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This paper provides a counterexample about the asymptotic behavior of the solutions of a discounted Hamilton-Jacobi equation, as the discount factor vanishes. The Hamiltonian of the equation is a 1-dimensional continuous and coercive Hamiltonian.

Résumé

Cet article fournit un contre-exemple à la convergence asymptotique des solutions d'une équation de Hamilton-Jacobi escomptée, lorsque le facteur d'escompte tend vers 0. Le Hamiltonien de cette équation est unidimensionnel, continu et coercitif.

Introduction and main result

Let n ≥ 1. Denote by T n = R n /Z n the n-dimensional torus. For c ∈ R, consider the Hamilton-Jacobi equation

H(x, Du(x)) = c (E 0 )
where the Hamiltonian H : T n × R n → R is jointly continuous and coercive in the momentum. In order to build solutions of the above equation, Lions, Papanicolaou and Varadhan [START_REF] Lions | Homogenization of hamilton-jacobi equations[END_REF] have introduced a technique called ergodic approximation. For λ ∈ (0, 1], consider the discounted Hamilton-Jacobi equation

λv λ (x) + H(x, Dv λ (x)) = 0 (E λ ) (1) 
By a standard argument, this equation has a unique viscosity solution v λ : T n → R. Moreover, (-λv λ ) converges uniformly as λ vanishes to a constant c(H) called the critical value. Set u λ := v λ + c(H)/λ. The family (u λ ) is equi-Lipschitz, and converges uniformly along subsequences towards a solution of (E 0 ), for c = c(H). Note that (E 0 ) may have several solutions. Recently, under the assumption that H is convex in the momentum, Davini, Fathi, Iturriaga and Zavidovique [START_REF] Davini | Convergence of the solutions of the discounted hamilton-jacobi equation[END_REF] have proved that (u λ ) converges uniformly (towards a solution of (E 0 )). In addition, they proved that the solution can be characterized using Mather measures and Peierls barriers.

Without the convexity assumption, the question of whether (u λ ) converges or not remained open. This paper solves negatively this question and provides a 1-dimensional continuous and coercive Hamiltonian for which (u λ ) does not converge2 .

Theorem 1. There exists a continuous Hamiltonian H : T 1 × R → R that is coercive in the momentum, such that u λ does not converge as λ tends to 0.

The example builds on a class of discrete-time repeated games called stochastic games. The main ingredient is to establish a connection between recent counterexamples to the existence of the limit value in stochastic games (see [4,[START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin= lim v (n)[END_REF]) and the Hamilton-Jacobi problem 3 .

The remainder of the paper is structured as follows. Section 2 presents the stochastic game example. Section 3 shows that in order to prove Theorem 1, it is enough to study the asymptotic behavior of the stochastic game, when the discount factor vanishes. Section 4 determines the asymptotic behavior of the stochastic game.

The stochastic game example

Given a finite set A, the set of probability measures over A is denoted by ∆(A). Given a ∈ A, the Dirac measure at a is denoted by δ a .

Description of the game

Consider the following stochastic game Γ, described by:

• A state space K with two elements ω 1 and ω -1 :

K = {ω 1 , ω -1 },
• An action set I = {0, 1} for Player 1,

• An action set J = 2 - √ 2 + 2 -2n , n ≥ 1 ∪ 2 - √ 2 for Player 2,
• For each (k, i, j) ∈ K × I × J, a transition q(. |k, i, j) ∈ ∆(K) defined by:

q(. |ω 1 , i, j) = [ij + (1 -i)(1 -j)]δ ω1 + [i(1 -j) + (1 -i)j]δ ω-1 , q(. |ω -1 , i, j) = [i(1 -j) + (1 -i)j]δ ω1 + [ij + (1 -i)(1 -j)]δ ω-1 . • A payoff function g : K × I × J → [0, 1], defined by g(ω 1 , i, j) = ij + 2(1 -i)(1 -j) and g(ω -1 , i, j) = -ij -2(1 -i)(1 -j).
Let k 1 ∈ K. The stochastic game Γ k1 starting at k 1 proceeds as follows:

