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Abstract. Many optimization problems require the use of a local
search to find a satisfying solution in a reasonable amount of time,
even if the optimality is not guaranteed. Usually, local search algo-
rithms operate in a search space which contains complete solutions
(feasible or not) to the problem. In contrast, in Consistent Neighbor-
hood Search (CNS), after each variable assignment, the conflicting vari-
ables are deleted to keep the partial solution feasible, and the search
can stop when all the variables have a value. In this paper, we pro-
pose a generalized version of CNS, discuss its performance according
to various criteria, and present successful adaptations of CNS to three
types of satellite range scheduling problems. Such problems are moti-
vated by applications encountered by the French National Space and
Aeronautic Agencies and the US Air Force Satellite Control Network.
The described numerical experiments will demonstrate that CNS is a
powerful and flexible method, which can be easily combined with effi-
cient ingredients.
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1. Introduction

As discussed in [23], an exact method guarantees the optimality of the pro-
vided solution. However, for a large number of applications and most real-life
optimization problems, such methods need a prohibitive amount of time to find
an optimal solution, because such problems are NP-hard [8]. For these difficult
problems, one should prefer to quickly find a satisfying solution, which is the goal
of heuristic and metaheuristic solution methods. There mainly exist three fami-
lies of (meta)heuristics: constructive algorithms (a solution is built step by step
from scratch, like the greedy algorithm), local search methods (a solution is itera-
tively modified: this will be discussed below), and evolutionary metaheuristics (a
population of solutions is managed, like genetic algorithms and ant algorithms).

Only the context of local search methods will be considered in this work. A local
search algorithm starts with an initial solution and tries to improve it iteratively.
At each iteration, a modification, called move, of the current solution is performed
in order to generate a neighbor solution. The definition of a move, i.e. the defi-
nition of the neighborhood structure, depends on the considered problem. Popular
local search methods are simulated annealing, tabu search, threshold algorithms,
variable neighborhood search, and guided local search. For a survey on these local
search methods as well as on other metaheuristics, the reader is referred to [9].

Within a local search context, the usual approach consists in working with
complete solutions, i.e. each variable has a value and the solution might be feasible
or not. In the latter case, a penalty function is often used, which depends on the
number of violated constraints. In contrast, in Consistent Neighborhood Search
(CNS, which was first introduced in [24]), partial feasible solutions are used. Thus,
not every variable has a value but there is no constraint violation. In such a
case, the goal is to minimize the number of non assigned variables, and a move
is performed in at least two phases: (1) give a value to an unassigned variable si;
and (2) delete the value of the created conflicting variables (i.e. the variables
different from si involved in a constraint violation). An intermediate phase might
occur between these two phases, which consists in adjusting the value of conflicting
variables under some specific conditions.

In this paper, we present a generalized version of the CNS methodology and the
adaptation of tabu search within its framework, then we discuss, with a unified ter-
minology, the great success of some existing solutions methods, which can however
be considered as belonging to the CNS methodology, for three NP-hard satellite
range scheduling problems (denoted SAT1, SAT2 and SAT3). Only a baseline
study is given for each problem. More precisely, for SAT1 (resp. SAT2 and SAT3),
the reader is referred to [22] (resp. [12, 27]) to have detailed information on the
NP-hard state, the complexity issues, the literature review, the experimental con-
ditions (computer, language, etc.), and the presentation of the results. These three
references are again given at the beginning of Sections 3–5. For each considered
problem, the CNS approach will always be compared with state-of-the-art meth-
ods, even if such methods are not very recent. The main numerical results will be
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highlighted, which allows to conclude on the excellent performance of CNS. Note
that the reader interested in having accurate ways to design and analyze numerical
experimentations is referred to [2, 14].

The performance of a metaheuristic can be evaluated according to several cri-
teria [26]. The most relevant criteria are: (1) quality: value of the obtained results,
according to a given objective function; (2) speed : time needed to get good results;
(3) robustness : sensitivity to variations in problem characteristics and data quality;
(4) ease of adaptation: the ability to organize the method so that it can appropri-
ately apply to different specific classes of problems; (5) ability to take advantage of
problem structure (considering that efficiency often depends on making effective
use of properties that differentiate a given class of problems from other classes).
It will be discussed that the proposed CNS methodology has a good behavior
according to these criteria.

