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Convergence of the solutions of the discounted Hamilton-Jacobi equation: a
counterexample

Bruno Ziliotto∗

Place du Maréchal de Lattre de Tassigny, 75016 Paris, France

Abstract

This paper provides a counterexample about the asymptotic behavior of the solutions of a discounted

Hamilton-Jacobi equation, as the discount factor vanishes. The Hamiltonian of the equation is a 1-dimensional

continuous and coercive Hamiltonian.

Résumé

Cet article fournit un contre-exemple à la convergence asymptotique des solutions d’une équation de Hamilton-

Jacobi escomptée, lorsque le facteur d’escompte tend vers 0. Le Hamiltonien de cette équation est unidi-

mensionnel, continu et coercitif.
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1. Introduction and main result

Let n ≥ 1. Denote by Tn = Rn/Zn the n-dimensional torus. For c ∈ R, consider the Hamilton-Jacobi

equation

H(x,Du(x)) = c (E0)

where the Hamiltonian H : Tn × Rn → R is jointly continuous and coercive in the momentum. In order to

build solutions of the above equation, Lions, Papanicolaou and Varadhan [1] have introduced a technique

called ergodic approximation. For λ ∈ (0, 1], consider the discounted Hamilton-Jacobi equation

λvλ(x) +H(x,Dvλ(x)) = 0 (Eλ) (1)

By a standard argument, this equation has a unique viscosity solution vλ : Tn → R. Moreover, (−λvλ)

converges uniformly as λ vanishes to a constant c(H) called the critical value. Set uλ := vλ + c(H)/λ. The

∗CEREMADE, CNRS, Université Paris Dauphine, PSL University, Paris, France.
E-mail: ziliotto@math.cnrs.fr
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family (uλ) is equi-Lipschitz, and converges uniformly along subsequences towards a solution of (E0), for

c = c(H). Note that (E0) may have several solutions. Recently, under the assumption that H is convex5

in the momentum, Davini, Fathi, Iturriaga and Zavidovique [2] have proved that (uλ) converges uniformly

(towards a solution of (E0)). In addition, they proved that the solution can be characterized using Mather

measures and Peierls barriers.

Without the convexity assumption, the question of whether (uλ) converges or not remained open. This

paper solves negatively this question and provides a 1-dimensional continuous and coercive Hamiltonian for10

which (uλ) does not converge2.

Theorem 1. There exists a continuous Hamiltonian H : T1 × R → R that is coercive in the momentum,

such that uλ does not converge as λ tends to 0.

The example builds on a class of discrete-time repeated games called stochastic games. The main in-

gredient is to establish a connection between recent counterexamples to the existence of the limit value in15

stochastic games (see [4, 5]) and the Hamilton-Jacobi problem3.

The remainder of the paper is structured as follows. Section 2 presents the stochastic game example. Section

3 shows that in order to prove Theorem 1, it is enough to study the asymptotic behavior of the stochastic

game, when the discount factor vanishes. Section 4 determines the asymptotic behavior of the stochastic

game.20

2Note that for time-dependent Hamilton-Jacobi equations, several counterexamples about the asymptotic behavior of solu-

tions have been pointed out in [3].
3Let us mention the work [6, 7, 8, 9] as other illustrations of the use of repeated games in PDE problems.

2



2. The stochastic game example

Given a finite set A, the set of probability measures over A is denoted by ∆(A). Given a ∈ A, the Dirac

measure at a is denoted by δa.

2.1. Description of the game

Consider the following stochastic game Γ, described by:25

• A state space K with two elements ω1 and ω−1: K = {ω1, ω−1},

• An action set I = {0, 1} for Player 1,

• An action set J =
{

2−
√

2 + 2−2n, n ≥ 1
}
∪
{

2−
√

2
}

for Player 2,

• For each (k, i, j) ∈ K × I × J , a transition q(. |k, i, j) ∈ ∆(K) defined by:

q(. |ω1, i, j) = [ij + (1− i)(1− j)]δω1
+ [i(1− j) + (1− i)j]δω−1

,

q(. |ω−1, i, j) = [i(1− j) + (1− i)j]δω1 + [ij + (1− i)(1− j)]δω−1 .