• The initial state is k 1 . At first stage, Player 2 chooses j 1 ∈ J and announces it to Player 1. Then, Player 1 chooses i 1 ∈ I, and announces it to Player 2. The payoff at stage 1 is g(k 1 , i 1 , j 1 ) for Player 1, and -g(k 1 , i 1 , j 1 ) for Player 2. A new state k 2 is drawn from the probability q(. |k 1 , i 1 , j 1 ) and announced to both players. Then, the game moves on to stage 2. i m ∈ I afterwards, then the realized payoff is g(k m , i m , j m ). Thus, the payoff g(k m , i m , j m ) represents the expectation of g(k m , i m , j m ). Likewise, the transition q(. |k m , i m , j m ) represents the law of q(k m , i m , j m ).

The transition and payoff in Γ when players play pure actions can be represented by the following matrices:

Table 1: Transition and payoff functions in state ω 1 and ω -1

ω 1 1 0 1 1 - → 0 0 - → 0 2 ω -1 1 0 1 -1 ← - 0 0 ← - 0 -2
The left-hand side matrix stands for state ω 1 , and the right-hand side matrix stands for state ω -1 .

Consider the left-hand side matrix. Player 1 chooses a row (either 1 or 0), and Player 2 chooses a column (either 1 or 0). The payoff is given by the numbers: for instance, g(1, 1) = 1 and g(1, 0) = 0. The arrow means that when the corresponding actions are played, the state moves on to state ω -1 ; otherwise, it stays in ω 1 . For instance, q(.|ω 1 , 1, 1) = δ ω1 and q(.|ω 1 , 1, 0) = δ ω-1 . The interpretation is the same for the right-hand side matrix. In the game Γ, Player 1 can play only pure actions (1 or 0), and Player 2 can play 1 with some probability j ∈ J.

This matrix representation is convenient to understand the strategic aspects of the game.

Let us now define formally strategies. In general, the decision of a player at stage m may depend on all the information he has: that is, the stage m, and all the states and actions before stage m. In this paper, it is sufficient to consider a restricted class of strategies, called stationary strategies. Formally, a stationary strategy for Player 1 is defined as a mapping y : The sequence (k

K × J → I.
1 , i 1 , j 1 , k 2 , i 2 , j 2 , ..., k m , i m , j m , ...) ∈ H ∞ := (K ×I ×J) N * generated along the game is called
history of the game. Due to the fact that state transitions are random, this is a random variable. The law of this random variable depends on the initial state k 1 and the pair of strategies (y, z), and is denoted by P k1 y,z . We will call g m the m-stage random payoff g(k m , i m , j m ). Let λ ∈ (0, 1]. The game Γ k1 λ is the game where the strategy set of Player 1 (resp. 2) is Y (resp. Z), and the payoff is γ k1 λ , where

γ k1 λ (y, z) = E k1 y,z   m≥1 (1 -λ) m-1 g m   .
The goal of Player 1 is to maximize this quantity, while the goal of Player 2 is to minimize this quantity.

The game Γ k1 λ has a value, that is:

min z∈Z max y∈Y γ k1 λ (y, z) = max y∈Y min z∈Z γ k1 λ (y, z).
The value of Γ k1 λ is then defined as the above quantity, and is denoted by w λ (k 1 ). A strategy for Player 1 is 55 optimal if it achieves the right-hand side maximum, and a strategy for Player 2 is optimal if it achieves the left-hand side minimum. The interpretation is that if players are rational they should play optimal strategies, and as a result Player 1 should get w λ (k 1 ), and Player 2 should get -w λ (k 1 ).

Asymptotic behavior of the discounted value

As we shall see in the next section, for each λ ∈ (0, 1], one can associate a discounted Hamilton-Jacobi enough. Thus, the asymptotic behavior of this quantity needs to be studied.