The contributions of this paper, which is an extension of [23,24], are the follow-
ing: (1) the proposed CNS method is a generalization of the existing one, as the
following elements are new: the design and management of active and relaxed con-
straints, the development and classification of deleting rules, and the management
of threshold values triggering a reparation phase; (2) the repairing phase procedure
is accurately formulated and illustrated for a linear program and a graph color-
ing instance; (3) the performance of CNS is discussed according to a larger set
of criteria (namely, quality, speed, robustness, ease of adaptation, and ability to
take advantage of the problem structure); (4) the focus is specifically put on satel-
lite range scheduling (three problems in this field are considered, denoted SAT1,
SAT2 and SAT3); (5) ingredients which can be successfully combined with CNS
are clearly identified when discussing SAT1, SAT2 and SAT3 (e.g., intensifica-
tion/diversification procedures, dynamic management of the tabu tenures).

The paper is organized as follows. In Section 2, a generalized CNS methodol-
ogy is introduced. In the next sections, metaheuristics for various satellite range
scheduling problems are described within a CNS framework. Such problems are
motivated by the French National Space and Aeronautic Agencies and the US Air
Force Satellite Control Network, for which they have important implications. In
Section 3 is discussed the daily photograph scheduling of an Earth observation
satellite, which aims at maximizing the total gain associated with the selected
pictures. When dealing with several satellites, the so-called multi-resource satel-
lite range scheduling problem is presented in Section 4. In Section 5 is depicted a
situation where partial acquisitions are possible and transition times are consid-
ered. In Section 6, we end up the paper with a discussion focused mainly on the
performance of CNS.

2. Consistent Neighborhood Search

In this section, we describe the CNS methodology, which has a search be-
havior between exhaustive tree search and local search working with complete
solutions [23].
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Let (P ) be the considered problem with n variables s1, . . . , sn, let f be the
objective function to minimize, and let C be the set of constraints to satisfy. It is
assumed that the constraint set C can be partitioned in two disjoint subsets A
(active constraints) and B (relaxed constraints). A solution satisfying all the active
(resp. relaxed) constraints is said to be A-feasible (resp. B-feasible). A solution
is feasible if it is both A-feasible and B-feasible. It is of course possible to set
A = C and B = ∅ in order to only deal with feasible solutions. Further, each
variable si can only have a value in its value domain Di. A solution of (P ) is
denoted s = (s1, . . . , sn), where si ∈ Di.

In most local search methods, the search space contains complete solutions, i.e.
each variable si has a value in Di, and the solutions can be feasible or not. If the
search space only contains feasible solutions, the goal is generally to directly min-
imize the given objective function f associated with (P ); otherwise, the aim often
consists in minimizing f(s)+α ·p(s), where p(s) penalizes the constraint violations
associated with s, and α is a parameter which gives more or less importance to
the constraint violations.

In contrast, a specificity of CNS consists in working with A-feasible partial
solutions, i.e. where some si’s do not have a value but all the active constraints
are satisfied. In such a case, the goal is to minimize the number f̂(s) of non
assigned variables in s. Let F̂ be a threshold value associated with f̂ . Then, if
a neighbor solution s(neighbor) of the current solution s(current) is found such that
f̂(s(neighbor)) < F̂ , then a repairing process is triggered to transform s(neighbor) into
a feasible partial solution (by deleting the value of some of the associated si’s in
order to remove the violations of the B constraints). The process stops of course if
the two following conditions are met: f̂(s(neighbor)) = 0 and s(neighbor) is a feasible
solution. We propose two options to manage F̂ . On the one hand, let f̂� be the
smallest value of f̂ encountered so far during the search process, which is associated
with a feasible partial solution. A first option consists in setting F̂ = f̂�. On the
other hand, another option simply consists in setting F̂ = f̂(s(current)). Other
options to determine F̂ could of course be derived.

Therefore, three search spaces are possible: (1) the complete and feasible
search space S(feasible); (2) the complete and non necessarily feasible search
space S(penalty), where unfeasible solutions are penalized; and (3) the partial and
A-feasible search space S(partial). When working in S(feasible), it can be very diffi-
cult to define a move which maintains the feasibility of the solution. When working
in S(penalty), it is challenging to: (1) define a move which does not augment too
much p(s); (2) tune the above mentioned parameter α; and (3) find a feasible
solution because S(penalty) is much larger than S(feasible). We will see that such
drawbacks are avoided when working in S(partial).

