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Abstract

Adaptive optics (AO) restore the angular resolution of ground-based telescopes, but at the cost of delivering a
time- and space-varying point spread function (PSF) with a complex shape. PSF knowledge is crucial for breaking
existing limits on the measured accuracy of photometry and astrometry in science observations. In this paper, we
concentrate our analyses on anisoplanatism signature only onto PSF: for large-field observations (20”) with single-
conjugated AO, PSFs are strongly elongated due to anisoplanatism that manifests itself as three different terms for
Laser-guide star (LGS) systems: angular, focal and tilt. We propose a generalized model that relies on a point-wise
decomposition of the phase and encompasses the non-stationarity of LGS systems. We demonstrate it is more accurate
and less computationally demanding than existing models: it agrees with end-to-end physical-optics simulations to
within 0.1% of PSF measurables, such as Strehl-ratio, FWHM and fraction of variance unexplained. Secondly, we
study off-axis PSF modelling is with respect to C2

n(h) profile (heights and fractional weights). For 10 m class telescope,
PSF morphology is estimated at 1%-level as long as we model the atmosphere with at least 7 layers whose heights
and weights are known respectively with 200m and 10%-precision. As a verification test we used the Canada’s NRC-
Herzberg HeNOS testbed data, featuring four lasers. We highlight capability of retrieving off-axis PSF characteristics
within 10% of fraction of variance unexplained, which complies with the expected range from the sensitivity analysis.
Our new off-axis PSF modelling method lays the ground-work for testing on-sky in the near future.

1 Introduction

Ultimate scientific exploitation of astronomical observations is made recurring to post-processing techniques - commonly
called data-reduction. The current way to process scientific images relies commonly on standard packages, such as
StarFinder [10], SeXTRACTOR [2], or DAOPHOT [47]. Nonetheless, past studies [18, 55] have quantified an astrometry
error breakdown on the Galactic Center (GC), that pointed out the Point spread function (PSF) model accounts at 50-
60 % level on the astrometry accuracy. Photometry measurements are impacted by PSF mis-knowledge as well [44, 46],
but a recent analysis [1] has unveiled that photometry measurements accuracy is improved from 0.2 down to 0.02 mag by
providing StarFinder with the exact PSF.
Besides, ground-based astronomy is improved thanks to Adaptive optics (AO) that allows to restore the angular resolution
to nearly the diffraction limit. However AO produces a PSF that varies across space and time and does not match standard
parametric models, such as Gaussian or Moffat functions. Retrieving the AO PSF shape from focal-plane observations
might be also compromised when observing crowded fields suffering from large source confusion [49, 44, 28, 21], or deep
cosmological fields where no PSF is observed [12, 45], calling for alternative approach as PSF reconstruction (PSF-
R) [52, 22]. PSF-R is a data processing approach that delivers the PSF from AO control loop data, without any priors
on its shape. PSF-R reliability has been demonstrated on-sky multiple times [52, 13, 25, 29]. PSF is reconstructed as
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a convolution of independent patterns that characterize different physical limitations of AO systems [52, 22]. In this
paper, we focus on the specific step of PSF extrapolation that relies on anisoplanatism [16] and accounts for PSF spatial
variations across the field. The AO system measures the incoming distorted wave-front in the particular direction of
the guide star; wave-fronts that propagate along another direction do not cross the exact same turbulence are partially
compensated. This introduces an anisoplanatism error that grows with the angular separation from the guide star and
the seeing of altitude layers. AO systems can also guide on Laser guide stars (LGS) [15] which are focused in a range from
80 up to 100 km. When the LGS beam propagates as a spherical wave downwards to the pupil, it crosses only a portion
of the turbulence above the telescope. The phase aberrations in the science direction are not fully corrected; it includes
an additional term in the residual phase that stands as the cone effect or focal anisoplanatism.
On top of that, probing the wave-fronts using LGSs does not grant access to the wave-front angle of arrival because of
the round trip of the light from telescope to the sodium (Na) layer. The PSF position in the focal plane is stabilized
by measuring the wave-front angle of arrival using an Natural guide star (NGS) whose location may be different from
the scientific target. This angular separation yields an anisoplanatism effect on tip-tilt modes only, named as tip-tilt
anisoplanatism or anisokinetism [54, 17, 11, 14, 9].
Reconstructing the off-axis PSF for LGS-based systems requires a model of the angular, focal and tilt anisoplanatism
plus the relevant input parameters the model depends on which are the vertical distribution of turbulence known as
the C2

n(h) profile. Such models exist in the literature, but are either not laser-compliant [50, 37, 24], or not numerically
efficient [19, 3, 13], particularly for future AO systems on next 40 m class telescopes with large number of degrees of freedom.
The C2

n(h) profile is accessible either from internal methods handling AO telemetry of multiple guide-stars [34, 30, 23], or
from external profilers [53, 48, 36, 35] or more recently from meso-scale models [31].
For single guide-star AO systems, the C2

n(h) is not measurable from AO telemetry, calling for external profilers for
modelling the off-axis PSF. However, studies [34] have highlighted discrepancies on the retrieved profile by comparing
outputs of external to internal profiling techniques. Consequently, using an external C2

n(h) profile along a likely different
line-of-sight from the observations might degrade the accuracy of PSF modeling. Besides, predicting performance of
future AO-based instrument relies on a C2

n(h) profile as well; we must constrain the C2
n(h) accuracy required for retrieving

faithfully AO-corrected PSFs.
We propose in this paper an investigation of how the PSF is degraded regarding the accuracy on the C2

n(h). Yet, such an
analysis is compromised if relies on on-sky observations, in a way the real C2

n(h) is not be perfectly known; downstream
results would be contaminated by anisoplanatism model errors, such as the discrete number of layers or the exact LGS
height that is not perfectly identified for instance. As an alternative we have applied this approach on the HeNOS
Multi-conjugated AO (MCAO) testbed designed to be the demonstrator for NFIRAOS [7]. We lay in this paper all the
theoretical background our near-future work will be based on, that will be particularly focused on PSF characterisation
application to crowded fields observation, such as the Galactic center.
This paper is organized as follows. In Sect. 2, we derive a generalized anisoplanatism model that combines both focal
and tip-tilt anisoplanatism recurring to an accurate and fast implementation. In Sect. 3 it is compared to physical-optics
simulations on a 10 m telescope. We consider morphological PSF metrics, as Strehl ratio, FWHM and fraction of variance
unexplained, as science metrics (photometry and astrometry for tight binaries) as well. In Sect. 4, we present how those
criteria are sensitive to C2

n(h) accuracy, including number of layers and weight/height precision. We validate the meaning
of this approach using observations on the HeNOS bench in Sect. 5. We conclude in Sect. 6.