Define

λ n := 2 -2n 3 4 - 1 √ 2 -1
and

µ n := 2 -2n-1 3 4 - 1 √ 2 -1
.

Proposition 3. The following hold:

(i) w λ (ω -1 ) ≤ w λ (ω 1 ) ≤ w λ (ω -1 ) + 2 (ii) lim n→+∞ w λn (ω 1 ) = 1/ √ 2 and lim inf n→+∞ w µn (ω 1 ) > 1/ √ 2.
Consequently, (w λ (ω 1 )) does not have a limit when λ → 0.

The proof of the above proposition is done in Section 4. As far as the proof of Theorem 1 is concerned, the key point is (ii). is Let us give here some piece of intuition for this result. Consider the game Γ that is identical to Γ, except that Player 2's action set is [0, 1] instead of J. For each λ ∈ (0, 1], denote by Moreover, for all n ≥ 1, p * (λ n ) ∈ J. Thus, this strategy is available for Player 2 in Γ, and consequently w λn (ω 1 ) = w λn (ω 1 ) + O(λ n ), as n tends to infinity.

w λ its discounted value. Because J ⊂ [0, 1],
On the other hand, for all n ≥ 1, p * (µ n ) / ∈ J, and the distance of p * (µ n ) to J is larger than 3 4 -1 √ 2 µ n /2. Consequently, the distance of the optimal strategy in Γ ω1 µn to the optimal strategy in Γ ω1 µn is of order µ n . This produces a payoff difference of order µ n at each stage, and thus of order 1 in the whole game. Thus, Player 2 is significantly disadvantaged in Γ ω1 µn compared to Γ ω1 µn , and the difference between w µn (ω 1 ) and w µn (ω 1 ) is of order 1.

Remark 4. As we shall see in the following section, we have lim λ→0 λw λ (ω 1 ) = lim λ→0 λw λ (ω -1 ) = 0.

The next section explains how to derive the counterexample and Theorem 1 from Proposition 3.

Link with the PDE problem and proof of Theorem 1

The following proposition expresses w λ as the solution of a functional equation called Shapley equation.

Proposition 5. Let λ ∈ (0, 1] and u λ := (1 + λ) -1 w λ/(1+λ) . For each r ∈ {-1, 1}, the two following equations hold: 

(i) w λ (ω r ) = min j∈J max i∈I {g(ω r , i, j) + (1 -λ) [q(ω r |ω r , i, j)w λ (ω r ) + q(ω -r |ω r , i, j)w λ (ω -r )]} (ii) λu λ (ω r ) = min j∈J max i∈I {g(ω r , i, j) + q(ω -r |ω r , i, j) [u λ (ω -r ) -u λ (ω r )]} Proof. (a)
w λ 1+λ (ω r ) = min j∈J max i∈I g(ω r , i, j) + 1 1 + λ [q(ω r |ω r , i, j)w λ 1+λ (ω r ) + q(ω -r |ω r , i, j)w λ 1+λ (ω -r )]
Using the fact that q(ω r |ω r , i, j) = 1 -q(ω -r |ω r , i, j) yields the result.

For r ∈ {1, -1} and p ∈ R, define H r : R → R by

H r (p) :=      -min j∈J max i∈I {g(ω r , i, j) -rp • ([i(1 -j) + (1 -i)j]} , if |p| ≤ 2, H r 2 p |p| + |p| -2 if |p| > 2.
For x ∈ [-1, 1] and p ∈ R, let

H(x, p) := |x|H 1 (|p|) + (1 -|x|)H -1 (|p|). ( 2 
)
Note that the definition of H 1 and

H -1 for |p| > 2 ensures that lim |p|→+∞ H 1 (p) = lim |p|→+∞ H -1 (p) = +∞, thus lim |p|→+∞ H(p) = +∞. Note also that for all x ∈ [-1, 1], H 1 (x, .) is increasing on [-2, 2] and H -1 (x, .
)

is decreasing on [-2, 2].
Thanks to Proposition 5 (ii) and Proposition 3 (i), we have λu λ (ω 1 ) + H 1 (u λ (ω 1 ) -u λ (ω -1 )) = 0 and