An important feature of CNS is the definition of the neighborhood structure
in S(partial). In most local search methods, in order to generate a neighbor solu-
tion s′ from the current solution s, a move m consists in changing the value of one
(or more) variable(s) of s. The set of neighbor solutions of s is denoted N(s). Let
d(s, s′) be the distance between s and s′ ∈ N(s). Usually, d(s, s′) is proportional
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to the number of modified variables when moving from s to s′, thus d(s, s′) is a
constant for all s′ ∈ N(s).

For CNS in contrast, as presented below, any move m is performed in at least
two phases. The distance between s and a neighbor solution in N(s) is thus usually
not a constant.

(1) Assignment phase. A value of Di is assigned to a non assigned variable si.
Let C(m) be the set of conflicting variables (excluding si) created by move m
(a variable is in conflict if it is involved in at least an A-constraint violation).

(2) Reassignment phase (optional). Reduce the set C(m) as follows: for each vari-
able of C(m), if it is possible to assign an A-feasible value to it without creating
new constraint violations, do it.

(3) Repairing phase. In order to keep the partial solution A-feasible, remove the
value of all the variables of C(m).

Note that the above repairing process relies on the assumption that it is always
possible to repair an A-unfeasible solution by deleting the value of some decision
variables. To better capture this assumption, two problems are briefly discussed
below (namely a linear program and a graph coloring instance) and show how to
manage the repairing phase.

Firstly, consider the following linear program with variables s1 and s2. The
objective function f(s1, s2) to maximize is equal to 2s1 + 3s2. In addition to
the positivity constraint (i.e., s1, s2 ≥ 0), the constraint of type A to satisfy is
s1 + s2 ≤ 5. Consider solution s = (s1, s2) = (3, ∗), where ∗ indicates that s2

has no value. Such a solution s is assumed to be A-feasible, because constraint
s1 + s2 ≤ 5 is assumed to be not violated. In contrast, solution s = (6, ∗) is not
A-feasible, because s1 + s2 ≤ 5 is assumed to be violated. Further, from s = (3, ∗),
consider the move m which consists in assigning value 4 to variable s2. In such an
assignment phase, C(m) = {s1} (set of conflicting variables created by move m,
excluding s2) because constraint s1 + s2 ≤ 5 is violated. Then, if no reassignment
phase is performed (i.e. assign a new value to s1 such that the updated solution is
A-feasible), the repairing process simply consists in removing the value of s1, and
the neighbor solution is s′ = (s′1, s

′
2) = (∗, 4).

Secondly, consider the following graph coloring instance associated with the fa-
mous k-graph coloring problem. The graph consists in three vertices (denoted s1,
s2 and s3) and two edges (namely [s1, s2] and [s2, s3]). The number of available
colors is k = 2. The constraint of type A to satisfy is that two adjacent ver-
tices cannot receive the same color. Consider solution s = (s1, s2, s3) = (1, ∗, 2),
where ∗ indicates that s2 has no color. Such a solution s is assumed to be A-feasible
because there is no pair of adjacent vertices having the same color. In contrast,
solution s = (1, 1, 2) is not A-feasible. Further, from s = (1, ∗, 2), consider the
move m which consists in assigning color 2 to vertex s2. In such an assignment
phase, C(m) = {s3} because s2 and s3 are adjacent and get the same color. Then,
if no reassignment phase is performed, the repairing process simply consists in
removing the color of s3, and the neighbor solution is s′ = (1, 2, ∗). Then, the next
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neighbor solution is likely to be (1, 2, 1), which is a complete and feasible solution.
Note by the way that CNS was very efficiently adapted for the k-coloring problem
in [4], and thus for the graph coloring problem (as the latter can be tackled by
sequentially solving a series of k-coloring problems, starting with k equal to the
number of vertices of the graph).

