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Abstract This paper investigates the mass-sensing capabil-
ity of an array of a few identical electrostatically actuated
microbeams, as a first step toward the implementation of
arrays of thousands of such resonant sensors. A reduced-
order model is considered and Taylor series are used to sim-
plify the nonlinear electrostatic force. Then the Harmonic
Balance Method associated with the Asymptotic Numerical
Method, as well as time-integration or averaging methods
are applied to this model and their results are compared.
In this paper, two- and three-beam arrays are studied. The
predicted responses exhibit complex branches of solutions
with additional loops due to the influence of adjacent beams.
Moreover, depending on the applied voltages, the solutions
with and without added mass exhibit large differences in
amplitude which can be used for detection. For symmetric
configurations, the symmetry breaking induced by an added
mass is exploited to improve mass sensing.

Keywords MEMS · mass sensing · resonator array ·
nonlinear dynamics · bifurcation · symmetry breaking ·
electrostatic actuation

1 Introduction

Today, micro and nano beam resonators are widely used
as sensors in several domains due to their high accuracy
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combined with a reduced size, a target application being
the measure of infinitesimal mass in biological environment:5

biomolecule, DNA, protein, enzyme, etc. A lot of research
works focus on improving the sensitivity of a single mass
sensor by reducing the sensor size, increasing the signal-to-
noise ratio or exciting the sensor in nonlinear regime [1,2,
3]. Some researchers considered higher bending modes of10

vibration [4,5] while other researchers showed that using
the first torsional mode is more efficient than the first bend-
ing mode [6]. Eichler et al. [7] examined the role played by
symmetry breaking due to the bending effect in a mechani-
cal resonator.15

Exploitation of nonlinear phenomena to improve perfor-
mance has recently received significant attention. A review
of past, present and future research on the use of nonlinear
phenomena in micro-electro-mechanical systems (MEMS)
was proposed by Rhoads et al. [8]. Younis et al. [9] used the20

pull-in instability phenomenon of a microresonator to design
a new method for mass detection in which the jump to pull-
in acts as a switch with a mass threshold. Ruzziconi et al.
[10] studied a microbeam under axial load and electric exci-
tation. The robustness of stable motions, the disappearance25

of main attractors and potential jumps to pull-in under dis-
turbances were studied with dynamical integrity concepts.
Kumar et al. [11] provided a mass sensing method relying
on jumps at limit points of the nonlinear frequency response.
Nguyen et al. [12] improved the method with an automatic30

reinitialization exploiting hysteresis cyles and paving the way
for real-time detection. Zhang et al. [13] and Thomas et al.
[14] studied the parametric resonance and showed that the
sensitivity is highly increased due to the sharpness of am-
plitude transition in this regime. Other research focused on35

canceling the nonlinearities. In [15], Kacem et al. showed
that the combination of simultaneous resonance and com-
pensation of nonlinear terms can lead to dynamic stabiliza-
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tion of the nanoresonator even for amplitudes of vibration
close to the gap.40

At present time, using MEMS resonators makes the de-
tection of very tiny mass possible. For example, a mass sen-
sor operating at ultra-high frequency (1.3 GHz) is capable
of detecting 10−18g [16] and recently a MEMS-based mass
spectrometer accessed masses above 500kDa (1Da= 1.66×45

10−27kg) [17]. However, it is difficult to detect simultane-
ously many particles and separate one of them in order to
drop it onto a resonant microbeam. Detecting several masses
at the same time legitimates the research on resonator arrays.

Current technology enables the fabrication of large ar-50

rays composed of a few as well as of thousands of MEMS,
the dynamics of which results from electrical, magnetical
and mechanical couplings. The dynamical behavior of such
arrays is studied experimentally or theoretically in several
references [18,19,20]. Theoretical models are still not fully55

established and exploited because of the complexity of non-
linear couplings and variety of phenomena. Some recent works
started dealing with these problems. For example, Porfiri
[21] showed that the vibrational properties of an array of
identical microplates can be tuned by properly adjusting the60

bias voltage applied across adjacent microplates. Karabalin
et al. [22] considered an array of two nanoresonators cou-
pled by an elastic force and independently excited around
their resonant frequencies. They showed that the linear and
weakly nonlinear responses of a nano-resonator can be mod-65

ified by the excitation of the other nano-resonators. When
two resonators are strongly excited in their nonlinear do-
main, the response curves become more complex. In the
same way, Lifshitz et al [19] showed that increasing the
number of oscillators makes the branches of solutions more70

and more numerous.
In addition to the numerous branches of solutions, modal

couplings also occur in the dynamics of a beam array. For
example Gutschmidt et al. studied a beam array in a 1:1 res-
onance configuration as well as 3:1 internal resonances near75

pull-in [23,24,25,26]. Kambali et al [27] focused on un-
derstanding the couplings of several modal frequencies and
their tuning mechanisms. In the study, modal frequencies
were tuned by adjusting the continuous actuation voltage in
order to rescale the beam array into a specific configuration.80

Studies on modal couplings and internal resonances not only
permit a better understanding of the dynamics of beam ar-
rays, but also give some insights on specific configurations
such as the symmetric one.

