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ABSTRACT
Ground-based astronomy is severely limited by atmospheric turbulence, resulting in a large
point-spread function (PSF) and poor imaging resolution. Even imaging with adaptive optics
(AO) cannot correct the aberrated wavefront completely and residual turbulence still corrupts
the observation. Thus the consequences of turbulence on the PSF are of primary interest
when building any ground-based telescope. The power spectral density (PSD) of a spatially
stationary turbulent phase carries all the information needed for describing the long-exposure
PSF. We then develop an analytical description of the long-exposure PSF as a series expansion
of the aberrated phase PSD. Our description of the PSF given the PSD of the phase is a simple
theoretical way to describe the impact of turbulence on the PSF. We also show agreement with
previous articles when restricting our model to its first expansion order. Finally, we derive
applications of our formula to some particular cases, such as Kolmogorov or von Kármán
models or the AO correction impact on the PSF.

Key words: instrumentation: adaptive optics – instrumentation: high angular resolution –
methods: analytical.

1 IN T RO D U C T I O N

The point-spread function (PSF) is critical information for any op-
tical system, since it is directly related to the imaging resolution.
Diffraction-limited optics with a circular aperture results in the
famous Airy pattern. However, in practice, the wavefront of the
observed scene suffers from phase aberrations during its propaga-
tion through an inhomogeneous medium, reducing imaging per-
formance. In the case of ground-based telescopes, the atmospheric
turbulence distorts the wavefront and severely limits the resolu-
tion of the telescopes (Roddier 1981). Adaptive optics (AO) is a
technique using deformable mirrors to reduce phase aberrations
by flattening the wavefront back (Roddier 1999). Nevertheless, the
AO correction is not perfect and some phase aberrations remain,
especially the high spatial frequencies, which are not seen by the
wavefront sensor and thus not corrected.

On the one hand, Roddier (1981) developed a relation to find the
long-exposure PSF from the phase power spectral density (PSD).
The formula is exact, but the PSD/PSF link is not direct, since it
requires a double Fourier transform. On the other hand, Racine
et al. (1999), Bloemhof et al. (2001) and Jolissaint & Veran (2002)
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derived a first-order approximation of the Roddier method. The
advantage is that it explains the direct link between the PSD and
PSF, by cancelling the double Fourier transformation; however, the
drawback is an inaccuracy due to the first-order approximation.

The two methods above illustrate the very close relation between
the phase PSD and the PSF, each one with its advantages and draw-
backs. In this article, we use the Roddier method to derive an exact
expression for the PSF, with a direct analytical PSD/PSF link with-
out requiring multiple Fourier transforms. Indeed, our method relies
on a convolutional formalism, where the PSF is described as an in-
finite sum of convolutive orders of the phase PSD. Finally, when
restricting our expression to its first order, we find the approxima-
tions of Racine et al., Bloemhof et al. and Jolissaint & Veran.

Straightforward applications involve practical cases where the
fully turbulent, or AO partially corrected, phase is not known for
each time step, but its PSD follows well-known statistics (e.g.
Kolmogorov, von Kármán law, AO residual PSD). As a conse-
quence, our model can easily be fed with available information on
the turbulence. Our direct expression linking the PSD and PSF also
allows for simple estimation of atmospheric parameters directly
from the PSF.

Section 2 develops our analytical method, which involves writing
the PSF in terms of orders of the residual aberrated phase PSD.
This method is general and can be used for any spatially stationary
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phase. Section 3 shows some applications related to Kolmogorov
or von Kármán statistics. We give an explicit dependence of the
PSF shape on the Fried parameter r0 (Fried 1966). We also derive
a simple description for the halo for the long-exposure PSF using
AO correction. Section 4 concludes our work. We discuss future
applications of our model.