• A payoff function g : K × I × J → [0, 1], defined by

g(ω1, i, j) = ij + 2(1− i)(1− j) and g(ω−1, i, j) = −ij − 2(1− i)(1− j).

Let k1 ∈ K. The stochastic game Γk1 starting at k1 proceeds as follows:30

• The initial state is k1. At first stage, Player 2 chooses j1 ∈ J and announces it to Player 1. Then,

Player 1 chooses i1 ∈ I, and announces it to Player 2. The payoff at stage 1 is g(k1, i1, j1) for Player

1, and −g(k1, i1, j1) for Player 2. A new state k2 is drawn from the probability q(. |k1, i1, j1) and

announced to both players. Then, the game moves on to stage 2.35
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• At each stage m ≥ 2, Player 2 chooses jm ∈ J and announces it to Player 1. Then, Player 1 chooses

im ∈ I, and announces it to Player 2. The payoff at stage m is g(km, im, jm) for Player 1, and

−g(km, im, jm) for Player 2. A new state km+1 is drawn from the probability q(. |km, im, jm) and

announced to both players. Then, the game moves on to stage m+ 1.

Remark 2. The action set of Player 2 can be interpreted as a set of randomized actions. Indeed, imagine40

that Player 2 has only two actions, 1 and 0. These actions are called pure actions. At stage m, if Player 2

chooses jm ∈ J , this means that he plays 1 with probability jm, and 0 with probability 1− jm. Denote by

j̃m ∈ {0, 1} his realized action. Player 1 knows jm before playing, but does not know j̃m. If Player 1 chooses

im ∈ I afterwards, then the realized payoff is g(km, im, j̃m). Thus, the payoff g(km, im, jm) represents the

expectation of g(km, im, j̃m). Likewise, the transition q(. |km, im, jm) represents the law of q(km, im, j̃m).45

The transition and payoff in Γ when players play pure actions can be represented by the following matrices:

Table 1: Transition and payoff functions in state ω1 and ω−1

ω1 1 0

1 1
−→
0

0
−→
0 2

ω−1 1 0

1 −1
←−
0

0
←−
0 −2

The left-hand side matrix stands for state ω1, and the right-hand side matrix stands for state ω−1.

Consider the left-hand side matrix. Player 1 chooses a row (either 1 or 0), and Player 2 chooses a column

(either 1 or 0). The payoff is given by the numbers: for instance, g(1, 1) = 1 and g(1, 0) = 0. The arrow

means that when the corresponding actions are played, the state moves on to state ω−1; otherwise, it stays in50

ω1. For instance, q(.|ω1, 1, 1) = δω1 and q(.|ω1, 1, 0) = δω−1 . The interpretation is the same for the right-hand

side matrix. In the game Γ, Player 1 can play only pure actions (1 or 0), and Player 2 can play 1 with some

probability j ∈ J .

This matrix representation is convenient to understand the strategic aspects of the game.
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Let us now define formally strategies. In general, the decision of a player at stage m may depend on all the

information he has: that is, the stage m, and all the states and actions before stage m. In this paper, it

is sufficient to consider a restricted class of strategies, called stationary strategies. Formally, a stationary

strategy for Player 1 is defined as a mapping y : K × J → I. The interpretation is that at stage m, if the

current state is k, and Player 2 plays j, then Player 1 plays y(k, j). Thus, Player 1 only bases his decision on

the current state and the current action of Player 2. Denote by Y the set of stationary strategies for Player

1.

A stationary strategy for Player 2 is defined as a mapping z : K → J . The interpretation is that at stage

m, if the current state is k, then Player 2 plays z(k). Thus, Player 2 only bases his decision on the current

state. Denote by Z the set of stationary strategies for Player 2.