In most local search algorithms, the selected neighbor solution s′ of the current
solution s is usually (one of) the best (according to f or f + α · p) solution chosen
among a sample of N(s). Sampling is usually unavoidable because it is too much
time consuming to evaluate all the neighbor solutions of s, either because N(s) is
too large or because it is cumbersome to evaluate a single move m. An important
issue is thus to determine the sample (random or not) as well as the size of the
sample.

In contrast, in CNS, all the neighbor solutions can be considered at each it-
eration. This is possible in a reasonable amount of time because of two reasons:
(1) it is quick to evaluate a neighbor solution by incremental computation: it is
simply |C(m)|; (2) the number of non assigned variables in the current solution s
is in general small when compared for example with the size |N(s)| of the neigh-
bor solutions of s in a standard local search approach (working in S(feasible) or
in S(penalty)). By construction, several neighbor solutions are likely to have the
same value in CNS. In such a case, the way ties are broken can become an im-
portant issue. It is thus relevant to define a set R = {R1,R2,R3, . . .} of rules to
sequentially use in order to break ties. The last rule of this set consists in perform-
ing a random choice. More precisely, if two neighbor solutions s1 (obtained with
move m1) and s2 (obtained with move m2) have the same value |C(m1)| = |C(m2)|,
then use rule R1 to break ties. If R1 is not able to discriminate between s1 and s2,
then use R2, and so on until a selection is made. The set R of rules is called the
deleting rules, as its role is to determine the set of values to remove from a current
solution s in order to transform it into an A-feasible solution (because at the first
step of a move, one of the unassigned si’s gets a value which creates conflicts).

In summary, CNS is an approach dealing with partial A-feasible solutions, which
can explore the whole neighborhood of the current solution at each iteration be-
cause a straightforward incremental computation can be designed. Many local
search methods (e.g., tabu search, simulated annealing, random walk, threshold
algorithms, etc.) can be adapted within the framework of CNS. We have now all
the ingredients to formulate a pseudo-code of CNS in Algorithm 1 (note that at
step 4(b), the test “if f̂(s) < f̂�” has to be performed again because of the trans-
formation occurring at step 4(a), as such a transformation might decrease the
quality of s).

An important issue is that Algorithm 1 in its current state might cycle if a
local optimum is reached. There are two ways to tackle this issue: (1) restart
the algorithm when a local optimum is reached; (2) define a way to escape from
local optima. As tabu search has an efficient mechanism to escape from local op-
tima, its adaptation within the framework of CNS is relevant and now discussed. A
generic and standard version of tabu search can be described as follows, assuming f
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Algorithm 1 CNS
Initialization
(1) generate an initial B-feasible partial solution s;

(2) set s� = s and f̂� = f̂(s);

While a stopping time condition is not met and f̂� > 0, do
(1) initialize the value of the best move: set g = +∞;
(2) generate the best move: for each non assigned variable si and each value dj ∈ Di,

test move m = (si, dj) on s as follows:
(a) assignment phase: give value dj to variable si and compute the associated

set C(m) of conflicting variables;
(b) reassignment phase (optional): for each variable sr of C(m), if it is possible

to assign an A-feasible value to sr without augmenting C(m), do it and
remove sr from C(m);

(c) let scand be the so obtained candidate neighbor solution (which might be
non A-feasible at this stage);

(d) update the best candidate move: if |C(m)| ≤ g, do
(i) if |C(m)| = g, use R to determine if s′ = scand should be set;
(ii) if |C(m)| < g, set s′ = scand and g = |C(m)|;

(3) repairing phase on the best move: remove the value of the g conflicting variables
of s′ and let s be the resulting new current solution;

(4) update the record (among the B feasible solutions): if f̂(s) < f̂�, do
(a) transform s into a B-feasible partial solution (by removing the value of

some si’s);

(b) if f̂(s) < f̂�, set s� = s and f̂� = f̂(s)

Output: solution s� (which is a complete feasible solution if f̂� = 0);

has to be minimized. First, tabu search needs an initial solution as input. Then,
the algorithm generates a sequence of neighbor solutions. When a move is per-
formed from s to s′, the inverse of that move is forbidden during the following t
(parameter) iterations (with some exceptions). The solution s′ is computed as
s′ = arg min

s′′∈N ′(s)
f(s′′), where N ′(s) is a subset of N(s) containing all solutions s′

which can be obtained from s either by performing a move that is not tabu or such
that f(s′) < f(s�), where s� is the best solution encountered along the search so
far. Usually, N ′(s) is too large and only a sample of neighbor solutions are selected
from N ′(s) to be evaluated. The choice of the sample often has a strong impact
on the final results. The process is stopped for example when an optimal solu-
tion is found (when it is known), or when a fixed number of iterations have been
performed. Many variants and extensions of this basic algorithm can be found for
example in [11].