2 ME T H O D

2.1 Factorization of the optical transfer function

Let us use P to denote the entrance pupil transmission function
(which may include static aberrations), h the long-exposure PSF
and ψ the complex phasor (Goodman 1968), i.e. the complex scalar
field when observing a point source. Scintillation is neglected, so
the complex phasor has unit amplitude. The long-exposure optical
transfer function (OTF) is given by the autocorrelation of the phasor
on the pupil (Goodman):

h̃(ρ/λ) = 1

S

“
P (r)P (r + ρ)〈ψ(r, t)ψ(r + ρ, t)〉t dr, (1)

where S ensures normalization on the surface of the pupil, 〈 · 〉t

denotes the time average and h̃ stands for the Fourier transform of
the PSF h. We then write the phasor ψ as the complex exponential
of the aberrated phase φ:

ψ(r, t) = eiφ(r,t). (2)

Roddier (1981) has shown that, assuming Gaussian statistics of
the phase, the long-exposure OTF can be written as

h̃(ρ/λ) = 1

S

“
P (r)P (r + ρ)e− 1

2 Dφ (r,ρ) dr, (3)

where Dφ(r, ρ) is the structure function of the residual phase, de-
fined as

Dφ(r, ρ) = 〈|φ(r, t) − φ(r + ρ, t)|2〉t . (4)

Assuming a spatially stationary residual phase, the dependence
on the position r vanishes and only the separation ρ remains. This
stationarity hypothesis is verified for a purely turbulent phase and
is a reasonable approximation in the case of partial AO correction
(Conan 1994). The approximation is better for larger aperture tele-
scopes, since the non-stationarity of the residual phase essentially
affects the edges of the pupil. The structure function then simplifies
to

Dφ(r, ρ) = Dφ(ρ) = 〈〈|φ(r, t) − φ(r + ρ, t)|2〉t 〉r . (5)

The OTF can then be separated into two OTFs, the telescope one
and the atmospheric one:

h̃(ρ/λ) = h̃T(ρ/λ) · h̃A(ρ/λ), (6)

with the telescope OTF

h̃T(ρ/λ) = 1

S

“
P (r)P (r + ρ) dr (7)

and the atmospheric OTF

h̃A(ρ/λ) = e− 1
2 Dφ (ρ). (8)

Even though this expression may give the PSF by a numerical
Fourier transform, it does not exhibit an explicit dependence on the
PSD of the phase. It is then necessary to modify the equation to find
the direct link we are looking for.

2.2 Expression for the PSF

Assuming the phase variance is finite, let us define the autocorrela-
tion of the phase as

Bφ(ρ) = 〈〈φ(r, t)φ(r + ρ, t)〉t 〉r . (9)

The equality

Dφ(ρ) = 2[Bφ(0) − Bφ(ρ)] (10)

follows directly. Using this identity and the series expansion of the
exponential, one obtains the atmospheric OTF:

h̃A(ρ/λ) = e−Bφ (0)eBφ (ρ) = e−Bφ (0)
+∞∑
n=0

Bφ(ρ)n

n!
. (11)

We use F{f }(u) to denote the Fourier transform operator applied
to the function f, evaluated in u. Using the linearity of the Fourier
operator on the infinite sum, the PSF can be written as

hA(−u) = e−Bφ (0)
+∞∑
n=0

F{Bφ(ρ)n}(u)

n!
, (12)

where ρ/λ and u are variables conjugated by the Fourier transform.
Since the Fourier transform links multiplication and convolution,
we define the convolutive orders of a function W as

{�n W } (u) =
⎧⎨
⎩

δ(u) if n = 0,

W (u) if n = 1,

(W � W � ... � W )(u) if n ≥ 2,

(13)

where δ(u) denotes the Dirac distribution. Then the PSF can be
written as

hA(−u) = e−Bφ (0)
+∞∑
n=0

�n F{Bφ(ρ)}(u)

n!
. (14)

By the Wiener–Khintchine theorem, the Fourier transform of the
autocorrelation is equal to the PSD of the phase. We write the PSD
of the phase as Wφ and, taking care of coordinate dilation for the
Fourier transform,

hA(−u) = e−Bφ (0)
+∞∑
n=0

{
�n Wφ/λ2

}
(u/λ)

n!
. (15)