The sequence (k1, i1, j1, k2, i2, j2, ..., km, im, jm, ...) ∈ H∞ := (K×I×J)N
∗

generated along the game is called

history of the game. Due to the fact that state transitions are random, this is a random variable. The law of

this random variable depends on the initial state k1 and the pair of strategies (y, z), and is denoted by Pk1y,z.

We will call gm the m-stage random payoff g(km, im, jm). Let λ ∈ (0, 1]. The game Γk1λ is the game where

the strategy set of Player 1 (resp. 2) is Y (resp. Z), and the payoff is γk1λ , where

γk1λ (y, z) = Ek1y,z

∑
m≥1

(1− λ)m−1gm

 .

The goal of Player 1 is to maximize this quantity, while the goal of Player 2 is to minimize this quantity.

The game Γk1λ has a value, that is:

min
z∈Z

max
y∈Y

γk1λ (y, z) = max
y∈Y

min
z∈Z

γk1λ (y, z).

The value of Γk1λ is then defined as the above quantity, and is denoted by wλ(k1). A strategy for Player 1 is55

optimal if it achieves the right-hand side maximum, and a strategy for Player 2 is optimal if it achieves the

left-hand side minimum. The interpretation is that if players are rational they should play optimal strategies,

and as a result Player 1 should get wλ(k1), and Player 2 should get −wλ(k1).

2.2. Asymptotic behavior of the discounted value

As we shall see in the next section, for each λ ∈ (0, 1], one can associate a discounted Hamilton-Jacobi60

equation with c(H) = 0, such that its solution evaluated at x = 1 is approximately wλ(ω1), for λ small
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enough. Thus, the asymptotic behavior of this quantity needs to be studied.

Define λn := 2−2n
(

3

4
− 1√

2

)−1
and µn := 2−2n−1

(
3

4
− 1√

2

)−1
.

Proposition 3. The following hold:65

(i) wλ(ω−1) ≤ wλ(ω1) ≤ wλ(ω−1) + 2

(ii) limn→+∞ wλn(ω1) = 1/
√

2 and lim infn→+∞ wµn(ω1) > 1/
√

2. Consequently, (wλ(ω1)) does not have

a limit when λ→ 0.

The proof of the above proposition is done in Section 4. As far as the proof of Theorem 1 is concerned,

the key point is (ii). is Let us give here some piece of intuition for this result. Consider the game Γ′ that70

is identical to Γ, except that Player 2’s action set is [0, 1] instead of J . For each λ ∈ (0, 1], denote by

w′λ its discounted value. Because J ⊂ [0, 1], Player 2 is better off in the game Γ′ compared to the game

Γ: w′λ ≤ wλ. Interpret now Γ and Γ′ as games with randomized actions, as in Table 2. As λ vanishes,

standard computations show that an (almost) optimal stationary strategy for Player 2 in Γ′ω1

λ is to play 1

with probability p∗(λ) := 2−
√

2 +
(

3
4 −

1√
2

)
λ in both states ω1 and ω−1, and (wλ(ω1)) converges to 1√

2
.75

Moreover, for all n ≥ 1, p∗(λn) ∈ J . Thus, this strategy is available for Player 2 in Γ, and consequently

wλn(ω1) = w′λn(ω1) +O(λn), as n tends to infinity.

On the other hand, for all n ≥ 1, p∗(µn) /∈ J , and the distance of p∗(µn) to J is larger than
(

3
4 −

1√
2

)
µn/2.

Consequently, the distance of the optimal strategy in Γω1
µn to the optimal strategy in Γ′ω1

µn is of order µn. This

produces a payoff difference of order µn at each stage, and thus of order 1 in the whole game. Thus, Player80

2 is significantly disadvantaged in Γω1
µn compared to Γ′ω1

µn , and the difference between wµn(ω1) and w′µn(ω1)

is of order 1.
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Remark 4. As we shall see in the following section, we have limλ→0 λwλ(ω1) = limλ→0 λwλ(ω−1) = 0.