In this paper, an array of n identical clamped-clamped85

beams in bending is considered in order to study the re-
sponse change due to a very small added mass. This re-
sponse change is analyzed numerically for various numbers
of beams and several configuration of the beam array such as
asymmetric and symmetric ones. The n beams of the array90

are coupled only by electrostatic forces and exhibit complex
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Fig. 1 Model of the clamped-clamped microbeam array.

dynamical behaviors which are used for mass sensing. This
paper is organized as follows. In Section 2, a reduced-order
model for an array of n clamped-clamped beams is consid-
ered. It is obtained through Galerkin expansion onto a fi-95

nite number of linear eigenmodes and solved numerically by
means of the Harmonic Balance Method (HBM) combined
with the Asymptotic Numerical Method (ANM). In Section
3, the case of a two-beam array is investigated. The response
change due to the influence of the adjacent beam is analyzed.100

Approximated solutions are discussed and mass detection
mechanisms are introduced according to the specific dynam-
ical behaviors of the beams. In Section 4, a three-beam ar-
ray is examined. Two cases are distinguished: asymmetric
and symmetric actuations. An original mass sensing princi-105

ple based on the symmetry breaking event in a symmetrical
configuration of the beam array is presented. An analysis re-
lated to location, possible detection as well as quantification
of the added mass is conducted. Conclusions are drawn in
Section 5.110

2 Model

Let an array of n clamped-clamped beams be considered as
sketched in Fig. 1. All the beams are assumed to have iden-
tical dimensions ( length l, width b, height h and moment of
inertia I) and identical material properties (Young’s modulus115

E and material density ρ). Each beam is subject to the elec-
trostatic forces due to its adjacent beams. The two beams at
both ends of the array (beams #0 and #(n+1)) are prevented
from any lateral motion and just serve for actuation. Let g
be the gap between two adjacent beams.120

2.1 Case without added mass

Let the lateral deflection be in the xz plane and let w̃s be
the lateral displacement along the z-axis of the sth beam
and Vs,s+1 = Vdcs,s+1 +Vacs,s+1 cos(Ω̃ t̃) the voltage between
sth and (s+1)th beams. Ω̃ , t̃ denote physical frequency and125
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time respectively. Vdc, Vac denote bias and alternative volt-
ages respectively. The sth beam is subject to two electrostatic
forces

– the first one due to the (s+1)th beam

f e
s,s+1 =

1
2

bε0Cn
V 2

s,s+1

(g+ w̃s+1− w̃s)2 . (1)

– the second one due to the (s−1)th beam130

f e
s−1,s =−

1
2

bε0Cn
V 2

s−1,s

(g+ w̃s− w̃s−1)2 . (2)

ε0,Cn are the dielectric constant and fringing field coeffi-
cient respectively. Consequently the equation of motion of
the sth beam in a n-beam array is:

EI
∂ 4w̃s(x̃, t̃)

∂ x̃4 +ρbh
∂ 2w̃s(x̃, t̃)

∂ t̃2 + c̃
∂ w̃s(x̃, t̃)

∂ t̃
−[

Ñs +
Ebh
2l

∫ l

0

(∂ w̃s(x̃, t̃)
∂ x̃

)2 dx̃
]

∂ 2w̃s(x̃, t̃)
∂ x̃2

=
1
2

ε0
bCnV 2

s,s+1(
g+ w̃s+1− w̃s

)2 −
1
2

ε0
bCnV 2

s−1,s(
g+ w̃s− w̃s−1

)2 , (3)

with s = 1, ..,n and Ñs the residual axial force acting on the
sth beam and resulting from an externally applied load or135

from manufacturing stress. Beams #0 and #(n+1) are totally
clamped, so:

w̃0(x̃, t̃) = w̃n+1(x̃, t̃) = 0. (4)

Introducing the following non-dimensional parameters

ws =
w̃s

g
; x =

x̃
l

; t =
t̃
τ

; Ω = Ω̃τ;

c =
c̃l4

EIτ
; Ns =

Ñsl2

EI
; α1 = 6

(g
h

)2; α2 = 6Cn
ε0l4

Eh3g3 ,

in Eq. (3), yields:

∂ 4ws

∂x4 +
∂ 2ws

∂ t2 + c
∂ws

∂ t
−
[
Ns +α1

∫ 1

0

(∂w
∂x

)2 dx
]

∂ 2ws

∂x2

= α2
V 2

s,s+1(
1+ws+1−ws

)2 −α2
V 2

s−1,s(
1+ws−ws−1

)2 . (5)

with s = 1, ..,n and the boundary conditions being:140

ws(0, t) = ws(1, t) =
∂ws

∂x
(0, t) =

∂ws

∂x
(1, t) = 0, (6)

w0(x, t) = wn+1(x, t) = 0, (7)

By assumption, the n identical beams have identical linear
undamped eigenmodes φk. A Galerkin expansion of the lat-
eral displacement ws is expressed with the first Nm modes:

ws(x, t)≈
Nm

∑
k=1

φk(x)as
k(t). (8)

Let145

Xs(x, t) = ws+1(x, t)−ws(x, t), (9)

bs
k(t) = as+1

k (t)−as
k(t), (10)

be the relative displacement and generalized coordinates be-
tween two consecutive beams. The relations between Xs(x, t)
and bs

k(x, t) are:

1+ws+1−ws = 1+
Nm

∑
k=1

φk(x)bs
k(t) = 1+Xs, (11)

1+ws−ws−1 = 1+
Nm

∑
k=1

φk(x)bs−1
k (t) = 1+Xs−1. (12)

Multiplying by the denominator or using Taylor series are
two methods to treat the electrostatic force in Eq. (5). Using150

the multiplication by (1+ws+1−ws)
2× (1+ws−ws−1)

2

in Eq. (5) introduces additional terms with strong couplings
and increases the complexity of the problem. On the other
hand, when using truncated Taylor series, the accuracy is
usually bad at high amplitude [28]. Since the resonators will155

operate at small amplitudes only (max ws ≤ 0.3), a seventh-
order Taylor series is used [29]:

1
(1+ws+1−ws)2 '1−2Xs +3X2

s

−4X3
s +5X4

s −6X5
s +7X6

s −8X7
s , (13)

1
(1+ws−ws−1)2 '1−2Xs−1 +3X2

s−1−4X3
s−1

+5X4
s−1−6X5

s−1 +7X6
s−1−8X7

s−1.