λu λ (ω -1 ) + H -1 (u λ (ω 1 ) -u λ (ω -1 )) = 0. For x ∈ [-1, 1], let u λ (x) = |x|u λ (ω 1 ) + (1 -|x|)u λ (ω -1 ). Let x ∈ (-1, 1) \ {0}. Proposition 3 (i) im-
plies that w λ (ω -1 ) ≤ w λ (ω 1 ), thus u λ (ω -1 ) ≤ u λ (ω 1 ) and |Du λ (x)| = u λ (ω 1 ) -u λ (ω -1 ). Consequently, Proposition 5 (ii) yields

λu λ (x) + H(x, Du λ (x)) = 0. (3) 
Note that the above equation is identical to equation [START_REF] Barles | Some counterexamples on the asymptotic behavior of the solutions of hamiltonjacobi equations[END_REF]. The reason why we use the notation u λ and not v λ is that, as we shall see, c(H) = 0, thus u λ coincides with v λ .
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Extend u λ and H(., p) (p ∈ R) as 2-periodic functions defined on R. The Hamiltonian H is continuous and coercive in the momentum, and the above equation holds in a classical sense for all x ∈ R \ Z.

For x ∈ R, denote by D + u λ (x) (resp., D -u λ (x)) the super-differential (resp., the sub-differential) of u λ at

x. Let us show that u λ is a viscosity solution of (3) on R. By 2-periodicity, it is enough to show that this is a viscosity solution for x = 0 and x = 1.
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Let us start by x = 0. We have

D + u λ (0) = ∅ and D -u λ (0) = [u λ (ω -1 ) -u λ (ω 1 ), u λ (ω 1 ) -u λ (ω -1 )]. Let p ∈ D -u λ (0). Then H -1 (p) ≥ H -1 (u λ (ω 1 ) -u λ (ω -1 )) = -λu λ (ω -1 ), thus λu λ (0) + H(0, p) ≥ 0.
Consequently, u λ is a viscosity solution at x = 0.

Consider now the case x = 1. We have

D + u λ (1) = [u λ (ω -1 ) -u λ (ω 1 ), u λ (ω 1 ) -u λ (ω -1 )] and D -u λ (1) = ∅. Let p ∈ D + u λ (1). Then H 1 (p) ≤ H 1 (u λ (ω 1 ) -u λ (ω -1 )) = -λu λ (ω 1 ), thus λu λ (1) + H(1, p) ≥ 0. Conse- quently, u λ is a viscosity solution at x = 1.
Let us now conclude the proof of Theorem 1. Because H is 2-periodic, equation ( 3) can be considered as written on T 1 .

As noticed before, equation ( 3) is identical to equation [START_REF] Lions | Homogenization of hamilton-jacobi equations[END_REF]. Therefore, as stated in the introduction,

-λu λ converges to c(H). Proposition 3 (ii) implies that (-λ n u λn (1)) converges to 0, thus c(H) = 0. Still by Proposition 3 (ii), (u λ (1)) does not have a limit when λ tends to 0: Theorem 1 is proved.

Proof of Proposition 3

4.1. Proof of (i)

Consider Proposition 5 (i) for r = 1. Take j = 1/2 ∈ J. It yields

w λ (ω 1 ) ≤ max i∈I 1 + (1 -λ) 1 2 w λ (ω 1 ) + 1 2 w λ (ω -1 ) = 1 + 1 2 (1 -λ) (w λ (ω 1 ) + w λ (ω -1 )) . (4) 
Take i = 1/2. This yields

w λ (ω 1 ) ≥ 1 2 + 1 2 (1 -λ) (w λ (ω 1 ) + w λ (ω -1 )) . (5) 
For r = -1, taking j = 1/2 and then i = 1/2 produce the following inequalities:

