leblois et al. 2018), or identifying footprints of540

natural or artificial selection (see, e.g., Chen et al. 2016; Fariello et al. 2017;541

Leblois et al. 2018).542

Here, we reanalyzed the Pool-seq data produced by Dennenmoser et al.543

(2017), who investigated the adaptive genomic divergence between freshwa-544

ter and brackish-water ecotypes of the prickly sculpin C. asper, an abundant545

euryhaline fish in northwestern North America. Measuring pairwise genetic546

differentiation between samples using F̂ pool
ST , we found a clear-cut structure547

separating the freshwater from the brackish-water ecotypes. Such genetic548

strucure supports the hypothesis that populations are locally adaptated to549

osmotic conditions in these two contrasted habitats, as discussed in Den-550

nenmoser et al. (2017). This structure, which is at odds with that inferred551

from PP2d estimates, is not only supported by the scaled covariance ma-552

trix of allele frequencies, but also by previous microsatellite-based studies,553

who showed that populations were genetically more differentiated between554

ecotypes than within ecotypes (Dennenmoser et al. 2014, 2015).555

Limits of the model and perspectives556

We have shown that the stronger source of bias for the F̂ pool
ST estimate is un-557

equal contributions of individuals in pools. This is so, because we assume in558

our model that the read counts are multinomially distributed, which supposes559

that all genes contribute equally to the pool of reads (Gautier et al. 2013),560
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i.e. that there is no variation in DNA yield across individuals and that all561

genes have equal sequencing coverage (Rode et al. 2018). Because the effect562

of unequal contribution is expected to be stronger with small pool sizes, it563

has been recommended to use pool-seq with at least 50 diploid individuals564

per pool (Lynch et al. 2014; Schlötterer et al. 2014). However, this limit may565

be overly conservative for allele frequency estimates (Rode et al. 2018), and566

we have shown here that we can achieve very good precision and accuracy567

of FST estimates with smaller pool sizes. Furthermore, because genotypic in-568

formation is lost during Pool-seq experiments, we assume in our derivations569

that pools are haploid (and therefore that FIS is nil). Analyzing non-random570

mating populations (e.g., in selfing species) is therefore problematic.571

Finally, our model, as in Weir and Cockerham (1984), formally assumes572

that all populations provide independent replicates of some evolutionary pro-573

cess (Excoffier 2007; Holsinger and Weir 2009). This may be unrealistic in574

many natural populations, which motivated Weir and Hill (2002) to derive a575

population-specific estimator of FST for Ind-seq data (see also Vitalis et al.576

2001). Even though the use of Weir and Hill’s (2002) estimator is still scarce577

in the literature (but see Weir et al. 2005; Vitalis 2012), Weir and Goudet578

(2017) recently proposed a re-interpretation of population-specific estimates579

of FST in terms of allelic matching proportions, which are strictly equivalent580

to IIS probabilities between pairs of genes. It would therefore be straight-581

forward to extend Weir and Goudet’s (2017) estimator of population-specific582

FST for the analysis of Pool-seq data, using the unbiased estimates of IIS583

probabilies provided in the Supplemental File S1.584
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Table 1 Summary of main notations

Notation Parameter definition

Xijr:k Indicator variable: Xijr:k = 1 if the rth read from
the jth individual in the ith pool is of type k, and
Xijr:k = 0 otherwise

ri:k =
∑

j

∑
rXijr:k Number of reads of type k in the ith pool

cij Number of reads sequenced from individual j in sub-
population i (unobserved individual coverage)

C1i ≡
∑

j cij Total number of reads in the ith pool (pool coverage)

C1 ≡
∑

iC1i Total number of reads in the full sample (total cov-
erage)

C2 ≡
∑

iC
2
1i Squared number of reads in the full sample

ni Total number of genes the ith pool (haploid pool
size)

yi:k (Unobserved) number of genes of type k in the ith
pool

πk ≡ E(Xijr:k) Expected frequency of reads of type k in the full
sample

π̂ij:k ≡ Xij·:k (Unobserved) average frequency of reads of type k
for individual j in the ith pool

π̂i:k ≡ Xi··:k Average frequency of reads of type k in the ith pool

π̂k ≡ X···:k Average frequency of reads of type k in the full sam-
ple

Q1 (resp. Q2) IIS probability for two genes sampled within (resp.
between) pools

Qr
1 (resp. Qr

2) IIS probability for two reads sampled within (resp.
between) pools

Q̂pool
1 (resp. Q̂pool

2 ) Unbiased estimator of the IIS probability for genes
sampled within (resp. between) populations
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Table 2 Definition of the FST estimators used in the text

Notation Definition

F̂ pool
ST Equation 12

FRP13 Ferretti et al. (2013) and Equations 16,20–21

NC83 Nei and Chesser (1983)

PP2d Kofler et al. (2011) and Equations 16–18

PP2a Kofler et al. (2011) and Equation 19

WC84 Weir and Cockerham (1984)
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Table 3 Overall FST estimates from multiple pools

Pool-seq Ind-seq

FST n Cov. F̂ pool
ST WC84

0.05 10 20× 0.050 (0.002)

0.05 10 50× 0.051 (0.002) 0.050 (0.002)

0.05 10 100× 0.050 (0.002)

0.05 100 20× 0.050 (0.001)

0.05 100 50× 0.050 (0.001) 0.051 (0.001)

0.05 100 100× 0.050 (0.001)

0.20 10 20× 0.200 (0.002)

0.20 10 50× 0.201 (0.002) 0.201 (0.002)

0.20 10 100× 0.201 (0.002)

0.20 100 20× 0.201 (0.003)

0.20 100 50× 0.202 (0.003) 0.203 (0.003)

0.20 100 100× 0.203 (0.003)