(14)

The Galerkin procedure requires to multiply Eq. (5) by φi
(i = 1, ..,Nm) and to integrate the result from 0 to 1 to ob-
tain the second-order differential equations in time which160

are written in matrix form as follows:

äs +C0ȧ
s +K0a

s−
(
N +α1T s

2 (a
s)
)
KTa

s =

α2V 2
s,s+1Q0 +α2V 2

s,s+1

[
Q1 +Qs

2(b
s)+Qs

3(b
s)+Qs

4(b
s)

+Qs
5(b

s)+Qs
6(b

s)+Qs
7(b

s)

]
bs−α2Vs−1,sV 2

s−1,sP0

−α2V 2
s−1,s

[
P1 +P s

2 (b
s−1)+P s

3 (b
s−1)+P s

4 (b
s−1)

+P s
5 (b

s−1)+P s
6 (b

s−1)+P s
7 (b

s−1)bs−1
]
, (15)

where s = 1, ..,n, as = [as
1,a

s
2, ...,a

s
Nm

] and an+1 = a0 = 0
resulting from Eq. (7). The matrices in Eq. (15) are detailed
in Appendix A.

The HBM associated with the ANM (HBM+ANM) [30]165

is used to solve Eq. (15). The ANM is preferred to a more
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conventional Newton-Raphson method because of the ro-
bustness of the ANM-based continuation and its capability
to follow very complicated solution branches. First, Eq. (15)
must be recast in quadratic form by introducing the follow-170

ing set of auxiliary variables:

size
ys = ȧs Nm
zs = ẏs Nm
nus = bs = as+1−as Nm
bus = bs−1 = as−as−1 Nm
nu2s = nus×nus N2

m
nu3s = nu2s×nus N3

m
bu2s = bus×bus N2

m
bu3s = bu2s×bus N3

m
AQs =Q1 +Qs

2 +Qs
3 +Qs

4 +Qs
5 +Qs

6 +Qs
7 N2

m
BP s = P1 +P s

2 +P s
3 +P s

4 +P s
5 +P s

6 +P s
7 N2

m
v1s = α2V 2

s,s+1 1
v2s = α2V 2

s−1,s 1
t2s = T s

2 (a
s) 1

AAQs = v1sAQs N2
m

BBP s = v2sBP s N2
m

(16)

so the new form of Eq. (15) adapted to HBM+ANM is:

ȧs = ys

ẏs = zs

0 = nus−
(as+1−as)

0 = bus−
(as−as−1)

0 = nu2s− nus×nus

0 = nu3s− nu2s×nus

0 = bu2s− bus×bus

0 = bu3s− bu2s×bus

0 = −Q1 +AQs−Qs
2 −Qs

5−Qs
6

−Qs
3−Qs

4 −Qs
7

0 = −P1 +BP s−P s
2 −P s

5 −P s
6

−P s
3 −P s

4 −P s
7

0 = α2V 2
s,s+1 −v1s

0 = α2V 2
s−1,s −v2s

0 = t2s −T s
2 (a

s)

0 = AAQ− v1s×AQs

0 = BBP− v2s×BP s

0 = zs +C0y
s +K0a

s −AAQ×nu

−v1sQ0+ +BBP ×bu︸︷︷︸ ︸ ︷︷ ︸ v2sP0−NKTa
s︸ ︷︷ ︸ −α1t2sKTa

s︸ ︷︷ ︸
m(Ẋs) = l0(Ω) +l(Xs) +q(Xs,Xs)

(17)

where: Xs= (as, ys, zs, nus, bus, nu2s, nu3s, bu2s, bu3s,
AQs, BP s, AAQs, BBP s, v1s, v2s, t2s)T is the unknown
vector of size 5Nm+3+6Ns

m+2N3
m. For the array of n beams,175

with s = 1, ..,n, X= (X1, X2, X3, .., Xn, Ω)T is the un-
known vector of size n× (5Nm +3+6Ns

m +2N3
m)+1.

V2,1(t)
V1,0(t) Microbeam 0

xws(x,t)
O

z
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1

hg
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Fig. 2 Array of 2 clamped-clamped microbeams.

Table 1 Actuation voltages in the two-beam array

Design Vdc10(V ) Vdc21(V ) Vdc32(V )

Vac10(V ) Vac21(V ) Vac32(V )

#1 0.3 0.45 0.6
0.3 0.45 0.6

2.2 Case with added mass

The presence of a small mass mp at position x0 on the s0
th

beam introduces the extra term µ0ä
s in Eq. (15), the matrix180

µ0 being defined as follows:

µ0i j = δs0(s)mφi(x0)φ j(x0), i, j = 1, ..,Nm (18)

with δs0(s) = 1 when s = s0 and δs0(s) = 0 otherwise.
The mass ratio between the added mass mp and the mass of
the beam is:

m =
mp

ρbhl
(19)

It is used to replace the physical value of the added mass by185

a dimensionless value in the following sections.

3 Two-beam array

A two-beam array is considered, see Fig. (2). All beams are
identical with the following material and design parameters:
h = 300nm, b = 160nm, l = 10µm, E = 1.69× 1011N/m2,190

ρ = 2330kg/m3, the quality factor Q = 5000 and identical
gaps g = 200nm between two adjacent beams. The voltages
in Table (1) are considered. It is worth mentioning here that
considering the electrostatic coupling between two consec-
utive beams only is a valid assumption. Indeed, the distance195

between beams #0 and #2 is equal to two times the gap g
plus the beam width b, i.e., 3.5g since b=1.5g for the consid-
ered design. As a result, the electrostatic forces beyond the
gap g are actually 12.25 times lower, i.e., one order lower
than the force between two consecutive beams.200

First, it is necessary to assess the convergence of the
beam responses with different Taylor-series orders T and
several modes.