This equation states that the atmospheric long-exposure PSF can
be written as an infinite sum of convolutive orders of the phase
PSD, under the assumption of spatially stationary phase. In other
words, the long-exposure PSF can be retrieved when the turbulent
phase for each time step is unknown but its PSD is well-known.
This is the case for a long-exposure observation through a turbulent
atmosphere, without or with AO. Then, using equation (6) to retrieve
the total PSF, atmospheric and diffraction, we can write directly

h(u) = hT(u) � hA(u). (16)

The convolutive formalism of equation (15) can be found in the
literature, but for a short-exposure PSF only: see Sivaramakrishnan
et al. (2002) and Perrin et al. (2003). These authors described the
short-exposure PSF as a double infinite sum on the instantaneous
phase. As we show in this article, based on Roddier’s method, the
long-exposure PSF allows simplification to a unique infinite sum in
the phase PSD.
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Figure 1. Three models of phase PSD considered in the following appli-
cations: von Kármán (plain), perfect AO as truncated Kolmogorov (dashed)
and more realistic AO correction (dot-dashed).

3 A PPLICATIONS

3.1 Factorization of the r0 dependence

For a usual turbulence spectrum, such as Kolmogorov or von
Kármán, there is a direct dependence of the PSF on the Fried pa-
rameter r0. Let us consider the von Kármán spectrum:

Wφ(f ) = 0.023r
−5/3
0

(
1

L2
0

+ f 2

)−11/6

, (17)

where L0 is the external scale of the turbulence. The von Kármán
spectrum for L0 = 8 m is plotted in Fig. 1. Letting L0 → ∞, one
would find the Kolmogorov spectrum.

Let us now extract the r0 dependence from the PSD. We define
Yφ as the PSD of the phase with unit r0, and scaled by the 1/λ2

factor. Then, by the definition of Yφ ,

Wφ(f )

λ2
= r

−5/3
0 Yφ(f ). (18)

The convolutive orders of Yφ can be computed numerically only
once for a given L0. The PSF for different values of r0 is then a
weighted sum of these components. Plugging Yφ into equation (15)
gives the PSF

hA(−u) = e−Bφ (0)
+∞∑
n=0

r
−5n/3
0

n!

{
�n Yφ

}
(u/λ). (19)

The impact of the strength of the turbulence on the PSF is then
more explicit: for high r0 (weak turbulence), the high-order con-
volutive terms have little importance. Consequently, the shape of
the PSF is dominated by low convolutive orders. For low r0 (strong
turbulence), the higher convolutive orders gain more importance in
describing the PSF shape.

For a practical application, the infinite sum is truncated up to
a number Nmax of orders. One would like to get an idea of this
number of terms to consider in order to have an accurate PSF
model. The number Nmax depends on r0, but also on the evolution
of the Yφ convolutive orders with n. Let us call E the integral of
Yφ , or, equivalently, the phase variance for unit r0. We find a semi-
empirical approximation (see explanations in Appendix) for values
of u in the halo:{

�n Yφ

}
(u/λ) ≈ En−1Yφ(u/λ). (20)

Dropping the term n = 0 (particular behaviour of the Dirac at
u = 0), we obtain a rough estimate of the PSF behaviour as regards

Figure 2. En−1r
−5n/3
0 /n! versus n, given for E = 0.18. The different curves

are plotted for different values of the Fried parameter r0. All curves pass a
maximum before decreasing. The vertical lines help in visualizing the Ncrit

criterion for which the maximum of the curves is reached.

orders:

∀u ∈ {halo} , hA(−u) ≈ Yφ(u/λ)e−Bφ (0)
+∞∑
n=1

En−1r
−5n/3
0

n!
. (21)

The terms of the series are decreasing in magnitude when the
following constraint on n is satisfied:

Enr
−5(n+1)/3
0

(n + 1)!
<

En−1r
−5n/3
0

n!
⇐⇒ n > Er

−5/3
0 − 1. (22)

Let us define Ncrit as the smallest integer satisfying the inequality.
One cannot truncate the sum before Ncrit or one would miss terms
of higher magnitude. This basic constraint gives a lower bound on
the number of terms to be considered in the series for an accurate
description of the PSF: mathematically, we should ensure Nmax >

Ncrit. The criterion can be visualized in Fig. 2 for different values of
r0 and a chosen E = 0.18 (corresponding to the perfect AO correction
up to the cut-off frequency fAO = 0.625 m−1; see Section 3.3). Once
again, we see that more terms are needed for high phase variance
σ 2 = Bφ(0) = Er

−5/3
0 . In the case of AO correction, for a given r0,

E depends mainly on the AO cut-off frequency.