Tabu search adapted within the framework of CNS has the following specificities:
working in S(feasible); minimizing f̂ instead of f ; exploring the whole neighborhood
of the current solution; using an efficient and straightforward incremental compu-
tation; after each move when a value is given to a variable si and other values
might be adjusted or deleted, it is then tabu to remove the value of si for a certain
number of iterations.
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In the next three sections are discussed satellite range scheduling problems
which were tackled with CNS types of metaheuristics.

3. Basic satellite range scheduling

Scheduling requests (or jobs) on a satellite constellation is referred to as satellite
range scheduling problems. The baseline study associated with this section is [22],
in which the problem is referred to as the daily photograph scheduling of an Earth
observation satellite (and denoted SAT1 in this paper). The authors proposed a
tabu search approach working in S(partial), denoted CNS-SAT1 below.

3.1. Description of the problem

The considered satellite range scheduling problem can be described as follows [3].
Let P = {p1, . . . , pn} be the set of n candidate photographs which can be scheduled
to be taken on the next day. A set of possibilities is associated with each photo-
graph pi, corresponding to the different ways to take pi: (1) for a mono pi, there
are three possibilities because a mono photograph can be taken by any of the three
cameras (front, middle and rear) on the satellite; (2) for a stereo pi, there is one sin-
gle possibility because a stereo photograph requires simultaneously the front and
the rear camera. With each mono photograph pi ∈ P are associated three pairs of
elements (pi, camera 1), (pi, camera 2), (pi, camera 3). Similarly, with each stereo
photograph pi ∈ P is associated one pair (pi, camera 13). Letting n1 and n2 be
respectively the number of mono and stereo photographs in P (where n = n1+n2),
there are in total m = 3 · n1 + n2 possible pairs of elements for the given set P of
candidates. Now, associating a binary (decision) variable si with each such pair,
a photograph schedule corresponds to a binary vector: s = (s1, s2, . . . , sm), where
si = 1 if the corresponding pair (photo, camera) is present in the schedule, and
si = 0 otherwise. For example, if P = {p1, p2, p3} where p1 and p2 are mono
photographs and p3 is a stereo photograph, then s = (1, 0, 0, 0, 0, 0, 1) represents
a schedule in which p1 is taken by camera 1, p2 is rejected and p3 is taken by
cameras 1 and 3.

SAT1 consists in finding a subset P ′ of P which satisfies all the imperative
constraints and maximizes the sum of the profits of the photographs in P ′. The
profit function reflects several criteria such as client importance, demand urgency
or meteorological forecast. The objective function can be defined as follows. First,
the profit of a pair (p, camera) (or its 0-1 variable) is defined as the profit of the
photograph p. The total profit of all the pairs of the given set P is then represented
by a vector: g = (g1, g2, . . . , gm), where gi = gj (i �= j) if gi and gj correspond to
two different pairs of elements involving the same photograph p, i.e. (p, camera x)
and (p, camera y). Then the total profit value of a schedule s = (s1, s2, . . . , sm) is

the sum of the profits of the photographs in s, i.e. f(s) =
m∑

i=1

gi · si.
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A capacity constraint is the following. A size is associated with each photo-
graph pi, which represents the amount of memory required to record pi when it is
taken. The size of a pair (p, camera) (or its 0-1 variable) is defined as the size of the
photograph p. The total size of all the pairs of the given set P is then represented
by a vector: c = (c1, c2, . . . , cm), where ci = cj (i �= j) if ci and cj correspond to
two different pairs of elements involving the same photograph p, i.e. (p, camera x)
and (p, camera y). The capacity constraint states that the sum of the sizes of
the photographs in a schedule s = (s1, s2, . . . , sm) cannot exceed the maximal

recording capacity on board, which is expressed as
m∑

i=1

ci · si ≤ Max capacity.