Fig. 3 shows the nonlinear forced response curves ob-
tained with different Taylor series orders and several vibra-205

tion modes by using HBM+ANM. For all the figures involv-
ing curves in colors, the reader is referred to the online ver-
sion of this paper. First, computations using third (T = 3),
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fifth (T = 5) and seventh (T = 7) order Taylor series are
carried out with Nm = 1 mode. The deviation between re-210

sponses for T = 5 and T = 7 is negligible because the cor-
responding Taylor series are accurate at small amplitude.
Then, the influence of the number of modes in the Galerkin
expansion is considered by using a Taylor series at order
7 with Nm = 1, Nm = 2 and Nm = 3. As shown in Fig. 3,215

the response is converged with Nm = 2 modes. Hence, using
Taylor series at order 7 and Nm = 2 modes provides good
accuracy. However, the computation with several modes is
very time consuming and complicated. For the series at or-
der 7, the relative error in frequency between Nm = 1 and220

Nm = 2 modes is less than 5.10−6 in frequency and quan-
titatively the response behavior does not change. For each
case, the additional loops D1−E1 (first beam) and B2−C2
(second beam) on the response curves are the same. Conse-
quently, Taylor series at order 7 and Nm = 1 mode are used to225

simplify the numerical calculation without loss of accuracy.

In Fig. 3, responses are more complicated than in the
case of a single beam and present additional loops. A quasi-
analytic solution obtained by the averaging method provides230

some explanations about the origin of these additional branches.

3.1 Averaging method

The beam lateral deflection is expanded on its fundamental
mode only:

w1(x, t) = φ1(x)a11(t)
w2(x, t) = φ1(x)a21(t)

(20)

First-order Taylor series are used to simplify the analytic235

calculation:

1
(1+ws+1−ws)2 ' 1−2(ws+1−ws),

1
(1+ws−ws−1)2 ' 1−2(ws−ws−1).

(21)

Using the averaging method and considering the solutions
a11(t),a21(t) in following forms

a11 = A11(t)cos(Ω t)+B11(t)sin(Ω t), (22)

a21 = A21(t)cos(Ω t)+B21(t)sin(Ω t), (23)

yields

Ω Ȧ11 =−B11ω1εσ1−
1
2

cA11Ω +
3
8

β11A2
11B11 (24)

+
3
8

β11B3
11 +

1
8

β13B11 +

(
1
2

δ11 +
1
8

δ13

)
B21

240

Ω Ḃ11 =
1
2

cB11Ω +
3
8

β11A3
11 +

3
8

β13A11 +
1
2

γ12 (25)

+
3
8

β11A11B2
11−A11ω1εσ1 +

(
1
2

δ11 +
3
8

δ13

)
A21
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Fig. 3 Nonlinear forced response curves of a two-beam array without
added mass by HBM+ANM method. Responses with third (blue), fifth
(red) and seventh (orange) order Taylor series and Nm = 1 mode; re-
sponses with seventh-order Taylor series with Nm = 2 (pink) or Nm = 3
(green) modes. Dark and light blue colors indicate stable and unstable
solutions respectively. (a): Beam #1, (b): Beam #2, (c): zoom of (I),
(II), (III).

Ω Ȧ21 =−B21ω2εσ2−
1
2

cA21Ω +
3
8

β21A2
21B21 (26)

+
3
8

β21B3
21 +

1
8

β23B21 +

(
1
2

δ21 +
1
8

δ23

)
B11

Ω Ḃ21 =
1
2

cB21Ω +
3
8

β21A3
21 +

3
8

β23A21 +
1
2

γ22 (27)

+
3
8

β21A21B2
21−A21ω2εσ2 +

(
1
2

δ21 +
3
8

δ23

)
A11

The coefficients of Eqs. (24-27) are defined in Appendix
B. In Eqs. (24-27), the coupling terms ( 1

2 δ11 +
1
8 δ13)B21
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and ( 1
2 δ11 +

1
8 δ13)A21 represent the influence of the sec-245

ond beam on the first beam and the terms ( 1
2 δ21 +

1
8 δ23)B11,

( 1
2 δ21 +

3
8 δ23)A11 represent the influence of the first beam

on the second beam. The steady-state motion occurs when
Ȧ11 = Ḃ11 = Ȧ21 = Ḃ21 = 0. This corresponds to an alge-
braic system of four nonlinear equations that can be solved250

numerically. The corresponding response curves are plotted
in Fig. 4 and are in very good agreement with those of Fig.
3 obtained numerically by HBM+ANM.

3.2 Response curve analysis

Let Eqs. (24)-(27) be considered without these coupling terms.255

Therefore Eqs. (24)-(25) and (26)-(27) form two indepen-
dent systems of equations. The responses plotted in Fig. 4
are similar to those of a single beam because no loops are
present.