3.2 Validation for von Kármán turbulence

In order to test the validity of the formula, we consider a von
Kármán spectrum for the turbulent phase, given equation (17). On
one hand, the PSF is generated using the atmospheric OTF as an
exponential of the phase structure function equation (8). On the
other hand, we use our expression giving the PSF directly with the
PSD of the phase equation (15). Fig. 3 shows the PSF for Nmax =
5 and Nmax = 30 convolutive orders. For a wavelength of λ =
1600 nm, convergence requires approximately seven orders. This
is in accordance with our minimal criterion equation (22), which
gives Ncrit = 4 at this wavelength. For a shorter wavelength (λ =
800 nm), the PSD is higher and the convergence is much slower and
requires approximately 30 orders. This criterion gives Ncrit = 22; it
confirms the fact that the criterion is only a lower bound, while in
practice many more orders can be required to reach convergence.

This test shows the validity of our formula with respect to the
Roddier method for the OTF. This example illustrates the difficulty
in approximating the PSF, especially for shorter wavelengths, by the
first order of the PSD for a full von Kármán spectrum. The method
is more suited for the low-energy PSD obtained with AO correction,
as developed in the following subsection.
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Figure 3. PSF computed from a von Kármán spectrum, L0 = 8 m and r0 =
12 cm at λ = 400 nm. Coloured lines show the PSF for two wavelengths:
λ = 800 nm and λ = 1600 nm. Plain: PSF computed by the Roddier OTF
method. Dashed: PSF computed by the convolutive orders method. Left
panel: seven orders. Right panel: 30 orders.

Figure 4. PSF computed for the given AO spectrum. Plain curve: PSF
computed by the OTF method. Dashed: PSF computed by the convolutive
orders method. Left panel: three orders. Right panel: 8 orders.

3.3 Truncated Kolmogorov and adaptive optics

Let us consider a simplified adaptive optics system with a linear
number of actuators NAO in the pupil plane of aperture diameter D.
All spatial frequencies of the turbulent phase below the AO cut-off
frequency fAO = NAO/(2D) are assumed to be perfectly corrected by
the AO system. All frequencies above fAO are not seen by the AO
system and follow Kolmogorov statistics. The PSD of the residual
phase can be written as

Wφ(f ) =
{

0 if f < fAO,

0.023r
−5/3
0 f −11/3 if f ≥ fAO.

(23)

This shape of the AO-corrected PSD is plotted in green in Fig. 1,
for a chosen AO cut-off frequency fAO = 0.625 m−1, corresponding
to NAO = 10 actuators for a D = 8 m aperture. In practice, the
centre of the PSF is dominated by highly energetic low-frequency
modes, such as residual tip-tilt. Our simple model of a perfect AO
high-pass filter does not take these residues into account, inducing
poor fidelity in the centre of the computed PSF. However we can
expect a correct description of the halo. Indeed, Fig. 4 shows good
agreement between the two PSF computation methods – using a
numerical Fourier transform equation (8) or using the convolutive
orders equation (15). Let us note that the r0 factorization in Sec-
tion 3.1 is still applicable for numerical computation efficiency with
our method for convolutive orders of the PSD. The atmospheric PSF
is then convolved by hT to take into account the telescope contribu-
tion, equation (16). At first order, we retrieve the shape developed in

Figure 5. Impact of Wφ convolutive orders on the PSF. Each order is also
convolved with the pupil PSF, called hT in the text. Left: r0 = 20 cm. Right:
r0 = 10 cm. The three orders n ∈ {0, 1, 2} are respectively plotted as
coloured dashed lines. The PSF based on the Roddier method, from the
OTF in e−Dφ/2, is plotted in plain black.