Binary constraints involving the non overlapping of two trials and the minimal
transition time between two successive trials of a camera, and also some constraints
involving limitations on instantaneous data flow, are conveniently expressed by
simple relations over two pairs (photo, camera). A binary constraint forbids the
simultaneous presence of a pair (pi, ki) and another pair (pj , kj) in a schedule. If si

and sj are the corresponding decision variables of such two pairs, then a binary
constraint is defined as follows: si + sj ≤ 1. Let C2 denote the set of all such pairs
(si, sj) which should verify the above binary constraint.

Some constraints involving limitations on instantaneous data flow cannot be
expressed in the form of binary constraints as above. These remaining con-
straints may however be expressed by relations over three pairs (photo, camera). A
ternary constraint forbids the simultaneous presence of three pairs (pi, ki), (pj , kj),
and (pl, kl). Letting si, sj and sl be the decision variables corresponding to these
pairs, then such a ternary constraint is written: si + sj + sl ≤ 2. Let C3 1 denote
the set of all such triplets (si, sj, sl) which should verify this ternary constraint.

Finally, we need to be sure that a schedule contains no more than one pair
from {(p, ki), (p, kj), (p, kl)} for any (mono) photograph p. Letting si, sj and sl be
the decision variables corresponding to these pairs, then this ternary constraint is
expressed as: si + sj + sl ≤ 1. Clearly there are exactly n1 ternary constraints of
this type. Let C3 2 denote the set of all such triplets (si, sj , sl) which verify this
second type of ternary constraints. C3 denotes the union of C3 1 and C3 2, i.e.
C3 = C3 1 ∪ C3 2.

3.2. Description of the method

First, the set B of relaxed constraints only contains the capacity constraint.
Thus, the binary and ternary constraints belong to the set A of active constraints.
The relaxation of the capacity constraint clearly helps to obtain better results, to
accelerate the search, and to have a more robust method. This was experimentally
confirmed in [22].

Let s = (s1, s2, . . . , sm) ∈ C and s′ = (s′1, s
′
2, . . . , s

′
m), then s′ is a neighbor of s,

i.e. s′ ∈ N(s), if and only if the following conditions are verified:

(1) there is only one i such that si = 0 and s′i = 1, for 1 ≤ i ≤ m;
(2) for the above i, ∀(si, sj) ∈ C2, s′j = 0 for 1 ≤ j ≤ m;
(3) for the above i, ∀(si, sj, sk) ∈ C3 1, s′j + s′k ≤ 1 for 1 ≤ j, k ≤ m.
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Thus, a neighbor of s can be obtained by adding a pair (photo, camera) (i.e.
flipping a variable si from 0 to 1) in the current schedule and then dropping some
pairs (photo, camera) (i.e. flipping some sj ’s from 1 to 0) to repair binary and
ternary constraint violations. A binary constraint violation is easy to repair since
there is a single way to do this. However, the case for a ternary constraint violation
is more complicated since there are different ways to achieve such a repair. Suppose
that sj = sk = 1 and the move sets si to 1. The constraint si + sj + sk ≤ 2 is
thus violated and needs to be repaired. Experiments leads to the following deleting
rules, which can be sequentially applied.

R1 Look ahead in an exhaustive way to determine the best choice in terms of lost
profit.

R2 Set to 0 the element which has a smaller profit.
R3 Randomly set either sj or sk to 0.
R4 Set both sj and sk to 0.

For the instances used in this study, experiments showed that no more than five
elements need to be reset to repair a ternary constraint violation after a move,
confirming the relevance of R1. For the cases where more elements need to be
forward-checked, R2 should be the best choice.

As B contains the capacity constraint, it may be violated by the current solution
s = (s1, s2, . . . , sm) (i.e., the total size of s may exceed the maximal allowed
capacity). To satisfy the capacity constraint, the following mechanism is used.
Each time the current solution is improved, the capacity constraint is checked.
If the constraint is violated, the solution is immediately repaired by suppressing
the si’s which have the worst ratio gi/ci until the capacity constraint is satisfied.
In other words, the option F̂ = f̂(s(current)) proposed in Section 2 is used.