With coupling terms Eqs. (24)-(27) are dependent; there-260

fore, they share the same bifurcation points and stability.
Thus, the whole set of limits points on the two response
curves without coupling terms are present on each response
with coupling terms. Figure 4 shows that, in the presence
of coupling terms, points B1 and C1 on the first-beam re-265

sponse generate the loop B2 −C2 on the second-beam re-
sponse. Identically, points D2 and E2 on the second-beam re-
sponse produce the loop D1−E1 on the first-beam response.
The synchronization of stability leads to the appearance of
additional loops on the response curve.270

Moreover, the first-beam amplitude changes from Wmax =

0.15 to Wmax = 0.11, whereas the second-beam amplitude is
weakly affected. This is because the amplitude of the B2−
C2 generated loop is larger than the D1 − E1 one. So, the
amount of energy transferred from the first beam to the sec-275

ond beam due to the coupling is larger than the amount of
energy transferred from the second-beam to the first-beam.

3.3 Comparing the results obtained by HBM+ANM and
time-integration methods.

The results obtained by these two methods for the two-beam280

array without added mass are represented in Fig. 5 and fit
well. However, because of the response complexity, it is im-
possible to obtain all the stable branches by time integra-
tion with a simple frequency sweep-up and sweep-down.
For example, in Fig. 5, the stable branches jE1− jB1 (first285

beam) and jE2−B2 (second beam) are not obtained. For the
first beam, with a frequency sweep-down the response path
is F1 − E1 − jE1 −C1 − jC1 − A1 where the letter j indi-
cates an amplitude jump. Unlike the single-beam response,
there are two jumps from E1 to jE1 and from C1 to jC1. For290

the second beam, the response path is F2−E2− jE2−A2
with a jump from E2 to jE2 and point jE2 is not on the
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Fig. 4 Design #1 without added mass. Response by neglecting the cou-
pling terms (blue), complete response (orange). (a)-(b): Beam #1, (c)-
(d): Beam #2.
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Fig. 5 Design #1. Comparison between HBM+ANM (dark blue: stable
branches, light blue: unstable branches) and time integration method
with a frequency sweep-up (pink curves) and a frequency sweep-down
(green curves). (a): Beam #1, (b): Beam #2.

stable branch A2−B2−D2− jD2−F2 obtained by a fre-
quency sweep-up but on the stable part of the B2−C2 loop.
Therefore, the pseudo arc-length continuation used in the295

HBM+ANM method proves its efficiency and robustness
here since it permits obtaining the complete response curve.

3.4 Detection method

In this section, a mass sensing method is developed. It is300

based on the exploitation of hysteresis cycles presented in
[12,31] in the case of a single resonator and extended here
to the case of two-beam array.

Let the added mass fall on the second beam at x0 = 0.5.
Fig. 6 presents the responses of the first and second beams305

with and without an added mass m= 10−4 determined by the
HBM+ANM. The stable/unstable parts of the responses are
plotted for m = 0 and m = 10−4. Fig. 7 presents the response
curves for the case of an added mass m= 10−4. It permits the
comparison between the results obtained by HBM+ANM310

and by time integration method with a frequency sweep-up
and sweep-down.

From Fig. 6, it appears that the added mass makes the re-
sponse more complicated due to the presence of several ad-
ditional loops. For the second beam, the amplitude is almost315
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Fig. 6 Design #1. Responses determined by the HBM+ANM method
with an added mass m = 10−4 (red: stable branches, orange: unstable
branches) and without added mass (dark blue: stable branches, light
blue: unstable branches). (a): Beam #1, (b): Beam #2.

unchanged with an added mass (Wmax = 0.22) and there is a
small frequency shift, while the first-beam amplitude changes
from Wmax(B1)≈ 0.11 to Wmax(F1)≈ 0.17. With the aim of
carrying out an experimental investigation, it is necessary
to verify, using the time integration method, that such an320

amplitude difference is detectable. In Fig. 7-(a), it can be
observed that a simple frequency sweep-up or sweep-down
does not permit the detection of the added mass. Indeed, the
sweep-up and sweep-down responses coincide with the sta-
ble part of the response curve for m = 0 of Fig. 6-(a) and325

the branches up to H1 and F1 are not obtained. The only dif-
ference concerns the position of the amplitude jump. During
sweep-down, for the first beam, the jump occurs at C1 with-
out added mass and at I1 with added mass. For the second
beam, it occurs at H2 and G2 respectively. However, these330

differences are very difficult to distinguish for a small added
mass.

To detect the added mass by means of amplitude differ-
ence, let both frequency sweeps be combined, see Fig. 8.
First, the frequency is swept down from point J to a fre-335

quency value Ωmin which is set between Ω(C1) and Ω(I1),
then increased.

When using the time integration method, the response of
the first beam is J1− i1− ji1−C1−J1 (Wmax = 0.02) without
added mass and J1− I1− jI1−G1−H1− jH1− J1 (Wmax =340
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Fig. 7 Design #1. Responses with added mass m = 10−4. Comparison
between HBM+ANM (red: stable branches, orange: unstable branches)
and time integration method with a frequency sweep-up (pink curves)
and a frequency sweep-down (blue curves). (a): Beam #1, (b): Beam
#2.

0.15) for m= 10−4. The response of the second beam is J2−
i2− ji2− g2− d2− jd2− J2 (Wmax = 0.22) without added
mass and J2−I2− jI2−G2−J2 (Wmax = 0.04) for m= 10−4.
Hence, the added mass is clearly detected by the difference
of amplitude.345

If the mass m = 10−4 is added on the first beam instead
of the second one, the beam-array response is almost un-
changed because, as considered in the previous section, the
influence of the second beam on the first beam is stronger
than the influence of the first beam on the second beam.350

Hence, a perturbation on the second-beam will cause a larger
amplitude variation than a perturbation on the first beam.