w λ (ω -1 ) ≤ - 1 2 + 1 2 (1 -λ) (w λ (ω 1 ) + w λ (ω -1 )) , (6) 
and

w λ (ω -1 ) ≥ -1 + 1 2 (1 -λ) (w λ (ω 1 ) + w λ (ω -1 )) . (7) 
Combining ( 5) and ( 6) yield w λ (ω 1 ) ≥ w λ (ω -1 ) + 1 ≥ w λ (ω -1 ). Combining (4) and ( 7) yield w λ (ω -1 ) ≥ w λ (ω 1 ) -2, and (i) is proved.

Proof of (ii)

For (i, i ) ∈ {0, 1} 2 , consider the strategy y of Player 1 that plays i in ω 1 and i in ω -1 (regardless of Player 2's actions), and the strategy z of Player 2 that plays a in state ω 1 , and b in state ω -1 . Denote

γ i,i λ (a, b) := γ ω1 λ (y, z) (resp., γ i,i λ (a, b) := γ ω-1 λ (y, z)), the payoff in Γ ω1 λ (resp., Γ ω-1 λ ), when (y, z) is played.
Proposition 6. The following hold:

1.

γ 0,0 λ (a, b) = -2(a -b -λ + bλ) λ(a + b + λ -aλ -bλ) γ 1,1 λ (a, b) = - a -b + λb λ(a + b + λ -aλ -bλ -2) γ 1,0 λ (a, b) = 2a + 2b + 2λ -ab -aλ -2bλ + abλ -2 λ(b -a + λa -bλ + 1) γ 0,1 λ (a, b) = - 2a + 2b -ab -2bλ + abλ -2 λ(a -b -aλ + bλ + 1)
2.

• γ 0,0 λ is decreasing with respect to a and increasing with respect to b.

• γ 1,1 λ is increasing with respect to a and decreasing with respect to b.

• γ 1,0 λ is increasing with respect to a and b.

• γ 0,1 λ is decreasing with respect to a and b.

Proof.

1. The payoffs γ 0,0 λ (a, b) and γ 0,0 λ (a, b) satisfy the following recursive equation:

γ 0,0 λ (a, b) = a(1 -λ) γ 0,0 λ (a, b) + (1 -a)(2 + (1 -λ)γ 0,0 λ (a, b)) γ 0,0 λ (a, b) = a(1 -λ)γ 0,0 λ (a, b) + (1 -a)(-2 + (1 -λ) γ 0,0 λ (a, b))
Combining these two relations give the first equality. The three other equalities can be derived in a similar fashion.

2. These monotonicity properties are simply obtained by deriving γ i,i λ with respect to a and b. and the result follows.

2. Let z be a strategy of Player 2, and a = z(ω 1 ) and b = z(ω -1 ).

Note that the interval (p * (µ n /2), p * (2µ n )) does not intersect J.

The following cases are distinguished: Among these cases, the smallest limit is 5 4 ( √ 2 -1), and the result follows.

  The intuition is the following. Consider the game Γ ωr λ . At stage 1, the state is ω r . The term g represents the current payoff, and the term (1 -λ)[...] represents the future optimal payoff, that is, the payoff that Player 1 should get from stage 2 to infinity. Thus, this equation means that the value of Γ ωr λ coincides with the value of the one-stage game, where the payoff is a combination of the current payoff and the future optimal payoff. For a formal derivation of this type of equation, we refer to [10, VII.1., p. 392]. (b) Evaluating the previous equation at λ/(1 + λ) yields

1 .