Each time a move is carried out, a single variable si flips from 0 to 1, and
several sj’s flip from 1 to 0. It is then tabu to flip again these sj values from 0 to 1
during tabu(j) iterations, where tabu(j) = C(j) + α · freq(j), where C(j) is the
number of binary and ternary constraints involving the element sj , freq(j) the
number of times sj is flipped from 1 to 0 from the beginning of the search, and α
is an instance-dependent coefficient which defines a penalty factor for each move.
To explain this, a variable involved in a large number of constraints has naturally
more risk to be flipped during a move than a variable having few constraints on
it. It is thus logic to give a longer tabu tenure for a move whose variable has many
constraints on it. The second part of the function aims to penalize a move which
repeats too often.

Intensification and diversification procedures were also used to enhance the
efficiency and the robustness of CNS-SAT1. The intensification process is based on
the following idea: if an element is present in a large number of good solutions, then
it is highly possible that this element is part of an optimal solution. In contrast,
the diversification process focuses on the jobs which a small flipping frequency
(because such jobs are likely to be almost ignored by the regular search process).
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Table 1. Results on the SAT1 instances.

Instance n m f�
TS TimeTS fCNS TimeCNS

1401 488 914 174 058 846 176 055 120
1403 665 1317 174 137 1324 176 134 332
1405 855 1815 174 174 1574 176 175 1314
1407 1057 2355 174 238 2197 176 241 2422
1504 605 1253 124 238 1011 124 241 405
1506 940 2060 165 244 1945 168 224 1423

Average 164 348.17 1272.86 166 178.33 859.57

3.3. Comparisons with other methods

Experiments were carried out on a set of 20 realistic instances provided by
the CNES (French National Space Agency) and described in details in [3]. These
instances belong to two different sets: without capacity constraint (13 instances)
and with capacity constraint (7 instances). The instances without capacity con-
straints, as well as one instance with capacity constraint, will not be commented: it
is very easy to solve them, either with an exact method or with the above described
CNS-SAT1 algorithm. The other six instances have from 488 to 1057 candidate
photographs, giving up to 2355 binary variables and 35 933 constraints.

The best known non exact algorithm was a tabu search TS-SAT1 proposed
by the CNES. The main differences with CNS-SAT1 algorithm are the following.
(1) TS-SAT1 uses a different (integer) formulation of the problem: (2) it manip-
ulates only feasible solutions (the search space is thus S(feasible)); (3) it uses a
different neighborhood structure; (4) it considers only a sample of neighbor solu-
tions to make a move; (5) the tabu tenure for each move is randomly taken from
predefined (very small) ranges.

To solve an instance, CNS-SAT1 is allowed to run 9 million iterations on a PC
(200 MHz, 32 MB of RAM), which is considered as reasonable by the CNES.
CNS-SAT1 was run 100 times on each instance with different random seeds and
the average value is returned for each instance. The first three columns of Table 1
give the name of the instance, the number of candidate photographs n, and the
number of 0-1 variables m. Columns 4 and 5 respectively show the best profit f�

TS

and the associated computing time timeTS (in seconds) obtained with TS-SAT1.
Columns 6-7 give the average profit value fCNS and the average time timeCNS

needed by CNS-SAT1 to find such a solution. Given that we compare average values
for CNS-SAT1 versus best values for TS-SAT1, we can observe that CNS-SAT1
appears to be more efficient and significantly quicker than TS-SAT1 (see also the
line labeled Average).

At the time of publication of CNS-SAT1 (i.e. in 2001), existing exact algorithms
were unable to solve optimally these instances (i.e. an ILP formulation relying
on CPLEX, and a non-standard Branch and Bound algorithm using a Valued
Constraint Satisfaction Problem formulation [25]). Nine years later, it was showed
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in [19] that CNS-SAT1 provides very good solutions, and for the difficult instances
(i.e. the instances with capacity constraint considered here), CNS-SAT1 found all
optimal solutions, except for instance 1403 (for which the gap is close to 1%).

4. Multi-resource satellite range scheduling

The baseline study associated with this section is [27], where the multi-resource
satellite range scheduling problem is tackled (denoted here by SAT2 for sake of
simplicity). In contrast with SAT1, several satellites are considered.