The threshold of detection can be set by adjusting volt-
ages. In order to adjust the mass threshold, ΩA1 has to be su-
perior to ΩA2m and inferior to ΩA2 , see Fig.9. For example,355

when decreasing Vdc32 and Vac32 to 0.575V instead of 0.6V
while keeping other voltages unchanged, see Table 1, ΩA2

becomes closer to ΩA1 . Therefore, smaller masses, such as
m = 10−5, can also be detected by a large amplitude change.
For a bigger mass, such as m = 10−3, the second beam re-360

sponse has a lower amplitude, see Fig. 10. By adding a mass
bigger than an upper threshold, ΩB2m becomes larger than
ΩB1m and the amplitude of the second beam response de-
creases. Therefore, larger masses such as m = 10−3 can this
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Fig. 8 Design #1. Responses determined by time integration method
without added mass (blue curves J1− i1− ji1−C1− J1 and J2− i2−
ji2−g2−d2− jd2−J2) and with added mass m = 10−4 (green curves
J1 − I1 − jI1 −G1 −H1 − jH1 − J1 and J2 − I2 − jI2 −G2 − J2) ; re-
sponses determined by HBM+ANM with added mass m = 10−4 (red:
stable branches, orange: unstable branches). (a): Beam #1, (b): Beam
#2.

time be detected by a reduced amplitude on the second beam365

response curve. To sum up, there exist two mass thresholds.
When the first one is exceeded there is a large amplitude
jump on the first beam amplitude. Then, when the added
mass is higher than the second threshold, the amplitude of
the second beam starts to decrease. But for added masses370

between these two thresholds, the responses are not so dif-
ferent.

4 Three-beam array

In order to overcome the limitations of the sensing method
presented in the previous section, an alternative method based375

on symmetry breaking is considered in this section.
An array of three identical beams sketched in Fig. 11

is now considered, the beam dimensions and all parameters
being similar to those considered in the previous section. Let
the cases of asymmetric and symmetric voltages be distin-380

guished. Asymmetric voltages lead to results very similar to
the two-beam array. On the response curves, there are two
small loops due to the influence of the two other beams, see
Fig.19 in Appendix C. In the case of symmetric voltages,
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Fig. 9 Response with Vdc32 = Vac32 = 0.575V and other voltages
as in Table 1, without mass (dark/light blue) and with m = 10−5

(red/orange). (a): Beam #1, (b): Beam #2.
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Fig. 10 Response with Vdc32 = Vac32 = 0.575V and other voltages
as in Table 1, without mass (dark/light blue) and with m = 10−3

(red/orange). (a): Beam #1, (b): Beam #2.
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Fig. 11 Array of three clamped-clamped microbeams.

designs with small (Design #2) and large (Designs #3 and385

#4) voltages are investigated with values presented in Table
2.

Table 2 Symmetric actuation voltages of the 3-beam array.

Design V dc10(V ) V dc21(V ) V dc32(V ) V dc43(V )

Vac10(V ) Vac21(V ) Vac32(V ) Vac43(V )

#2 0 0.28 0.28 0
0 0.88 0.88 0

#3 0 5 5 0
0 1 1 0

#4 0 5.3 5.3 0
0 1 1 0

4.1 Design #2

Due to the symmetric voltages, the electrostatic forces on
both sides of the second beam are balanced. Hence the sec-390

ond beam does not vibrate. If the added mass falls on it, the
system is still symmetric and the second beam remains at
rest. If the added mass falls on the first or third beam, the
system loses its symmetry and the response changes. How-
ever, depending on the value of added mass, the response395

change for the first and third beams can be very small and
difficult to identify. This is why the detection is based on the
second-beam response instead.

Figure 12 shows the case of an added mass m = 10−3 at
the middle of beam #1 (x0 = 0.5). Without added mass, the400

responses of beams #1 and #3 are identical. With an added
mass, the response of beam #1 is shifted to the left and loops
appear on the responses of beams #1 and #3. However, the
response amplitudes do not change in comparison with the
case without added mass. The amplitude of beam #2 is nil405

(Wmax = 0) without added mass but large with m = 10−3 as
a result of symmetry breaking.

When voltages Vac21 and V dc21 between beams #1 and
#2 are identical to voltages Vac32 and V cd32 between beams
#2 and #3, the electrostatic forces and the second-beam dis-410

placement depend only on the difference between the de-
flections of beams #1 and #3. The larger the added mass is,
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Fig. 12 Design #2: response with a mass m = 10−3 added on the first
beam (red/orange) and without added mass (dark/light blue). (a): Beam
#1, (b): Beam #2, (c): Beam #3. Without added mass, the second-beam
amplitude is nil.

the more different these displacements are and the larger the
second-beam displacement is. This is illustrated in Fig. 13
showing the second-beam response for several values of the415

added mass.

With a mass m= 10−3 added on beam #1, the deflections
of beams #1 and #3 are different. Let points A,B,C,D be
considered as defined in Figs. 12 and 13-(a). At these points,
the displacements of beams #1 and #3 are plotted in Fig. 13-420

(b). For each value of time t, these displacements are the
most different at point C and the less different at point B.
Therefore, it results that WC > WD > WA > WB as observed
in Fig. 13-(a).
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Fig. 13 Design #2: (a): response of Beam #2 without (blue curve) and
with m = 10−4 (pink curve) or m = 10−3 (red/orange curve) added on
Beam #1. (b): displacement of Beam #1 (solid line) and Beam #3 (dot-
ted line) at points A (yellow curves), B (red curves), C (green curves)
and D (blue curves) with m = 10−3.

The amplitude of Beam #2 is large, with Wmax = 0.25425

at point C. However, this branch is unstable, thus not ob-
servable experimentally. Fig. 14 represents the responses ob-
tained by time integration with a frequency sweep-up and
sweep-down. As for the two-beam system, these responses
are not coincident. As shown in Fig. 14-(a), with a frequency430

sweep-up the maximum amplitude Wmax = 0.04 is reached
just before the jump down to point E and Wmax = 0.04 whereas,
with a sweep down, the maximum amplitude is Wmax = 0.05
at point F.