2 Spatial PSF extrapolation

2.1 Anisoplanatism transfer function

We define φε(r, t) as the residual wave-front delivered by the AO system. At the focal plane downstream the AO system,
the long-exposure Optical Transfer Function (OTF) in the science direction 1 is [39]

OTF1(ρ/λ) =
1

S

∫∫
P
P(r)P(r + ρ) · exp

(
−1

2
Dφε

(r,ρ)

)
dr, (1)

where P is the pupil function, r and ρ the location and separation vectors in the pupil and S is the area of the telescope
aperture which normalizes the PSF to unit energy and Dφε

(r,ρ) is the residual phase structure function defined by

Dφε
(r,ρ) =

〈
|φε(r, t)− φε(r + ρ, t)|2

〉
t
, (2)

where 〈x(t)〉t denotes the temporal average of process x. Under the assumption that the anisoplanatism term is not
correlated to other AO error terms, such as servo-lag or aliasing, Dφε

(r,ρ) can be split as follows

Dφε
(r,ρ) = D0(r,ρ) +D∆(r,ρ), (3)
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where D0(r,ρ) characterizes the AO residual phase structure function in the AO guide star direction (NGS or LGS as
well), while D∆(r,ρ) is the structure function of the anisoplanatic phase φ∆(r, t) defined as

φ∆(r, t) = φ1(r, t)− φ0(r, t), (4)

where φ1 and φ0 refer to the atmospheric phase in direction 1 (science) and direction 0 (guide star). As explicitly mentioned
in Eq. 1, the phase structure is a function of both position and separation in the pupil. For on-axis PSF reconstruction,
we handle the residual phase as a stationary process [52]; we assume D0(r,ρ) is a function of separation only, that allows
to average D0 over the pupil location as

D̄0(ρ) =

∫∫
P P(r)P(r + ρ)D0(r,ρ)dr∫∫

P P(r)P(r + ρ)dr
, (5)

that allows to pull the exponential term in Eq. 1 out of the integral, which makes for an easier and more convenient
numerical implementation.

For the LGS case, [13] has pointed out the stationarity hypothesis is no longer accurate and degrades the PSF model
because the cone effect. We have confirmed on our side that this assumption degrades PSF metrics (introduced in Sect. 3.1)
at the level of 5%, while it is maintained to less than 1% in the NGS case. Because we have the numerical ability to derive
the full calculation D∆(r,ρ), the formalism we present here does not rely on the stationarity hypothesis. We include into
D0 all AO-residual in the guide star direction and separate any focal and angular anisoplanatism effect into D∆, in a
manner we can still apply the pupil-averaged process on D0.
The OTF reduces to the expression

OTF1(ρ/λ) =
1

S
exp

(
−1

2
D̄0(ρ)

)
·
∫∫
P
P(r)P(r + ρ) exp

(
−1

2
D∆(r,ρ)

)
dr, (6)

We introduce OTFDL(ρ/λ) as the diffraction-limit OTF that characterizes the angular frequencies distribution imposed
by the pupil shape

OTFDL(ρ/λ) = 1/S

∫∫
P
P(r)P(r + ρ)dr (7)

that allows to write equation 6 as
OTF1(ρ/λ) = OTF0(ρ/λ) ·ATF∆(ρ/λ), (8)

where

OTF0(ρ/λ) = OTFDL(ρ/λ) · exp

(
−1

2
D̄0(ρ)

)
, (9)

and

ATF∆(ρ/λ) =

∫∫
P P(r)P(r + ρ) · exp

(
−1

2
D∆(r,ρ)

)
dr

OTFDL(ρ/λ)
(10)

is the Anisoplanatism Transfer Function (ATF) as introduced by [19] which is a convenient formulation to derive the
residual OTF anywhere in the field from the knowledge of the on-axis OTF. A practical result to extrapolate the PSF
anywhere in the field consists of computing OTF2. From Eqs. 8 and 10 comes

OTF2(ρ/λ) = OTF1(ρ/λ) · OTF∆2
(ρ/λ)

OTF∆1(ρ/λ)
, (11)

which introduces an ”OTF ratio” that is the key quantity for deriving the OTF from an direction to any other. The PSF
is seamlessly computed from the Fourier transform of the OTF.
In summary, the capability to model a PSF anywhere in a field requires, firstly to have access to a PSF in a direction 1
using either sources extraction method, parametric modelling or PSF-reconstruction, secondly be capable of computing
accurately an OTF ratio. This latter is the main focus of following sections.

3



2.2 Modelling anisoplanatism

We now focus on the implementation of the phase structure function D∆(r,ρ) for computing the ATF in Eq. 10. Results
in the remainder of this paper rely on the calculation of the anisoplanatic covariance C∆(r,ρ) which writes

C∆(r,ρ) =
〈
φ∆(r, t)φt∆(r + ρ, t)

〉
(12)

from which D∆(r,ρ) is
D∆(r,ρ) = 2× (C∆(r, 0)− C∆(r,ρ)) . (13)

The problem of modeling anisoplanatism is now a matter of describing how the atmospheric phase is spatially correlated.
In general terms, phase is described as a linear combination of nm (orthonormal) M modes, yielding

φ1(r, t) =

nm∑
i=1

ai(t)×Mi(r)

φ0(r, t) =

nm∑
i=1

bi(t)×Mi(r),

(14)

where a(t) and b(t) are respectively modal coefficients in the science and guide star directions. The anisoplanatic phase
φ∆(r, t) becomes

φ∆(r, t) =

nm∑
i=1

∆i(t)×Mi(r), (15)

with ∆i(t) = (ai(t)− bi(t)).
Combining Eqs. 12 and 15 gives the following expression

C∆(r,ρ) =

nm∑
i=1,j

〈
∆i∆

t
j

〉
×Mi(r)Mt

j(r + ρ), (16)

where
∆i∆

t
j = ai(t)a

t
j(t) + bi(t)b

t
j(t)− ai(t)btj(t)− bj(t)ati(t). (17)

Eq. 16 reminds the Uij formalism introduced by [52] for the computation of the residual phase structure function; it
simplifies to the multiplication Mi(r)Mj(r + ρ) when deriving the covariance. On top of that, anisoplanatism modeling
requires the calculation of modal coefficients correlation