Racine et al. (1999), with a coherent core made of the Airy pattern
and a turbulent halo depending on the residual PSD. The difference
is that our method includes all convolutive orders of the PSD in
the description of the PSF. Higher orders can be of high magnitude
when the PSD is of high energy E or for strong turbulence (Fig. 5).
In particular, the convolution folds back energy from the PSF halo
into the corrected area, reducing contrast in this zone. Magnitudes
of higher orders can be reduced (and the contrast in the corrected
area then increased) by decreasing the integral E of Yφ , which is
strongly dependent on the cut-off frequency fAO and the wavelength
λ (Fig. 4). A few orders, Nmax  3–8 in our example, are required
to describe the AO-corrected PSF, since there is little energy in
the PSD, to be compared with the Nmax > 30 orders required to
describe the pure von Kármán turbulent phase. Our criterion gives
respectively Ncrit = 6 for λ = 400 nm and Ncrit = 1 for λ = 800 nm.
This is in agreement with the PSFs plotted in Fig. 4, since conver-
gence is reached at Nmax = 8 for λ = 400 nm and Nmax = 3 for λ

= 800 nm.

3.4 Modelling errors in the AO system

We previously considered a perfect AO system up to the cut-off
frequency, with a phase PSD identically null for f < fAO. However,
in practice a residue of phase PSD remains at low frequencies,
due to errors of the AO system such as wavefront sensor (WFS)
noise, corrective-loop delay or deformable mirror fitting error. These
error terms can be measured or modelled (Fusco et al. 2006) for a
finer description of the AO partial correction. Plugging these errors
into our PSD, we can obtain a better approximation of the PSF,
especially at the central peak. Methods based directly on Roddier’s
OTF formula have already been implemented (Rigaut, Véran &
Lai 1998; Jolissaint 2010; Correia et al. 2017). Our convolutive
formalism then offers a direct understanding of the link between
the phase PSD and the PSF in the results provided by Roddier’s
OTF-based algorithms. For extreme AO correction, we find that the
PSF behaves as the phase PSD (first-order approximation), whereas
the following PSD convolutive orders are required for lower AO
correction quality.

We choose here to model the residual phase PSD due to AO errors
by a Moffat function (Moffat 1969). The shape of the residual PSD
can be written as

Wφ(f ) =
{

A(1 + f 2/α2)−β + B if f < fAO,

0.023r
−5/3
0 f −11/3 if f > fAO,

(24)
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Figure 6. PSF computed for the given AO spectrum. Plain curve: PSF
computed by the OTF method. Dashed: PSF computed by the convolutive
orders method. Left panel: three orders. Right panel: 15 orders.

where A, B, α and β are the Moffat parameters associated with
the error budget for the corrected phase. The shape of the PSD for
arbitrary values of Moffat parameters is plotted in blue in Fig. 1. The
resulting PSD is in between the von Kármán uncorrected turbulence
and perfect AO correction.

Fig. 6 shows the convolutive orders associated with the discussed
PSD, for Nmax = 3 and Nmax = 15. The number of terms required is
higher than in the case of a perfect AO system, due to higher energy
under the PSD, but lower than in the case of uncorrected turbulence.

4 C O N C L U S I O N S

For long-exposure observations, highly time-variable phase aberra-
tions average out and only the statistical behaviour of the turbulence
remains. We consequently derived a general method to compute the
long-exposure PSF, given only the PSD of the turbulent phase.
When restricting our model to its first-order approximation, we find
agreement with previous works on the subject (Racine et al. 1999;
Bloemhof et al. 2001). We have shown that the higher convolutive
orders have more impact on the PSF for stronger turbulence and
must be taken into account for low-Strehl systems.