Multilocus F̂ pool
ST estimates were computed for various conditions of expected

FST, pool size (n) and coverage (Cov.) in an island model with nd = 8
subpopulations (pools). The mean (RMSE) is over 50 independent simulated
datasets, each made of 5,000 loci. For comparison, we computed multilocus
WC84 estimates from individual genotypes (Ind-seq).
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A.   FST = 0.05
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Figure 1 Single-locus estimats of FST. We compared single-locus estimates
of FST based on allele count data inferred from individual genotypes (Ind-
seq), using the WC84 estimator, to F̂ pool

ST estimates from Pool-seq data. We
simulated 5,000 SNPs using ms in an island model with nd = 8 demes. We
used two migration rates corresponding to FST = 0.05 (A) and FST = 0.20
(B). The size of each pool was fixed to 100. We show the results for differ-
ent coverages (20X, 50X and 100X). In each graph, the cross indicates the
simulated value of FST.
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Figure 2 Precision and accuracy of pairwise estimators of FST. We con-
sidered two estimators based on allele count data inferred from individual
genotypes (Ind-seq): WC84 and NC83. For pooled data, we computed the
two estimators implemented in the software package PoPoolation2, that
we refer to as PP2d and PP2a, as well as the FRP13 estimator and our es-
timator F̂ pool

ST . Each boxplot represents the distribution of multilocus FST

estimates across all pairwise comparisons in an island model with nd = 8
demes, and across 50 independent replicates of the ms simulations. We used
two migration rates, corresponding to FST = 0.05 (A–B) and FST = 0.20
(C–D). The size of each pool was either fixed to 10 (A and C) or to 100 (B
and D). For Pool-seq data, we show the results for different coverages (20X,
50X and 100X). In each graph, the dashed line indicates the simulated value
of FST and the dotted line indicates the median of the distribution of NC83

estimates.
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Figure 3 Precision and accuracy of our estimator F̂ pool
ST as a function of pool

size and coverage, for simulated FST values ranging from 0.005 to 0.2 (A–F).
Each density plot, which represents the root mean squared error (RMSE)
of the estimator F̂ pool

ST , was obtained using simple linear interpolation from
a set of 44 × 44 pairs of pool size and coverage values. For each pool size
and coverage, 500 replicates of 5,000 markers were simulated from an island
model with nd = 8 demes. Plain white isolines represent the RMSE of the
WC84 estimator computed from Ind-seq data, for various sample sizes (n =
5, 10, 20, and 50). Each isoline was fitted using a thin plate spline regression
with smoothing parameter λ = 0.005, implemented in the fields package
for R (Nychka et al. 2017).
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Figure 4 Precision and accuracy of FST estimates with varying pool size
or varying coverage. Our estimator F̂ pool

ST was calculated from Pool-seq data
over all demes and loci and compared to the estimator WC84, computed from
individual genotypes (Ind-seq). Each boxplot represents the distribution of
multilocus FST estimates across 50 independent replicates of the ms simula-
tions. We used two migration rates, corresponding to FST = 0.05 (A and C)
and FST = 0.20 (B and D). In A–B the pool size was variable across demes,
with haploid sample size n drawn independently for each deme from a Gaus-
sian distribution with mean 100 and standard deviation 30; n was rounded
up to the nearest integer, with min. 20 and max. 300 haploids per deme. In
C–D, the pool size was fixed (n = 100), and the coverage (δi) was varying
across demes and loci, with δi ∼ Pois(∆) where ∆ ∈ {20, 50, 100}. For Pool-
seq data, we show the results for different coverages (20X, 50X and 100X).
In each graph, the dashed line indicates the simulated value of FST and the
dotted line indicates the median of the distribution of WC84 estimates.
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Figure 5 Precision and accuracy of FST estimates with sequencing and
experimental errors. Our estimator F̂ pool

ST was computed from Pool-seq data
over all demes and loci without error, with sequencing error (occurring at
rate µe = 0.001), and with experimental error (ε = 0.5). Each boxplot
represents the distribution of multilocus FST estimates across 50 independent
replicates of the ms simulations. We used two migration rates, corresponding
to FST = 0.05 (A–B) or FST = 0.20 (C–D). The size of each pool was either
fixed to 10 (A and C) or to 100 (B and D). For Pool-seq data, we show
the results for different coverages (20X, 50X and 100X). In each graph, the
dashed line indicates the simulated value of FST.
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Figure 6 Precision and accuracy of FST estimates with and without filter-
ing. Our estimator F̂ pool

ST was computed from Pool-seq data over all demes
and loci without error (A), with sequencing error (B) and with experimental
error (C) (see the legend of Figure 5 for further details). For each case, we
computed FST without filtering (no MRC) and with filtering (using a min-
imum read count MRC = 4). Each boxplot represents the distribution of
multilocus FST estimates across 50 independent replicates of the ms simula-
tions. We used a migration rate corresponding to FST = 0.20, and pool size
n = 10. We show the results for different coverages (20X, 50X and 100X). In
each graph, the dashed line indicates the simulated value of FST.
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Figure 7 Reanalysis of the prickly sculpin (Cottus asper) Pool-seq data.
In (A) we compare the pairwise FST estimates PP2d, and F̂ pool

ST for all pairs of
populations from the estuarine (CR and FE) and freshwater samples (PI and
HZ). Within-ecotype comparisons are depicted as blue dots, and between-
ecotype comparisons as red triangles. In (B–C) we show UPGMA hierarchical
cluster analyses based on PP2d (B) and F̂ pool

ST (C) pairwise estimates. In (D),
we show a heatmap representation of the scaled covariance matrix among
the four C. asper populations, inferred from the Bayesian hierarchical model
implemented in the software package BayPass.