The next section explains how to derive the counterexample and Theorem 1 from Proposition 3.85

3. Link with the PDE problem and proof of Theorem 1

The following proposition expresses wλ as the solution of a functional equation called Shapley equation.

Proposition 5. Let λ ∈ (0, 1] and uλ := (1 + λ)−1wλ/(1+λ). For each r ∈ {−1, 1}, the two following

equations hold:

(i)

wλ(ωr) = min
j∈J

max
i∈I
{g(ωr, i, j) + (1− λ) [q(ωr|ωr, i, j)wλ(ωr) + q(ω−r|ωr, i, j)wλ(ω−r)]}

(ii)

λuλ(ωr) = min
j∈J

max
i∈I
{g(ωr, i, j) + q(ω−r|ωr, i, j) [uλ(ω−r)− uλ(ωr)]}

Proof. (a) The intuition is the following. Consider the game Γωrλ . At stage 1, the state is ωr. The term90

g represents the current payoff, and the term (1−λ)[...] represents the future optimal payoff, that

is, the payoff that Player 1 should get from stage 2 to infinity. Thus, this equation means that the

value of Γωrλ coincides with the value of the one-stage game, where the payoff is a combination of

the current payoff and the future optimal payoff. For a formal derivation of this type of equation,

we refer to [10, VII.1., p. 392].95

(b) Evaluating the previous equation at λ/(1 + λ) yields

w λ
1+λ

(ωr) = min
j∈J

max
i∈I

{
g(ωr, i, j) +

1

1 + λ
[q(ωr|ωr, i, j)w λ

1+λ
(ωr) + q(ω−r|ωr, i, j)w λ

1+λ
(ω−r)]

}
Using the fact that q(ωr|ωr, i, j) = 1− q(ω−r|ωr, i, j) yields the result.
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For r ∈ {1,−1} and p ∈ R, define Hr : R→ R by

Hr(p) :=


−min

j∈J
max
i∈I
{g(ωr, i, j)− rp · ([i(1− j) + (1− i)j]} , if |p| ≤ 2,

Hr

(
2 p
|p|

)
+ |p| − 2 if |p| > 2.

For x ∈ [−1, 1] and p ∈ R, let

H(x, p) := |x|H1(|p|) + (1− |x|)H−1(|p|). (2)

Note that the definition of H1 and H−1 for |p| > 2 ensures that lim|p|→+∞H1(p) = lim|p|→+∞H−1(p) = +∞,

thus lim|p|→+∞H(p) = +∞. Note also that for all x ∈ [−1, 1], H1(x, .) is increasing on [−2, 2] and H−1(x, .)

is decreasing on [−2, 2].

Thanks to Proposition 5 (ii) and Proposition 3 (i), we have λuλ(ω1) + H1(uλ(ω1) − uλ(ω−1)) = 0 and

λuλ(ω−1) +H−1(uλ(ω1)− uλ(ω−1)) = 0.

For x ∈ [−1, 1], let uλ(x) = |x|uλ(ω1) + (1 − |x|)uλ(ω−1). Let x ∈ (−1, 1) \ {0}. Proposition 3 (i) im-

plies that wλ(ω−1) ≤ wλ(ω1), thus uλ(ω−1) ≤ uλ(ω1) and |Duλ(x)| = uλ(ω1) − uλ(ω−1). Consequently,

Proposition 5 (ii) yields

λuλ(x) +H(x,Duλ(x)) = 0. (3)

Note that the above equation is identical to equation (3). The reason why we use the notation uλ and not

vλ is that, as we shall see, c(H) = 0, thus uλ coincides with vλ.100

Extend uλ and H(., p) (p ∈ R) as 2-periodic functions defined on R. The Hamiltonian H is continuous

and coercive in the momentum, and the above equation holds in a classical sense for all x ∈ R \ Z.