〈
∆i∆

t
j

〉
. [19] has derived the ATF using a Zernike expansion of the

phase, based on Zernike coefficients spatial correlation provided in [5]. Although this study has delivered successful results
on a 8 m telescope, its application on a 40 m class telescope is computationally-demanding because of theMi(r)Mj(r+ρ)
derivations. An alternative computation approach was proposed by [20] to tackle the numerical complexity of the Uij
technique. However, although focal anisoplanatism could be covered in using covariance terms introduced by [33], it would
not be as accurate as the NGS case because the intrinsic stationarity assumption of the Zernike expansion.
To decrease the numerical complexity whilst maintaining model accuracy, we may resort to a spatial frequency basis [37, 24].
Although such a technique is efficient from the numerical computation point of view, statistical independence of Fourier
modes assume underlying stationarity; the long-exposure OTF is derived from the AO residual phase Power Spectrum
Density (PSD), although such a description is only accurate for linear and space-invariant systems. In order to generalise
it to the LGS case, correlations between the residual phase errors at different frequencies must be included [51, 13] due to
the cone stretching factor. Besides, Fourier expansion does not comply with an accurate tip-tilt filtering [42] and assume
an infinite pupil that degrade the PSF model. Such considerations call for alternative approaches such as the point-wise
method that is our formulation baseline described below.

2.3 Point-wise calculation

To maintain the accuracy of the anisoplanatism model whilst reducing the computational complexity, we focus on a point-
wise approach. We follow the technique proposed by [22] : the phase is discretised over a grid of N × N pixels in the
real domain, i.e. Mi(r) functions are turned into Dirac distributions δi(r) = δ(r − ri) that are centered at the ith pixel
location. The anisoplanatic covariance takes the following form

C∆(r,ρ) =

N∑
i,j=1

δ(r − ri)δ(r + ρ− ri − ρj)×
〈
φ∆(r, t)φt∆(r + ρ, t)

〉
, (18)
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where δ(r − ri)δ(r + ρ − ri − ρj) is 1 only for the couple of pixels located at ri and separated by ρj . Computation
of C∆(r,ρ) is reduced to the determination of phase covariance at specific separations in the bi-dimensional plane. To
include the dependency on both pupil location and separation, we compute the covariance of any two samples leading
consequently N4 values. All of these are concatenated into a N2 ×N2 matrix which defines C∆. For a given separation,
the latter is well described for the Von-Kármán spectrum of turbulence as

Cφ(ρ) =

(
L0

r0

)5/3

× Γ(11/6)

25/6π8/3
×
[

24

5
Γ

(
6

5

)]
×
(

2πρ

L0

)5/6

×K5/6

(
2πρ

L0

)
(19)

with L0 and r0 respectively the outer scale and Fried’s parameter, Γ the ’gamma’ function and finally K5/6 a modified
Bessel function of the third order.
Derivation of C∆ relies on the numerical implementation of Eq. 19 that is fed with vector of separations to estimate the
covariance terms in Eq. 18. The main challenge in the anisoplanatic covariance calculation lies in the proper definition of
separations.
Consider the phase covariance along two different directions θ1 and θ2 at a single layer located at altitude hl. Define z1

and z2 the source heights in direction 1 and 2 respectively. Finally, let r1 and r2 be the global pixel location vectors in the
pupil projected from the atmosphere along straight paths. Fig. 1 provides a schematic view of this sketch. From Fig. 1,

hl

LGS

NGS

hl

z1

y

r1
x

h

r2

ρl

0

θl θ2

z2=∞

Pupil

h l×θ2
h l×θ1

Figure 1: Sketch representing how the separation vector ρl is defined between two resolution elements at a given turbulent
layer l. Vectors r1 and r2 are the coordinates back-projected on the pupil.

we note the separation of two phase samples has two components. The first is related to the pupil plane coordinates that
are stretched down with respect to cone-related squeeze factor 1 − hl/z1 and 1 − hl/z2. On top of that, there is a pupil
shift in altitude created by the angular separation that leads to hl × (θ1 − θ2). The separation vector ρl(i, j), between
aperture points raster index i in direction θ1 and index j in direction θ2 at altitude hl is

ρl(i, j) = r1(i)× (1− hl/z1)− r2(j)× (1− hl/z2) + hl × (θ1 − θ2). (20)

We assume the turbulence is discretised along nl statistically independent layers. From the last equation the element (i, j)
of C∆ takes the following expression

C∆(i, j) =

nl∑
l=1

fl × (Cφ((1− hl/z1)r1(i)− (1− hl/z2)r2(j) + hlθ1) + Cφ((1− hl/z1)r1(i)− (1− hl/z2)r2(j) + hlθ2)

− Cφ((1− hl/z1)r1(i)− (1− hl/z2)r2(j) + hl∆θ) −Cφ((1− hl/z1)r1(j)− (1− hl/z2)r2(i) + hl∆θ)) ,

(21)
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where ∆θ = θ1 − θ2, fl is the fractional power of the lth layer that is defined from the C2
n(hl) value as

fl = 0.06λ2r
−5/3
0 /C2

n(hl), (22)

where C2
n(hl) is the C2

n(h) profile at altitude hl. This implementation of the ATF is freely made available with the
simulator OOMAO [8]. Other point-wise approaches have been developed [50, 3, 13], but only the last reference is laser-
compliant. For sanity check purpose, we have also coded the Flicker’s method as an alternative point-wise calculation. Our
formulation of anisoplanatism is strictly equivalent from the Flicker’s one in the mathematical point of view; both of them
relies on a non-stationarity calculation and include focal anisoplanatism. However we propose a direct derivation of the
covariance function (instead of the structure function as done by Flicker) that relies on optimal routines implementation
within the OOMAO framework, that are 40 m class telescopes-compliant in terms of memory and cpu usage.