 1 For all (i, i ) ∈ {0, 1},lim n→+∞ γ i,i λn (p * (λ n ), p * (λ n )) = 1 √ 2 ,

Case 1 . 4 √ 2 - 1 Case 2 .√ 2 ) 2 √ 2 - 1

 142122221 a ≤ p * (µ n ) and b ≤ p * (µ n ), thus a ≤ p * (µ n /2) and b ≤ p * (µ n /2) 145 We have γ ω1 µn (y, z) = γ 0,1 µn (a, b) ≥ γ 0,1 µn (p * (µ n /2), p * (µ n /2)) → n→+∞ 5 a ≤ p * (µ n ) and b ≥ p * (µ n ), thus a ≤ p * (µ n /2) and b ≥ p * (2µ n ) We have γ ω1 µn (y, z) = γ 0,0 µn (a, b) ≥ γ 0,0 µn (p * (µ n /2), p * (2µ n )) → n→+∞ -Case 3. a ≥ p * (µ n ) and b ≤ p * (µ n ), thus a ≥ p * (2µ n ) and b ≤ p * (µ n /2)We haveγ ω1 µn (y, z) = γ 1,1 µn (a, b) ≥ γ 1,1 µn (p * (2µ n ), p * (µ n /2)) → n→+∞ (-1/16) -25 + 14 √ Case 4. a ≥ p * (µ n ) and b ≥ p * (µ n ), thus a ≥ p * (2µ n ) and b ≥ p * (2µ n ) We have γ ω1 µn (y, z) = γ 1,0 µn (a, b) ≥ γ 1,0 µn (p * (2µ n ), p * (2µ n )) → n→+∞ -2 + 2 √ 2

•

  At each stage m ≥ 2, Player 2 chooses j m ∈ J and announces it to Player 1. Then, Player 1 chooses i m ∈ I, and announces it to Player 2. The payoff at stage m is g(k m , i m , j m ) for Player 1, and -g(k m , i m , j m ) for Player 2. A new state k m+1 is drawn from the probability q(. |k m , i m , j m ) and announced to both players. Then, the game moves on to stage m + 1. The action set of Player 2 can be interpreted as a set of randomized actions. Indeed, imagine that Player 2 has only two actions, 1 and 0. These actions are called pure actions. At stage m, if Player 2 chooses j m ∈ J, this means that he plays 1 with probability j m , and 0 with probability 1 -j m . Denote by j m ∈ {0, 1} his realized action. Player 1 knows j m before playing, but does not know j m . If Player 1 chooses

	Remark 2.

  The interpretation is that at stage m, if the current state is k, and Player 2 plays j, then Player 1 plays y(k, j). Thus, Player 1 only bases his decision on the current state and the current action of Player 2. Denote by Y the set of stationary strategies for Player 1.

A stationary strategy for Player 2 is defined as a mapping z : K → J. The interpretation is that at stage m, if the current state is k, then Player 2 plays z(k). Thus, Player 2 only bases his decision on the current state. Denote by Z the set of stationary strategies for Player 2.

Note that for time-dependent Hamilton-Jacobi equations, several counterexamples about the asymptotic behavior of solutions have been pointed out in[START_REF] Barles | Some counterexamples on the asymptotic behavior of the solutions of hamiltonjacobi equations[END_REF]

.[START_REF] Barles | Some counterexamples on the asymptotic behavior of the solutions of hamiltonjacobi equations[END_REF] Let us mention the work[START_REF] Kohn | A deterministic-control-based approach motion by curvature[END_REF][START_REF] Kohn | A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations[END_REF][START_REF] Imbert | Repeated games for non-linear parabolic integro-differential equations and integral curvature flows[END_REF][START_REF] Ziliotto | Stochastic homogenization of nonconvex hamilton-jacobi equations: a counterexample[END_REF] as other illustrations of the use of repeated games in PDE problems.

equation with c(H) = 0, such that its solution evaluated at x = 1 is approximately w λ (ω 1 ), for λ small
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For λ ∈ (0, 1], set p * (λ

Define a strategy y of Player 1 in the following way:

• in state ω 1 , play 0 if j ≤ p * (λ), play 1 otherwise,

• in state ω -1 , play 1 if j ≤ p * (λ), play 0 otherwise.

The rationale behind this strategy can be found in Section 2.2.

For all n ≥ 1, define

and

.

Proposition 7. The following hold: