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Abstract. The approximate joint diagonalization of a set of matrices
consists in finding a basis in which these matrices are as diagonal as pos-
sible. This problem naturally appears in several statistical learning tasks
such as blind signal separation. We consider the diagonalization criterion
studied in a seminal paper by Pham (2001), and propose a new quasi-
Newton method for its optimization. Through numerical experiments on
simulated and real datasets, we show that the proposed method outper-
forms Pham’s algorithm. An open source Python package is released.

1 Introduction

The task of joint diagonalization arises in several formulations of the blind source
separation problem. In [1], independent component analysis is performed by
joint-diagonalization of a set of cumulant matrices. In [2], the separation of non-
stationnary signals is carried by joint-diagonalization of a set of autocorrelation
matrices. Finally, in [3], joint-diagonalization of a set of covariance matrices
separates Gaussian sources that have non-stationnary power.

Consider a set of n symmetric square matrices C , (C1, · · · , Cn) of size p × p.
Its approximate joint diagonalization consists in finding a matrix B ∈ Rp×p such
that the matrix set BCB> , (BC1B>, . . . , BCnB>) contains matrices that are
as diagonal as possible, as measured by some joint-diagonality criterion. This
paper considers the joint diagonalization of positive matrices, defined as the
minimization of the (non-convex) criterion

L(B) =
1

2n

n∑
i=1

[
log det diag(BCiB>)− log det(BCiB>)

]
, (1)

This criterion was introduced by Pham in [3] who derived it as the negative
log-likelihood of a source separation model for Gaussian stationary sources.

Pham [4] proposes in its seminal work a block coordinate descent approach for
the minimization of L. Each iteration of this method guarantees a decrease of L.
Further, when there exists a matrix B∗ such that B∗CB>∗ contains only diagonal
matrices (that is, if the set is exactly jointly diagonalizable), then in the vicinity
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of B∗, the algorithm converges quadratically. Since then, only a few other papers
have focused on minimizing this criterion. In [5], the Newton method is studied.
However, this method is not practical as it requires solving a p2 × p2 linear
system at each iteration. In [6], it is proposed to minimize an approximation of
the cost function. The authors do so by alternating minimization over columns.
This method minimizes an approximation of L, and scales in O(p4).

In this paper, we propose a quasi-Newton method for the minimization of L.
We use sparse approximations of the Hessian which are cheap to compute and
match the true Hessian when the set is jointly diagonalized, granting quadratic
convergence. The algorithm as a cost per iteration of O(n × p2), which is the
natural scaling of the problem since it is the size of the dataset. Through exper-
iments, we show that the proposed method outperforms Pham’s algorithm, on
both synthetic and real data.

Notation: The identity matrix of size p is denoted Ip. The Frobenius scalar

product between two p × p matrices is noted as 〈M |M ′〉 ,
∑
a,bMabM

′
ab. The

corresponding norm is ||M ||F =
√
〈M |M〉. Given a p× p× p× p tensor H, the

weighted scalar product is 〈M |H|M ′〉 ,
∑
a,b,c,dHabcdMabM

′
cd. The Kronecker

symbol δab is 1 is a = b, 0 otherwise.

2 Study of the cost function

The cost function L(B) is defined on the group of invertible matrices, with
log det(BCiB>) acting as a barrier. Its minimization is performed by iterative
algorithms. To exploit the multiplicative structure of the group of invertible
matrices, we perform relative updates on B [7]. The neighborhood of an iterate
B(t) is parameterized by a small p × p matrix E as B(t+1) = (Ip + E)B(t). The
second-order (in E) Taylor expansion of the loss function

L((Ip + E)B) = L(B) + 〈G|E〉+
1

2
〈E|H|E〉+ o(||E||2) . (2)

where the p× p matrix G(B) is the relative gradient and the p× p× p× p tensor
H(B) is the relative Hessian. Simple algebra yields:

Gab =
1

n

n∑
i=1

Di
ab

Di
aa

− δab, and Habcd = δac
1

n

n∑
i=1

[
Di
bd

Di
aa

− 2
Di
abD

i
ad

Di
aa

2

]
+ δadδbc

(3)
where we define Di = BCiB> for i = 1, . . . , n. Eq. (3) shows that Haaaa = 0,
consistent with the scale-indeterminacy of the criterion: L(ΛB) = L(B) for any
diagonal matrix Λ. The criterion is flat in the direction of the scale matrices.

Complexity: The cost of computing a gradient is O(p2 × n). It is the natural
complexity of an iterative algorithm as it is the same cost as computing the set
BCB>. Computing the Hessian is O(p3 × n), and computing H−1G is O(p6).
This is prohibitively costly when p is large compared to a gradient evaluation.
As a consequence, Newton’s method is extremely costly to setup.



3 Relative Quasi-Newton method

In this section, we first introduce an approximation of the Hessian and then
derive a quasi-Newton algorithm to minimize (1).

3.1 Hessian approximation

The accelerated algorithm presented in this article is based on the massive spar-
sification of the Hessian tensor when matrices Di are all diagonal. Indeed, it
that case, it becomes:

H̃abcd = δacδbdΓab + δadδbc − 2δabcd Γab =
1

n

n∑
i=1

Di
bb

Di
aa

(4)

This Hessian approximation has three key properties. First, it is cheap to com-
pute, at cost O(p2 × n), just like a gradient. Then, it is sparse and structured.
It only has ' 2p2 non-zero coefficients, and can be seen as a block-diagonal
operator, with blocks of size 2. Indeed, for a p× p matrix M , we have:(

[H̃M ]ab
[H̃M ]ba

)
=

(
Γab 1− 2δab

1− 2δab Γba

)(
Mab

Mba

)
. (5)

The following lemma establishes the positivity of the approximate Hessian:

Lemma 1 The approximation H̃ is positive with p zero eigenvalues. If the ma-
trices Ci are independently sampled from continuous densities, with probability
one, the other p2 − p eigenvalues are strictly positive.