2.4 Generalization to laser-based systems

In this section we provide the full expression of anisoplanatic covariance for laser-based systems which includes angular,
focal and tilt terms.
We define φs, φl and φn as the atmospheric phase in respectively the science, LGS and NGS directions. The anisoplanatic
phase φ∆ results from the subtraction of the high-order modes measured from the LGS and the tip-tilt measured on the
NGS from the phase in the science direction as

φ∆ = φs − PTTR.φl − PTT.φn (23)

where PTTR(r) is a spatial filter that removes the angle of arrival from LGS measurements. Conversely, PTT(r) is the
filter that conserves only this angle of arrival. Modal spatial filters are of the kind

PTTR = Id − PTT (24)

with PTT = TT † and T the vector projecting the phase onto tip or tilt modes. Based on properties of PTT and PTTR,
φ∆ conforms to

φ∆ = PTTR (φs − φl) + PTT (φs − φn)

= PTTRφ∆sl
+ PTTφ∆sn

(25)

where a first term PTTRφ∆sl
relates to the anisoplanatism, both angular and focal whereas the second term PTTφ∆sn

represents tilt anisoplanatism. From Eq. 25, the anisoplanatic covariance C∆ in Eq. 12 becomes

C∆(r,ρ) = PTTR

〈
φ∆sl

(r)φt∆sl
(r + ρ)

〉
PtTTR

+ PTT

〈
φ∆sn

(r)φt∆sn
(r + ρ)

〉
PtTT

+ PTT

〈
φ∆sn

(r)φt∆sl
(r + ρ)

〉
PtTTR

+ PTTR

〈
φ∆sl

(r)φt∆sn
(r + ρ)

〉
PTT,

(26)

which turns into
C∆(r,ρ) = PTTRC∆sl

(r,ρ)PtTTR

+ PTTC∆sn
(r,ρ)PtTT

+ Ccross(r,ρ) + Ctcross(r,ρ),

(27)

where covariance terms C∆sl
and C∆sn

are respectively focal-angular and tip-tilt anisoplanatism that are derived inde-
pendently using the formalism introduced in the previous section. Eq. 27 introduces cross-correlation on high-order and
tip-tilt modes. From Eqs. 26 and 25, this cross term writes

Ccross(r,ρ) = PTT

〈
(φs(r)− φn(r))(φs(r + ρ)− φl(r + ρ))t

〉
PtTTR

= PTT

(〈
φs(r)φs(r + ρ)t

〉
+
〈
φn(r)φtl (r + ρ)

〉
−
〈
φs(r)φtl (r + ρ)

〉
+
〈
φn(r)φts(r + ρ)

〉)
.PtTTR,

(28)

and includes the tip-tilt/high order modes correlation. These cross-terms are generally neglected in the literature on
account of its small amplitude when comparing with other terms; we propose to confirm this assumption using full
physical-optics simulations in Sect. 3.3. We now introduce the terminology total anisoplanatism when including all these
cross-terms as in Eq. 27, compared to the split anisoplanatism that considers Ccross = 0 in Eq. 27.
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2.5 Spatial filtering

The number of phase samples N must be chosen wisely; large values will make the calculation time-consuming, while small
values will make us loose in accuracy. In terms of spatial frequencies, N phase samples allows to derive the PSF within
a N/2 × λ/D-wide 2D region. Besides, the AO correction band breaks at nact/2 × λ/D, with nact the linear number of
DM actuators, where the anisoplanatism occurs actually. As a consequence, it is enough to define the C∆ as a nact × nact

matrix to represent accurately the anisoplanatism in the AO correction band. However numerical simulations require to
sample the phase with a resolution given by at least 2-3 points per r0, which potentially makes N > nact. We solve this
issue by multiplying C∆ with a filter matrix PDMR that is designed to filter out uncontrolled DM modes; it sets to zero
all spatial frequencies greater than nact/2D

ATF∆(ρ/λ) =
1

OTFDL(ρ/λ)
×
∫∫
P
P(r)P(r + ρ)× exp

(
PDMR (C∆(r,ρ)− C∆(r, 0))PtDMR

)
dr (29)

where PDMR is a zonal DM filter of size N ×N , calculated from the DM influence functions h of size N2×nact as follows

PDMR = Id − hh† (30)

where Id is the N × N identity matrix. This filter removes spatial frequencies above the DM cut-off frequency that are
beyond the correction space spanned by the latter. The removed high spatial frequencies contribute to the fitting error;
it manifests itself as the PSF halo and is a function of the atmospheric seeing only.

3 Analytic models versus physical-optics simulations

In this section we compare existing anisoplanatism models in the literature to simulations. In a first step, we aim at
checking the point-wise derivation of anisoplanatism using our general formalism, refereed as OOMAO in next results,
complies with existing models, as Zernike [19], Fourier [51] and [13].

3.1 Metrics

Results presented in the next sections evaluate PSF model deviations to simulation. First insights on PSF are given by
morphological scalar values, as the Strehl-ratio and the FWHM. Both these parameters mostly refer to AO performance;
we might prefer having a metric that encompasses the entire structure of the PSF, including especially the PSF halo
outside the AO-correction band, as the Fraction of Variance Unexplained (FVU). If X is 2-D image and X̂ the estimation
of this, the FVU is defined as[26]

FVUX =

∑
i,j

(
X(i, j)− X̂(i, j)

)2

∑
i,j

(
X(i, j)−

∑
i,j X(i, j)

)2 , (31)

where (i, j) are respectively the ith and jth pixel of the image. The great advantage of such a metric is to yield an overall
error on all angular frequencies; all the PSF patterns, as the PSF core and wings, are included into this calculation.
Besides PSF-related metrics, characterising off-axis PSFs is motivated by science exploitation, calling for science-based
metrics, such as photometry and astrometry. Contrary to PSF-metrics, science ones must refer to a specific observed
object and image processing tools (deconvolution or model-fitting for instance). We focus on a particular science case of
imaging a binary system to measure relative fluxes and astrometry for deriving the binarys orbit. In this case, the field
typically lacks independent PSF stars and the ability to characterize the PSF is of tremendous value. We define a binary
model from a reference off-axis PSF and a set of parameters as

B (PSF,∆F,∆αx,∆αy) = ∆F × (PSF (αx, αy) + PSF (αx + ∆αx, αy + ∆αy)) (32)

where (αx, αy) represents the angular separations in the focal plane, ∆F the relative stars flux and (∆αy,∆αy) the
differential angular offsets. We did not include any source of noise and AO residual in the focal plane to really extract the
real impact of anisoplanatism characterization onto our metrics.
We define a reference binary model from the simulated off-axis PSF, sampled at λ/4D, with ∆F 0 = 1 and a star separation
set to ∆α0

y = λ/D. Accuracy on photometry and astrometry is evaluated by minimizing the following criterion

ε2(∆F,∆αx,∆αy) =
∣∣∣∣∣∣B (PSFε,∆F

0,∆α0
x,∆α

0
y

)
− B

(
PŜFε,∆F,∆αx,∆αy

)∣∣∣∣∣∣2
2

(33)
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where ||x||22 is the L2 norm of the vector x. We retrieve photometry and astrometry by fitting a synthetic PSF-based
binary on the reference model. Because we know the exact binary parameters, we can estimate how we deviate from those
regarding the PSF model. Particularly the photometry error is given by

∆mag = −2.5× log10

(
∆̂F

∆F 0

)
(34)

while the astrometry error results from

∆α =

√(
∆̂αx −∆α0

x

)2

+
(

∆̂αy −∆α0
x

)2

. (35)

Photometry and astrometry, as defined in last equations, may be derived differently regarding the science case and
the image-processing method. However, gathering science and PSF-related metrics in our analysis will enhance the
overall evaluation of anisoplanatism characterization; we will point out the consequence of PSF errors on science images
exploitation, that is the real information that matters in the end. Finally, we estimate astrometry accuracy with an infinite
signal-to-noise ratio; we consider only PSF morphology impact into this derivation.

3.2 NGS case

We have simulated H-band atmospheric phase screens using the simulator OOMAO [8] to compare all anisoplanatism
models described in the previous section to simulations. These latter include only anisoplanatism patterns into the PSF;
we do not account for AO-residual in the guide star direction, static patterns ans science camera parasites such as noise.
Our goal is strictly dedicated to anisoplanatism determination and impact on the PSF.
We have considered the median C2

n(h) profile [41] at Paranal degraded to 7-layers with r0 = 16 cm. See next section
for explanation about the choice of a 7-layers based profile. Fig. 2 provides a qualitative comparison and illustrates how
each approach achieves an accurate model of the ATF within a percent of the full physical-optics simulation. We notice
the Zernike approach becomes less accurate when putting the NGS farther away in the field. We may believe that the
stationarity assumption causes this effect, as invoked by [19], but in such a case, we would observe a similar degradation
compared to the Fourier approach that relies on the same assumption as well. The main issue here is that the DM spatial
filtering is translated into a modal truncation at the radial order n given by 0.3 × (n + 1)/D [6]. Zernike modes do not
match exactly the DM frequency behaviour; such an approximation in the DM cut-off frequency may introduce slight
errors on the ATF, especially when the anisoplanatism level is stronger. The Fourier method is the most accurate for the
NGS case in the FVU sense despite the approximation made of infinite pupil translating into potential edge effects.
Tab. 1 provides quantitative assessment of ATF compared to simulations and highlights each method leads to very similar
results. What we see is consistent with Fig. 2: all models match very well to end-to-end simulations, within 0.2% of FVU
on OTF. We also verified that FVU on PSF are systematically within one or two order of magnitude lower than FVU
on ATF. It is explained by the PSF derivation that results from the Fourier-transform of the ATF, that is preliminary
multiplied by the diffraction-limit OTF, given by Eq. 7, that filtered out high-angular frequencies. Strehl ratio is estimated
within few percent, which is definitely below errors bars obtained on images acquired on-sky, while FWHM is perfectly well
estimated whatever the approach. Science metrics reach a level of milli-mag (0.1% on photometry) and micro-arcsec (1%
of pixel-size), that is definitely at several order of magnitude lower than usual estimations [49, 1].
As a conclusion, our point-wise method matches accurately existing angular anisoplanatism models and simulations in the
literature within 1%-level differences.

3.3 LGS case

We now focus on anisoplanatism on LGS-based systems; we have simulated the total anisoplanatism from Eq. 23, with
one LGS and one NGS distributed along a L-shaped asterism while keeping the science on-axis. We have estimated
the anisoplanatic covariance given in Eq. 26 and the resulting ATF using Eq. 10. Furthermore, we have also derived
independently focal and tilt anisoplanatic covariance matrices C∆sl

and C∆sn in Eq. 27, using both simulations and
analytic calculations. The goal of the analysis is two-fold: firstly demonstrate the generalized analytic model matches
simulations including all anisoplanatism terms, secondly confirming high order/tip-tilt cross terms that appear in Eq. 26
are not determinant in the anisoplanatism characterization.
Fig 3 provides a comparison of ATFs maps for a 20”-off LGS and 40”-off NGS from on-axis in perpendicular directions.
It highlights clearly that analytic calculations fit very well simulations results to within two percent points of accuracy.
On top of that, residual errors are mostly located at the map border that corresponds to pupil edges. As previously, FVU
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Figure 2: Relative errors on ATF azimuthal average deduced from simulation and analytical calculations difference, for a NGS
40”-off. Negative values on residuals corresponds to overestimation of analytical calculation.

Table 1: Relative errors obtained on considered PSF metrics by comparing in simulated anisoplanatic PSF to modeled ones. Models
refer respectively to OOMAO, Flicker, Zernike and Fourier. Photometric errors are given in H-band milli-mag and astrometry in
µas. Zero values corresponds to machine precision. Strehl-ratio and FWHM given on table header are values extracted out the
simulation.

NGS location 10” 20” 40”

Strehl-ratio [%] 54 19 5

FWHM [mas] 80 90 260

Relative residual errors [%]

Model O F Ze Fo O F Ze Fo O F Ze Fo

SR 3.8 4.0 1.1 2.3 3.4 3.9 1.7 1.6 2.7 3.3 3.5 0.6

FWHM 0 0 0.1 0.1 0.04 0.04 0.2 0.6 0.4 0.06 1.0 1.5

FVUOTF 0.21 0.23 0.02 0.08 0.15 0.18 0.04 0.05 0.08 0.1 0.08 0.03

Science estimates

∆mag 25 29 2 13 22 28 4 6 15 20 20 5

∆α 2 9 37 28 13 49 56 50 50 10 14 70
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Figure 3: Comparison of ATF maps derived either from simulation and analytical calculations. Figure distinguishes total and split
anisoplanatism that respectively do and do not include tip-tilt/high order modes cross-correlation as discussed in Sect. 2.4. ATF
maps are derived for a LGS and NGS 40”-off respectively to the north and east.

on PSF reach two order of magnitude lower level compared to FVU on OTF. When extrapolating the on-axis OTF, we
will multiply these angular frequencies above D/λ to zero. Fig 4 illustrate cuts of ATF and residuals along the elongated
direction. We observe that analytic calculations reproduce very well simulations within 2% in maximal range and 0.1%
in FVU when looking at Tab. 2.
We went through systematic comparisons over different asterism geometries to investigate whether cross terms are al-
ways negligible. Tab. 3 highlights that cross-terms independence assumption is affecting the PSF within extremely low
differences, lower than model deviation from simulations. As a sub-product of our analysis, we confirm the LGS-based
anisoplanatism is accurately represented by two independent terms, as angular+focal terms and tilt anisoplanatism.