For x ∈ R, denote by D+uλ(x) (resp., D−uλ(x)) the super-differential (resp., the sub-differential) of uλ at

x. Let us show that uλ is a viscosity solution of (3) on R. By 2-periodicity, it is enough to show that this is

a viscosity solution for x = 0 and x = 1.105

Let us start by x = 0. We have D+uλ(0) = ∅ and D−uλ(0) = [uλ(ω−1)− uλ(ω1), uλ(ω1)− uλ(ω−1)].

Let p ∈ D−uλ(0). Then H−1(p) ≥ H−1(uλ(ω1) − uλ(ω−1)) = −λuλ(ω−1), thus λuλ(0) + H(0, p) ≥ 0.

Consequently, uλ is a viscosity solution at x = 0.
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Consider now the case x = 1. We have D+uλ(1) = [uλ(ω−1)− uλ(ω1), uλ(ω1)− uλ(ω−1)] and D−uλ(1) = ∅.110

Let p ∈ D+uλ(1). Then H1(p) ≤ H1(uλ(ω1) − uλ(ω−1)) = −λuλ(ω1), thus λuλ(1) + H(1, p) ≥ 0. Conse-

quently, uλ is a viscosity solution at x = 1.

Let us now conclude the proof of Theorem 1. Because H is 2-periodic, equation (3) can be considered as

written on T1.

As noticed before, equation (3) is identical to equation (1). Therefore, as stated in the introduction,115

−λuλ converges to c(H). Proposition 3 (ii) implies that (−λnuλn(1)) converges to 0, thus c(H) = 0. Still

by Proposition 3 (ii), (uλ(1)) does not have a limit when λ tends to 0: Theorem 1 is proved.

4. Proof of Proposition 3

4.1. Proof of (i)

Consider Proposition 5 (i) for r = 1. Take j = 1/2 ∈ J . It yields120

wλ(ω1) ≤ max
i∈I

{
1 + (1− λ)

(
1

2
wλ(ω1) +

1

2
wλ(ω−1)

)}
= 1 +

1

2
(1− λ) (wλ(ω1) + wλ(ω−1)) . (4)

Take i = 1/2. This yields

wλ(ω1) ≥ 1

2
+

1

2
(1− λ) (wλ(ω1) + wλ(ω−1)) . (5)

For r = −1, taking j = 1/2 and then i = 1/2 produce the following inequalities:

wλ(ω−1) ≤ −1

2
+

1

2
(1− λ) (wλ(ω1) + wλ(ω−1)) , (6)

and

wλ(ω−1) ≥ −1 +
1

2
(1− λ) (wλ(ω1) + wλ(ω−1)) . (7)

Combining (5) and (6) yield wλ(ω1) ≥ wλ(ω−1) + 1 ≥ wλ(ω−1). Combining (4) and (7) yield wλ(ω−1) ≥

wλ(ω1)− 2, and (i) is proved.
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4.2. Proof of (ii)

For (i, i′) ∈ {0, 1}2, consider the strategy y of Player 1 that plays i in ω1 and i′ in ω−1 (regardless of

Player 2’s actions), and the strategy z of Player 2 that plays a in state ω1, and b in state ω−1. Denote125

γi,i
′

λ (a, b) := γω1

λ (y, z) (resp., γ̃i,i
′

λ (a, b) := γ
ω−1

λ (y, z)), the payoff in Γω1

λ (resp., Γ
ω−1

λ ), when (y, z) is played.

Proposition 6. The following hold:

1.

γ0,0λ (a, b) =
−2(a− b− λ+ bλ)

λ(a+ b+ λ− aλ− bλ)

γ1,1λ (a, b) = − a− b+ λb

λ(a+ b+ λ− aλ− bλ− 2)

γ1,0λ (a, b) =
2a+ 2b+ 2λ− ab− aλ− 2bλ+ abλ− 2

λ(b− a+ λa− bλ+ 1)

γ0,1λ (a, b) = −2a+ 2b− ab− 2bλ+ abλ− 2

λ(a− b− aλ+ bλ+ 1)

2. • γ0,0λ is decreasing with respect to a and increasing with respect to b.

• γ1,1λ is increasing with respect to a and decreasing with respect to b.

• γ1,0λ is increasing with respect to a and b.130

• γ0,1λ is decreasing with respect to a and b.

Proof. 1. The payoffs γ0,0λ (a, b) and γ̃0,0λ (a, b) satisfy the following recursive equation:

γ0,0λ (a, b) = a(1− λ)γ̃0,0λ (a, b) + (1− a)(2 + (1− λ)γ0,0λ (a, b))

γ̃0,0λ (a, b) = a(1− λ)γ0,0λ (a, b) + (1− a)(−2 + (1− λ)γ̃0,0λ (a, b))

Combining these two relations give the first equality. The three other equalities can be derived in a

similar fashion.

2. These monotonicity properties are simply obtained by deriving γi,i
′

λ with respect to a and b.135
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For λ ∈ (0, 1], set p∗(λ) := 2−
√

2 +

(
3

4
− 1√

2

)
λ. Define a strategy y of Player 1 in the following way:

• in state ω1, play 0 if j ≤ p∗(λ), play 1 otherwise,

• in state ω−1, play 1 if j ≤ p∗(λ), play 0 otherwise.

The rationale behind this strategy can be found in Section 2.2.

For all n ≥ 1, define

λn :=
2−2n

3

4
−
√

2
and µn :=

2−2n−1

3

4
−
√

2
.

Proposition 7. The following hold:140

1.

lim
n→+∞

min
z∈Z

γλn(y, z) =
1√
2

2.

lim
n→+∞

min
z∈Z

γµn(y, z) =
5

2
√

2
− 1 >

1√
2

Proof. 1. For all (i, i′) ∈ {0, 1},

lim
n→+∞

γi,i
′

λn
(p∗(λn), p∗(λn)) =

1√
2
,

and the result follows.

2. Let z be a strategy of Player 2, and a = z(ω1) and b = z(ω−1).

Note that the interval (p∗(µn/2), p∗(2µn)) does not intersect J .

The following cases are distinguished:

Case 1. a ≤ p∗(µn) and b ≤ p∗(µn), thus a ≤ p∗(µn/2) and b ≤ p∗(µn/2)145

We have γω1
µn(y, z) = γ0,1µn (a, b) ≥ γ0,1µn (p∗(µn/2), p∗(µn/2)) →

n→+∞

5

4

√
2− 1

Case 2. a ≤ p∗(µn) and b ≥ p∗(µn), thus a ≤ p∗(µn/2) and b ≥ p∗(2µn)

We have γω1
µn(y, z) = γ0,0µn (a, b) ≥ γ0,0µn (p∗(µn/2), p∗(2µn)) →

n→+∞
− 1 + 2

√
2

8(−2 +
√

2)

11



Case 3. a ≥ p∗(µn) and b ≤ p∗(µn), thus a ≥ p∗(2µn) and b ≤ p∗(µn/2)

We have γω1
µn(y, z) = γ1,1µn (a, b) ≥ γ1,1µn (p∗(2µn), p∗(µn/2)) →

n→+∞
(−1/16)

−25 + 14
√

2√
2− 1

150

Case 4. a ≥ p∗(µn) and b ≥ p∗(µn), thus a ≥ p∗(2µn) and b ≥ p∗(2µn)

We have γω1
µn(y, z) = γ1,0µn (a, b) ≥ γ1,0µn (p∗(2µn), p∗(2µn)) →

n→+∞
−2 + 2

√
2

Among these cases, the smallest limit is 5
4 (
√

2− 1), and the result follows.
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