A hypothesis of the spatial stationarity of phase over the pupil is
required, which is in agreement with Kolmogorov and von Kármán
statistics. Our method is also applicable to the partially corrected
phase with adaptive optics. Finally, we extracted the r0 dependence
for a better understanding of the PSF shape variation with turbulence
strength. It is then possible to obtain a direct estimation of r0 given
the PSF halo or, reciprocally, an estimation of the PSF halo given
r0. We plan to use this model for an accurate description of the
halo for an AO-corrected PSF. The link we make between the PSD
and the PSF can be used as a direct measurement of the Fried
parameter r0 from a PSF observed for a star. Finally, the strong
correlation between the AO-corrected PSD and the shape of the
PSF can provide a tool for AO system diagnostics (Jolissaint &
Veran 2002).
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A P P E N D I X A : O N TH E C O N VO L U T I V E
APPROX IMATION

Let us consider a PSD shape verifying the two following hypotheses:

(i) the majority of the PSD energy is in the centre
(|u| � 1) rather than in the halo (|u| � 1);

(ii) the halo is slowly varying.

These hypotheses are verified for the −11/3 power law of the Kol-
mogorov spectrum, in particular.

Let us now consider u, a coordinate in the halo. The PSD auto-
convolution can then be written as

Yφ � Yφ(u) =
“

R2
Yφ(t)Yφ(u − t) dt. (A1)

The R2 domain is then separated into three subdomains:

(i) |t| � 1, where Yφ(t) is large due to the first hypothesis and
Yφ(u − t) is slowly varying due to the second one (when choosing
u � 1);

(ii) |u − t| � 1, where the opposite behaviour occurs;
(iii) the remaining domain of R2, called A, where both Yφ(t) and

Yφ(u − t) are small due to the first hypothesis.

Fig. A1 shows an example of these domains for a given u and a
PSD shape as described in Section 3.4. The convolutive integral of
Yφ is separated into the three domains described above. The integral
over the first domain is“

|t|�1
Yφ(t)Yφ(u − t) dt  Yφ(u)

“
|t|�1

Yφ(t) dt. (A2)

The approximation we just made relies on the fact that |u| � 1 is in
the halo and |t| � 1, so u − t is still in the halo. Slow variations in
the halo (second hypothesis) allow us to approximate Yφ(u − t) 
Yφ(u). We make the same reasoning in the second domain, with a
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Figure A1. Visualization of the three different domains for a given con-
volutive shift u. The colour map shows the product Yφ (t)Yφ (u − t). The
intensity plot is on a logarithmic scale.

coordinate change x = u − t , so we find“
|u−t|�1

Yφ(t)Yφ(u − t) dt  Yφ(u)

“
|x|�1

Yφ(x) dx. (A3)

The first integrals in the two cases are then identical. Regarding
the third domain, it corresponds to the convolution of two small
terms (first hypothesis) and consequently is assumed to be much
less energetic than the other domains. We simply write it as“

A
Yφ(t)Yφ(u − t) dt = η(u)E, (A4)

where η(u) is a small-valued function and E denotes the integral of
Yφ on R2. Summing the partial convolutions over the three domains,
one obtains the full convolution

Yφ � Yφ(u)  2Yφ(u)

[“
|t|�1

Yφ(t) dt
]

+ η(u)E. (A5)

Finally, using the first hypothesis, the integral above contains the
majority of the energy. We can then write“

|t|�1
Yφ(t) dt = κE, (A6)

where κ ∈ ]0, 1] represents the ratio of energy in the area |t| � 1. It
depends on the shape of Yφ ; in practice, we find κ  0.85 for our AO
truncated Kolmogorov. Using κ , the convolution can be rewritten
as

Yφ � Yφ(u)  2κYφ(u)E + η(u)E. (A7)

If we neglect the η(u)E term, one can easily iterate by recurrence
over the convolutive orders to find

{�nYφ}(u)  (2κE)n−1Yφ(u). (A8)

Errors in this equation come from the different approximations we
made and the modification of shape for {�nYφ}, especially in the
centre (u � 1). One should recall that this expression is only true
in order of magnitude, since the approximations propagate through
the convolutive orders.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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