4 Off-axis PSF sensitivity to C2
n(h) profile accuracy

In this section we quantify the impact of C2
n(h) profile knowledge on PSF morphological and science metrics.

Table 2: Relative errors obtained on considered PSF metrics by comparing in simulated PSFs to analytical ones considering split
anisoplanatism. Sources were distributed along a L-shape constellation with the science target on-axis. Photometric errors are given
in H-band milli-mag and astrometry in µas. Zero values corresponds to machine precision. Strehl-ratio and FWHM given on table
header are values extracted out the simulation.

LGS location 0” 20”

NGS location 0” 20” 40” 0” 20” 40”

Strehl-ratio [%] 64 56 41 22 19 15

FWHM [mas] 79 84 97 86 92 108

Relative residual errors [%]

SR 2.2 2.0 2.0 2.5 2.03 2.2

FWHM 0 0.31 0.35 0 0.23 1.3

FVUOTF 0.07 0.06 0.06 0.10 0.08 0.08

Science estimates

∆mag 6.3 3.1 4.8 8.6 1.8 6.0

∆α 7.7 41.4 28.2 67.6 60.5 77.6
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Figure 4: Relative errors on ATF azimuthal average deduced from simulation and analytical calculations difference for an LGS at
20” and NGS at 40” separation respectively to the north and east.

Table 3: Relative errors obtained on considered PSF metrics by comparing in simulation PSFs produced by the total and split
anisoplanatism. Sources were distributed along a L-shape constellation with the science target on-axis. Photometric errors are given
in H-band milli-mag and astrometry in µas. Zero values corresponds to machine precision.

LGS location 0” 20”

NGS location 0” 20” 40” 0” 20” 40”

Relative residual errors [%]

SR 0 3e-2 3e-2 0 2e-2 1e-2

FWHM 0 0.35 0.39 0.22 0.39 1.39

FVUOTF 0 1e-4 5e-4 0 2e-3 4e-3

Science estimates

∆mag 0 0.30 0.21 2e-3 1.05 1.5

∆α 0 2.0 16.7 0.05 8.1 36.0
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Figure 5: Fraction of variance unexplained as function of the number of reconstructed layer.

We split our study into two complementary analyses. On a first step, we introduce a bias on the C2
n(h) estimation by

binning down the number of layers. On a second step, we keep the same number of bins, but we introduce random
variations on both heights and weights.

4.1 Impact of number of bins

We have initially considered a 35-layers C2
n(h) profile [41] as our reference to compute the PSF at different separations

(θ0/2, θ0, 1.5× θ0 and 2× θ0) with θ0 = 24.5” in H-band.
We have opted for the mean-weighted compression [38] method for reducing the problem from 15 down to 2 layers. At
each iteration, we retrieve the anisoplanatic PSF to compare to the reference full profile PSF. Other binning options could
be considered instead [43]. Keeping the angular coherence angle constant across profiles seems to us a sensible choice as
we look particularly into anisoplanatic effects.
We report on Figs. 5, 6 and 7 the FVU and accuracy on Strehl-ratio, FWHM, photometry and astrometry as function of
the number of modelled layers for a median profile at Paranal and different off-axis position in the field (0.5×θ0,θ0,1.5×θ0

and 2× θ0). Curves envelopes are deduced from quartiles profiles [41]. An immediate observation is that 15 layers instead
of 35 can be used with little impact on the PSFs. If 1% errors are allowed, at least 7 layers are required. For such a profile,
photometry errors are at the level of 3%-level while astrometry is given at 5% of pixel size level in the worst case. External
profilers commonly deliver profiles with such a number of layers; these results suggest that model-dependent errors based
on that input are of the percent level.
This is an important take home message for anisoplanatism characterization and PSF-R on 10 m class telescopes: for a
field roughly given by θ0, we only need a representation of the C2

n(h) over 7-layers to model anisoplanatism signature onto
PSF at 1%-level.

4.2 Impact of heights and weights precision

We consider the 7-layer equivalent profile at Paranal [41] as the new reference for this section; our purpose is to evaluate
how much the precision on both weights and heights of turbulent layers impact the PSF. We denote h0

l and w0
l respectively

to present the lth layer heights and weights values of reference.
We apply a random variation on each layer, either on its weight wl or height hl. We define for each of those layers a
zero-mean Gaussian statistical variable - ηh and ηw -, by setting its standard-deviation to unity. We then define σh and
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Figure 6: Left : H-band long-exposure Strehl ratio Right : FWHM accuracy versus the number of reconstructed layer.
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σw as p-size vectors such as
hl(p, k) = h0

l + σh(p)× ηh(l, k)

wl(p, k) = w0
l × (1 + σw × ηw(l, k))

(36)

where k refers to the random selection and p to the value of deviation introduced. For height sensitivity, we allow up to
1km of variability, while weights are de-tuned by up to 30%. For each iteration k, we define a new 7-layer atmosphere
and get the PSF at any separation starting from the PSF on-axis as described earlier. We finally compute metrics as
a function of σh and σw, the separation θ and the random selection k. Metrics are averaged out over 1000 realizations
providing error bars as well. The choice of 1000 iterations is a compromise between the computation time and relevance
of results.
Figs. 9, 11, 10 and 12 provide curves of mean values at multiple separations versus weights and heights precision given by
σp. Also Fig. 8 illustrates FVU errors regarding accuracy on height and weight. Curves envelopes are not represented,
but range as similarly as they do in Figs. 5, 6 and 7 for a 7-layers profile.
Globally, PSF metrics deviate monotonically with respect to inputs precision level, with a speed that grows with the
angular separation from the guide star. It is an expected results: the PSF model differs more largely when introducing

more errors on inputs and for stronger anisoplanatism cases. Strehl ratio is known to follow a exp(θ
−5/3
0 ) law while

FWHM is proportional to θ
−5/3
0 . This latter is given by r0.(

∑
(h5/3.C2

n(h))3/5 that makes FWHM proportional to

r
−5/3
0 .

∑
(h5/3.C2

n(h)) and SR proportional to 1 + (r0−5/3.
∑

(h5/3.C2
n(h))) for small amount of variations on inputs.

Weights as introduced in Fig. 8 scale with r0−5/3; we directly see why FWHM/SR are supposed to be linear regarding the
weight. About the altitude, both FWHM and SR should not be linear in h, but because the exponential term involved in
the Strehl expression, the non-linear regime on the Strehl appears after 1km of altitude precision, while we do not have
this mitigation effect of the non-linear component on the FWHM that follows directly a 5/3 power law on altitude.
Strehl and FWHM are estimated within 1% accuracy as long as we ensure a precision of 10% on weights and roughly
200 m on heights. This latter means that heights of the retrieved 7-layers profile must be measured within 200 m precision
at 1 σ. Astrometry is more critical regarding the weight precision that must be ensured to a 7%-level to get an astrometry
of 10% of the pixel scale. Also, photometry is only impacted by height precision that also must provided within 200 m to
get 1% level of photometry. Such a level of accuracy on C2

n(h) weights is accessible from external profilers [4], but altitude
resolution reaches generally 500 m up to 1 km, leading to an accuracy of 5 up to 10% on PSF estimates, which can be
still acceptable for some science cases that are noise-limited for instance. Fig. 9 highlights the error introduced on weights
does not degrade the PSF linearly with the separation. Errors at 2×θ0 are lower compared to 1.5×θ0. There is a physical
explanation: at such a separation, the phase is largely decorrelated. Eq.18 involves both the phase auto-covariance and
cross-covariance terms. The latter converge towards zero when the separation goes to infinity. However these are the
terms that carry the sensitivity to the fractional weights of the C2

n(h) profile, which means the off-axis PSF is less and
less sensitive to weights precision for increasing separations.
How do our results translate to ELT-scales? Anisoplanatism variance degrades with (θ/θ0)5/3, where θ0 is only an
atmosphere-dependent variable; it therefore seems to us the findings ought to be conserved at an ELT scale, in a way
we would need 10ish layers to describe the anisoplanatism. However our analysis is focused on the anisoplanatism only
and does not include any tomography or multi-laser configuration. On top of that, others metrics may be more relevant
regarding the science case. As a conclusion, we have an order of magnitude for the number of layers of about 10 for
anisoplanatism characterisation only.

4.3 Metrics correlation

We have gathered all metrics values from previous analyses and compared to each other in order to track correlations. We
ended with the following regression relationship:

∆mag [mag] = 0.0067± 0.00052×∆SR [%]

∆ast [mas] = 0.25± 0.024×∆FWHM [%]
(37)

that allows to match accurately observations as illustrated in Fig. 13. We have noticed a quadratic dependency of the FVU
with the photometry (and so Strehl-ratio as well) accuracy; for accurate photometric measurements (∆mag¡ 5%), we have
FVU = 5.4± 0.6×∆mag,while for less accurate measurements, we get FVU = 24± 3×∆mag. We also observed a clear
correlation trend between FVU and astrometry accuracy values, given by FVU = 1.2± 0.2×∆ast, although we observed
a large discrepancy of samples around the linear regression. In summary, FVU is an efficient metric to characterize the
PSF; it defines a comprehensive scale value that depends on both PSF-related parameters and key science observables.
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Figure 8: FVU as function of Top: height accuracy Bottom: weight accuracy.
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Figure 9: Top: Strehl ratio Bottom: FWHM accuracy versus accuracy on weights estimation in H-band.
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Figure 10: Top: Strehl ratio Bottom: FWHM accuracy versus precision on heights estimation in H-band.
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Figure 11: Top: Photometry Bottom: astrometry accuracy versus precision on weights estimation in H-band.
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Figure 12: Top: Photometry Bottom: astrometry accuracy versus precision on heights estimation in H-band.
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Asterism side length 4.5”
Sources wavelength 670 nm
r0 (670 nm) 0.751
θ0 (670 nm) 0.854”
fractional r0 74.3% ,17.4%,8.2%
altitude layer (0.6, 5.2, 16.3) km
source height 98.5 km
Telescope diameter 8.13 m
DM actuator pitch 0.813 m

Table 4: HeNOS set up summary.

Bench Predicted

# LGS 2 3 4 2 3 4

SR[%] 4.1 6.0 5.0 3.2 4.2 4.2

FWHM [mas] 117 90 100 105 84 82

Aspect ratio 1.41 1.27 1.42 1.41 1.34 1.33

EE [%] 53 56 64 65 67 64

FVUPSF [%] x x x 5.8 4.1 6.0

Table 5: PSF characteristics measured on laboratory PSF compared to predict values from on-axis PSF and anisoplanatism.
EE is taken at 10λ/D and FVU values are estimated using Eq. 31 is derived using 60 pixels.

5 Towards ELTs : sensitivity analysis validated using HeNOS

HeNOS (Herzberg NFIRAOS Optical Simulator) is a MCAO test bench designed to be a scaled down version of NFIRAOS,
the first light adaptive optics system for the Thirty Meter Telescope [32, 40]. We used HeNOS in single-conjugated mode
with in closing the loop on ones of the 4 LGSs distributed over a 4.5”-side length square constellation, while atmosphere
is created using three phase screens. Summary of main parameters is given in Tab. 4. To simulate the expected PSF
degradation across the field on NFIRAOS at TMT, all altitudes are stretched up by a factor 11. Moreover, at the time we
acquired HeNOS data, science camera was conjugated at the LGSs altitude; LGSs beams are propagating along a cone
but are arriving in-focus at the science camera entrance.
We did acquire closed-loop data when guiding on a LGS in single-conjugated mode in July 2017. Two data sets have been
acquired respectively with and without phase screens in the LGSs beams. This second measurement allows to measure
the best Non common path aberrations (NCPA)-limited PSFs over all directions. See [27] about phase diversity/focal
plane sharpening methods deployed on HeNOS to calibrate NCPA.
Our purpose is to demonstrate the anisoplanatism model we developed allows for a good representation of PSF character-
istics within the expected accuracy given by the sensitivity analysis. We derive off-axis PSF from the PSF in the guide-star
direction by the use of Eq. 11. Although off-axis PSFs are largely dominated by anisoplanatism, static aberrations that
vary across the field must be taken into account to improve the PSF modeling.
We have compensated for on-axis NCPA and put back off-axis static aberrations for each individual direction by convolving
PSFs with best NCPA-limited PSF. These PSF includes both NCPA calibration and field static aberrations residual in
off-axis direction. OTF in the off-axis direction θ is thus yielded by the following calculation

OTF(θ) = OTF(0)× OTFstat(θ)

OTFstat(0)
×ATF∆(θ) (38)

where OTFstat(θ) is derived from observations without phase screens in direction θ while OTF(0) is the on-axis OTF
during AO operation on phase screens.
Because all sources are focused at the same height, we only need to consider angular anisoplanatism to extrapolate the
on-axis PSF to any other direction. Fig. 14 provides focal-plane images acquired in visible (670 nm) whilst closing the AO
loop on LGS 1 (top-left PSF). Anisoplanatism on LGS 2 (bottom-right), 3 (bottom left) and 4 (top right) is clearly visible
and produces a strong PSF elongation in the guide star direction. We also illustrate off-axis PSFs modelled derived from
Eq. 38. At a glance we are capable of reproducing the good shape and elongation of off-axis PSFs. We report in Tab. 5
a quantification of PSF characteristics measured versus estimated, that shows that we get 10%-level of accuracy on PSF
metrics and reach 5% of fraction of variance unexplained on all PSFs.
Residuals are mostly composed by a combination of high spatial frequencies patterns and a large structure oriented towards
the guide star direction. The first component may be introduced by residual speckles and static aberrations, while the
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HENOS o,-axis PSFs [670 nm]

Predicted PSFs from FPP

Residual FPP-Henos

Figure 14: Up : 670 nm HeNOS PSFs while running the AO loop on LGS 1 Middle : PSFs predicted from on-axis PSF
and anisoplanatism Down : Residual on the prediction.
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Figure 15: PSF FWHM predicted versus the absolute precision in altitude layers. Plots represent FWHM variations on each
individual off-axis PSF as the overall mean FWHM over PSFs as well.

second feature suggests the anisoplanatism effect is not perfectly well characterized. It echoes the previous discussion
on sensitivity: the parameters in Tab. 4 we have considered as inputs of our model have been measured with a certain
accuracy. Weights are estimated within 10% while heights are retrieved every 1 km.
To confirm whether such a level of accuracy may explain bias on PSF estimates, we have deliberately introduced a random
error on C2

n(h) following the methodology presented in Sect. 4. We illustrate in Fig. 15 how the off-axis PSF FWHM vary
regarding the layer height precision. At this range of separations (4.5” compared to 0.854” for θ0), the anisoplanatism
characterization does not depend on the weight precision as discussed earlier and it has been confirmed for HeNOS. In
Fig. 15, we highlight that the relative error on FWHM, averaged out the three LGS, reaches zero for an altitude precision of
750 m. From [40], altitude have been measured at every 1 km, which comply with our results. It does not mean we will get
a better PSF characterization by shifting all layers by this quantity; instead it confirms the precision on inputs parameters
translate into accuracy on PSF-metrics. In next works, we will particularly investigate for inverting the problem, in order
to retrieve the C2

n(h) profile from a collection of observed off-axis PSFs.

6 Conclusions

We carried out developments to characterise anisoplanatism in LGS (and NGS) systems in order to estimate off-axis PSFs
using a point-wise method that is accurate, numerically efficient and can potentially be used with 40 m class telescopes
featuring a large number of degrees of freedom. For a 7-layers median profile at Paranal, we have demonstrated our
modelling complies with physical-optics simulations to within 0.1% on the fraction of variance unexplained, together with
1% on PSF-related metrics, as Strehl ratio and FWHM, with a LGS and a NGS at respectively 20” and 40” off-axis. Stars
flux and position are conserved respectively at a mill-mag and µarcsec-level. Finally, the total anisoplanatism with LGS
is accurately split into a focal+angular and a tilt component.
With the purpose of determining how C2

n(h) knowledge constrains off-axis PSFs, we have investigated how input parameter
errors on the number of layers, its heights and weights translate into PSF errors. Firstly, we have highlighted for 10 m class
telescopes that percent-level accuracy on SR, FWHM and FVU can be met with seven turbulent layers. On tight binaries,
photometry can be retrieved at 3% while astrometry stays within 5% of pixel size. If we may admit 10% of accuracy on
PSF metrics, C2

n(h) must be provided within 500 m accuracy on altitude height. Those results can be extended to ELT
scale, with a conclusion that we need roughly ten layers to characterize at 1%-level a PSF on a 40 m class telescope.
We have finally validated this methodology on the HeNOS testbed where C2

n(h) values and its accuracy are known;
By introducing random errors on anisoplanatism model input parameters, we have improved the off-axis PSF FWHM
estimation. It demonstrates the precision in those parameters measurements by explaining the bias we have observed on
PSF off-axis PSF modelling.
Next works will aim at applying our analytical formulation to real on-sky observations of crowded fields at Keck for
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improving the PSF characterisation and the estimation of key science parameters. Moreover we are also focusing in
inverting the problem in order to retrieve the C2

n(h) profile from a collection of observed off-axis PSFs. Such a technique
is investigated for providing an accurate reconstructed PSF for single-conjugated AO systems for which C2

n(h) profile is
not measurable from the AO control loop data.
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[32] E Mieda, J.P. Véran, M Rosensteiner, P Turri, D Andersen, G Herriot, O Lardiere, and P Spano. Multi-Conjugate
Adaptive Optics Simulator for Thirty Meter Telescope: Design, Implementation, and Results. Journal of Astronomical
Telescopes, Instruments, and Systems, 2018.

[33] G. Molodij and G. Rousset. Angular correlation of Zernike polynomials for a laser guide star in adaptive optics.
Journal of the Optical Society of America A, 14:1949–1966, August 1997.

22



[34] Y. H. Ono, C. M. Correia, D. R. Andersen, O. Lardière, S. Oya, M. Akiyama, K. Jackson, and C. Bradley. Statistics of
turbulence parameters at Maunakea using the multiple wavefront sensor data of RAVEN. M.N.R.A.S , 465:4931–4941,
March 2017.

[35] J. Osborn. Scintillation correction for astronomical photometry on large and extremely large telescopes with tomo-
graphic atmospheric reconstruction. M.N.R.A.S , 446:1305–1311, January 2015.

[36] J. Osborn, R. Wilson, H. Shepherd, T. Butterley, V. Dhillon, and R. Avila. Stereo SCIDAR: Profiling atmospheric
optical turbulence with improved altitude resolution. In S. Esposito and L. Fini, editors, Proceedings of the Third
AO4ELT Conference, December 2013.
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