A larger amplitude can be reached if the two frequency435

sweeps are combined as follows (see Fig. 14-(b)): first a
sweep-down until the jump at point F, then a sweep-up, re-
sulting in a maximum amplitude Wmax = 0.11 at point D that
can be easily detected.

However, with a smaller added mass, e.g. m = 10−4, the440

difference between the displacements of Beams #1 and #3
is small. Thus the deflection of Beam #2 is also small, as
shown in Fig. 13-(a), making the detection difficult. As ex-
plained in Section 3.4 there is a threshold of added mass,
above which additional loops increase the response ampli-445

tude. Therefore the added mass must be larger than the thresh-
old for the symmetry breaking to generate a high amplitude
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Fig. 14 Design #2. Response of Beam #2 with m = 10−3 added
on Beam #1. (a): HBM+ANM (red/orange curve), time integration
with a sweep-up (pink curve) and a sweep-down (blue curve); (b):
HBM+ANM (red/orange curve), time integration method combining
a frequency sweep-down then sweep-up (blue curve).

on Beam #2. To detect smaller added masses, let Design #3
be considered.

4.2 Designs #3 and #4450

This section considers the case of large symmetric voltages,
with Designs #3 and #4 given in Table 2. Since large volt-
ages generate large vibration amplitudes, considering the re-
sponse robustness is necessary.

The responses for Design #3 are presented in Fig. 15.455

The considered voltages are large enough for a frequency
sweep-up from Ω = 22.35 to Ω = 22.75 to make the res-
onator collapse by pull-in (Wmax ≥ 1). Hence, the sweep-up
is performed only in the interval Ω = [22.17− 22.23] where
the resonator has not yet collapsed. Without added mass, the460

calculation with one mode and a third-order Taylor series
shows convergent responses. The array remains symmetric,
so beam #2 does not vibrate.

With a mass m = 10−4 added on the first beam, because
of the symmetry-breaking, the second-beam amplitude is465

large. The calculations have been limited to the first three
modes and use a seventh-order Taylor series in order to keep
an affordable computational time. In Fig. 15, with the same
order of Taylor series (T = 3,5 or 7), the responses with

Table 3 Correspondence between the non dimensional mass ratio m
and the physical value of the added mass mp

m 10−3 10−4 5×10−4

mp(kg) 1.1184−18 1.1184−19 2.2368−20

m 10−6 10−8

mp(kg) 1.1184−21 1.1184−23

Nm = 1 or Nm = 2 modes are almost unchanged. On the con-470

trary, with a fixed number of modes, the responses change
a lot when using the third or fifth order, while the seventh
order does not improve the solution anymore. For smaller
added masses, the influence of high orders is more signifi-
cant.475

Figure 16 shows the responses for Design #4 (slightly
higher symmetric voltage, see Table 2), calculated with Nm =

1 mode. Using third-order Taylor series, an added mass m =

10−6 can be detected by a small difference between the re-
sponses with and without added mass. However, with seventh-480

order series, a smaller added mass m = 10−12 can be de-
tected because a larger difference is observed. Theoretically,
any infinitesimal perturbation causes the symmetry-breaking
of the three-beam array. However, from a numerical point of
view, the detection threshold depends on the accuracy of the485

model. Thus, the detection threshold can be improved by in-
creasing the order of the Taylor series. It is however limited
by the computational cost and the numerical accuracy of the
algorithms.

Fig. 17 presents the responses calculated with Nm = 1490

and seventh-order Taylor series for increasing values of m.
Without added mass, the amplitude of beam #2 is Wmax = 0
and it changes from Wmax = 0.05 for m = 10−12 (green) to
Wmax = 0.2 for m = 5× 10−4 (cyan). For large values of
m (m > 10−6), the quantification is possible. However, for495

small values of m (m < 10−6) the difference in amplitude
is very small so an accurate quantification is difficult, see
Fig. 18. Once the quantification of the non-dimensional ratio
m is made, the corresponding physical added mass mp is
obtained with Eq. (19) as listed in Table 3 for a few values500

of m.

It is worth mentioning that the sensing method presented
in this section can only be applied if the beam array is per-
fectly symmetric. This is not the case of fabricated devices
which inevitably contain manufacturing defects. Neverthe-505

less, as shown in [32], it is possible to compensate the manu-
facturing defects of one beam by tuning the electrostatic ac-
tuation of adjacent beams, thus turning an imperfect device
into a perfect one. In order to evaluate the required level of
tuning, the measured fabrication errors could be introduced510

in the model in similar way as in [33].
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Fig. 15 Design #3, responses with an added mass m= 10−4 on the first
beam determined by using third (red), fifth (blue) and seventh (green)
order Taylor series with Nm = 1 (solid line) or Nm = 2 (circle) modes;
responses without added mass (black). (a): Beam #1, (b): Beam #2, (c):
Beam #3.
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Fig. 16 Design #4, responses with Nm = 1 mode. Red curves: re-
sponses with m = 10−8 (solid line) or m = 10−6 (circle) on the first
beam determined by third-order Taylor series. Blue curves: responses
with m= 10−12 (solid line) or m= 10−6 (circle) on the first beam deter-
mined by seventh-order Taylor series. Black curves: responses without
added mass. (a): Beam #1, (b): Beam #2, (c): Beam #3.
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Fig. 17 Design #4. Responses with Nm = 1 mode and seventh order
Taylor series, without added mass (black), with m = 10−12 (green),
m = 10−6 (magenta), m = 10−4 (red), m = 5× 10−4 (blue) added on
the first beam. (a): Beam #1, (b): Beam #2, (c): Beam #3.
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Fig. 18 Design #4. Maximum of amplitude Max(Wmax) with respect to
added mass m for Beam #2.