Proof: Using eq. (4), one has H̃Eii = 0, where Eii is the matrix with 1 for
its (i, i) coefficient, and 0 elsewhere. Thus H̃ has p zero eigenvalues, and the
associated eigenvectors are the Eii for i = 1 · · · p. The p2 − p other eigenvalues
are the eigenvalues of the 2 × 2 blocks introduced in eq. (5). The diagonal
coefficients of the blocks are the Γab > 0. The determinant of a block is given
by ΓabΓba − 1. Cauchy-Schwartz inequality yields ΓabΓba ≥ 1, with equality if
and only if Di

aa ∝ Di
bb. This happens with probability 0, concluding the proof.

Finally, the approximation is straightforwardly inverted by inverting each 2× 2
blocks. The Moore-Penrose pseudoinverse of H̃, H̃+, satisfies:

[H̃+G]ab =
ΓbaGab −Gba

ΓabΓba − 1
, ∀a 6= b , (6)

and [H̃+G]aa = 0. The cost of inversion is thus O(p2).

3.2 Algorithm

The proposed quasi-Newton method uses −H̃+G as search direction. Following
from the positivity of H̃, this is a descent direction. Unfortunately, there is no



Algorithm 1: Quasi-Newton method for joint-diagonalization

Input : Set of matrices C, number of iterations T .
Initialize B = Ip.
for t = 1, · · · , T do

Compute the gradient G using eq.(3)
Compute the Hessian approximation H̃ using eq.4
Compute the search direction −H̃+G using eq. (6)
Do a backtracking line search in that direction to find a step size α
decreasing L

Set B ← (Ip − αH̃+G)B
end
Output: B

guarantee that the iteration B ← (Ip − H̃+G)B decreases the cost function.
Therefore, we resort to a line-search to find a step α > 0 ensuring L((Ip −
αH̃+G)B) < L(B) (condition (∗)). This is done using backtracking, starting
from α = 1 and iterating α ← α

2 until the condition (∗) is met. The full
algorithm is summarized in Algorithm. 1.

Quadratic convergence: Like Pham’s algorithm, the proposed algorithm en-
joys quadratic convergence when the matrix set is jointly diagonalizable. Indeed,
assume that there exists a matrix B∗ such that B∗CB>∗ contains only diagonal
matrices. Then, by construction, H(B∗) = H̃(B∗). It follows that the method
converges quadratically in the vicinity of B∗.

4 Experiments

4.1 Setting

For the experiments, three data sets are used – coming either from synthetic or
real data – and we compare our approach to Pham’s algorithm. The code to
reproduce the experiments is available online1. We set n = 100 and p = 40.

Initialization: For a dataset C, the algorithms start from a whitener (whitening
matrix): writing PDP> = 1

n

∑n
i=1 C

i with P orthogonal and D diagonal, the

initial matrix is taken as B(0) = D−
1
2P>.

Metrics: To compare the speed of convergence of the algorithms, we monitor the
diagonalization error L(B), and the gradient norm ||G(B)||. The first quantity
goes to 0 if the dataset is perfectly diagonalizable, while the second should always
converge to 0 since the algorithm should reach a local minimum.

Synthetic data: We proceed as in [8] for generating synthetic datasets. We
generate n diagonal matrices of size p× p, (D1, · · ·Dn) for which each diagonal

1https://github.com/pierreablin/qndiag



10−13

10−8

10−3

O
b

je
ct

iv
e

fu
n

ct
io

n

100

101

10−2 10−1 100

10−8

10−4

100

G
ra

d
ie

n
t

n
or

m

(a)(a)

10−2 10−1 100

Time (sec.)

10−8

10−5

10−2

(b)(b)

10−2 10−1 100 101 102

10−8

10−5

10−2

101

(c)(c)

Quasi-Newton (proposed) Pham 01

Fig. 1: Comparison of the algorithms on three datasets. (a): Jointly diagonal-
izable synthetic dataset. (b): Same dataset with added noise, rendering perfect
joint diagonalization impossible.(c): Real data, covariance matrices from MEG
signals. Note the log-log scale.

coefficient is drawn from an uniform distribution in [0, 1]. Then, we generate
a random ‘mixing’ matrix A ∈ Rp×p with independent normally distributed
entries. Finally, in order to add noise, we generate n matrices R1, · · · , Rn ∈ Rp×p
of normally distributed entries. The dataset is then C = (C1, · · · , Cn) with:

Ci = ADiA> + σ2(Ri)(Ri)> , (7)

where σ controls the noise level. In practice we take σ = 0 (experiment (a),
perfecty jointly-diagonalizable set) or σ = 0.1 (experiment (b)).

Magnetoencephalography (MEG) data: We use the MNE sample dataset [9].
From n matrices containing p signals of T samples, X1, · · · , Xn ∈ Rp×T , cor-
responding to time segments of MEG signals, we jointly diagonalize the set of
covariance matrices Ci = 1

TXiX
>
i (experiment (c)). This practical task is in

the spirit of [3]. Results are displayed in Figure 1

4.2 Discussion

In experiment (a), where the dataset is exactly jointly diagonalizable, we observe
the expected quadratic rate of convergence for both the proposed algorithm and
Pham’s method. We also observe that breaking the model (experiments (b) and
(c)) makes convergence fall back to a linear rate. As expected, the cost function
does not go to 0 in those cases. We observe that the proposed quasi-Newton
algorithm outperforms Pham’s method by about an order of magnitude on each
experiment.
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