5 Conclusion

In this paper, the fundamental resonance of an array of iden-
tical microbeams is considered. HBM+ANM, time integra-
tion and averaging methods are used to determine the re-515

sponses. The robustness of the ANM-based continuation en-
ables to follow very complex responses with stable and un-
stable branches. The time integration method is used to sim-
ulate experimental results and the averaging method per-
mits analyzing the influence of adjacent beams. Because of520

this influence, each beam response presents a very compli-
cated nonlinear behavior with several loops, the influence
of distant beams being weaker. Results based on time inte-
gration show that the combination of two frequency sweeps
(down then up) is necessary for experimental detection of an525

added mass. For an asymmetric beam array, a small added
mass can be detected by tuning voltages to a threshold. In
particular, in symmetric configurations, the mass detection
can be highly improved by using bifurcations of symmetry-
breaking type.530
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Appendix A Reduced-order model650

The non-dimensional equation of motion for beam s is

∂ 4ws

∂x4 +
∂ 2ws

∂ t2 + c
∂ws

∂ t
−
[
N +α1

∫ 1

0

(∂w
∂x

)2 dx
]

∂ 2ws

∂x2

= α2
V 2

s,s+1(
1+ws+1−ws

)2 −α2
V 2

s−1,s(
1+ws−ws−1

)2 . (28)

By using the Galerkin method and seventh-order Taylor series Eq.28 is
replaced by a set of equations in the following matrix form

äs +C0ȧ
s +K0a

s−
(
N +α1T s

2 (a
s)
)
KTa

s =

α2V 2
s,s+1Q0 +α2V 2

s,s+1

[
Q1 +Qs

2(b
s)+Qs

3(b
s)+Qs

4(b
s)+Qs

5(b
s)

+Qs
6(b

s)+Qs
7(b

s)

]
bs−α2Vs−1,sV 2

s−1,sP0

−α2V 2
s−1,s

[
P1 +P s

2 (b
s−1)+P s

3 (b
s−1)

+P s
4 (b

s−1)+P s
5 (b

s−1)+P s
6 (b

s−1)+P s
7 (b

s−1)

]
bs−1 (29)
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The components of the matrices are given by

C0i j = ciδi j, K0i j = λ
4
i δi j, T s

2 (a
s) =

Nm

∑
k=1

Nm

∑
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′
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′
ldx
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s
l ,
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′′
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Qs
1i j =−2
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0
φiφ jdx, Qs
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with i, j = 1, ..,Nm

Appendix B Averaging method for a two-beam array

The Galerkin method with the fundamental mode is used as follows655

w1(x, t) = φ1(x)a11(t)
w2(x, t) = φ1(x)a21(t)

(30)

and first-order Taylor series for the electrostatic forces as follows

1
(1+ws+1−ws)2 = 1−2(ws+1−ws),

1
(1+ws−ws−1)2 = 1−2(ws−ws−1).

(31)

Eq. (15) becomes

ä11 + cȧ11 +ω1a11 +β11a3
11 +

(
β12 cosΩ t +β13 cos2

Ω t
)
a11+(

δ11 +δ12 cosΩ t +δ13 cos2
Ω t
)
a21+(

γ11 + γ12 cosΩ t + γ13 cos2
Ω t
)
= 0 (32)

ä21 + cȧ21 +ω2a21 +β21a3
21 +

(
β22 cosΩ t +β23 cos2

Ω t
)
a21+(

δ21 +δ22 cosΩ t +δ23 cos2
Ω t
)
a11+(

γ21 + γ22 cosΩ t + γ23 cos2
Ω t
)
= 0 (33)

where

βs1 = 151.35α1; βs2 =−4α2
(
Vdcs,s+1Vacs,s+1 +Vdcs−1,sVacs−1,s

)
;

βs3 =−2α2
(
V 2

acs−1,s
+V 2

acs,s+1

)
; δ11 = δ21 = 2α2V 2

dc12
;

δ12 = δ22 = 4α2Vdc12Vac12 ;

δ13 = δ23 = 2α2V 2
ac12

; γs1 = 0.83α2
(
V 2

dcs,s+1
−V 2

dcs−1,s

)
;

γs2 = 1.66α2
(
Vdcs,s+1Vacs,s+1 −Vdcs−1,sVacs−1,s

)
;

γs3 = 0.83α2
(
V 2

acs,s+1
−V 2

acs−1,s

)
and s = 1,2.
Let the relation between Ω and ωs be660

Ω = ωs + εσs, (34)

where ωs is determined by

ωs =
λ 4

s −2α2
(
V 2

dcs,s+12
+V 2

dcs−1,s

)
1+δs0 (s)mφ1(x0)2 . (35)

Appendix C Three-beam array with asymmetric
voltages

The voltages used for the asymmetric three-beam array are given in
Table 4 and the responses are plotted in Fig. 19.

Table 4 Asymmetric actuation voltages of the 3-beam array

Design V dc10(V ) V dc21(V ) V dc32(V ) V dcn3(V )

Vac10(V ) Vac21(V ) Vac32(V ) Vacn3(V )

#5 0.5 0.3 0.5 0.4
0.5 0.3 0.5 0.4

665
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Fig. 19 Design # 4. Responses of the three-beam array without added
mass. (a): Beam #1; (b): Beam #2; (c): Beam #3.
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