4.1. Description of the problem

Consider a set of satellites and a set {R1, R2, . . . , Rk} of ground stations. Ground
stations are communication facilities (e.g. antennae). Several operations must be
performed on spacecrafts, related to satellite control or payload. These operations
require ground-to-space communications, called jobs. Therefore, a job is associated
with some information representing the corresponding on-board operation. SAT2 is
a NP-hard problem [1] for which a set J = {1, . . . , n} of jobs have to be scheduled.
Each job j is characterized by the following parameters: the (unique) satellite satj
requested by j; the set Mj of ground stations able to process j; the duration pj

of communication j; the time rj at which j becomes available for processing; the
time dj by which j must be completed. Note that pj, rj and dj may depend on
the considered ground station. An important application is the one encountered
by the US Air Force Satellite Control Network, where more than 100 satellites
and 16 antennae located at 9 ground stations are considered. In such an context,
customers request an antenna at a ground station for a specific time window along
with possible alternative slots. The problem is in general oversubscribed, i.e. all
the jobs can not be performed. The goal is to schedule as many jobs as possible
within its time window, such that the processing of two jobs can not overlap on
the same resource (unit capacity): in such a case, there is a conflict and one of
the conflicting jobs has to be removed from the schedule. Minimizing the num-
ber of conflicting jobs (more precisely, the number of bumped jobs) is of crucial
importance in a practical standpoint, because human schedulers do not consider
any conflicting job worse than any other conflicting job [18]. The human sched-
ulers themselves state that minimizing the number of conflicts reduces (1) their
workload, (2) communication with outside agencies, and (3) the time required to
produce a conflict-free schedule [1].

4.2. Description of the method

First, the set B of relaxed constraints is set to ∅. The component sj of solution s
indicates the resource on which job j is scheduled if j is scheduled (otherwise, an
artificial value 0 can be given). For each solution s, there is an associated vector g
where component gj indicates the starting time of job j performed on resource sj .
As constraint violation are forbidden, for each resource Ri (with i ∈ {1, . . . , k}),
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all the jobs are scheduled within their time windows and there are no overlapping
jobs.

In order to generate a neighbor solution s′ from s, a bumped job j is first sched-
uled within its time window on a resource Ri ∈ Mj. More precisely, the assignment
phase is the following. Assume that jobs j1, . . . , jr are already scheduled (in that
order) on resource Ri. In order to schedule job j in Ri within its time window,
two main situations may occur. In the best situation, it is possible to successively
adjust the schedules of jobs j1, . . . , jr within their own time windows (while keep-
ing the same relative order j1, . . . , jr) in order to add job j to Ri without creating
any conflict (no overlapping). Otherwise, in the repairing phase, some non tabu
jobs have to be removed from Ri. The goal is to remove the smallest number of
non tabu jobs. If there are several possibilities, the following deleting rules are
sequentially applied.

R1 Remove the set of jobs with the largest average flexibility (where the flexibility
of a job is number of resources it can be scheduled on). The larger is the
flexibility of a job, the easier it would be to re-schedule it on another resource.

R2 Remove the set of jobs with the largest average age (where the age of a job is
the number of iterations from which it is in the solution). The removal of old
jobs will help to diversify the search.

R3 Remove a random set of jobs.

When a job j is inserted into a resource Ri, it is forbidden to remove it for tab(j)
iterations, with tab(j) = γ · nc + U(a, b), where nc is the number of bumped
jobs in the current solution, and U(a, b) is a function which returns a number
randomly generated in the set {a, a + 1, . . . , b− 1, b}. Parameters γ, a, b have been
respectively tuned to 0.6, 0 and 9. The component U(0, 9) allows to add some useful
randomness in the process, which helps to diversify the search. Such a dynamic
way of managing the tabu tenures is likely to escape from a region of the solution
space containing solutions with a large set of bumped jobs.

In order to better diversify the search, two diversification mechanisms, de-
noted DIV1 and DIV2, are used. The goal of DIV1 is to totally renew the set
of non scheduled jobs by forcing their insertion in the current schedule, and the
goal of DIV2 is to renew the set of scheduled jobs by removing old jobs from the
current solution. After a given number (parameter) of iterations without improve-
ment of the best solution encountered so far, DIV1 or DIV2 is performed (not
both, but in turns).

4.3. Comparisons with other methods

It is relevant to compare the three following heuristics: (1) CNS-SAT2 (which
also uses diversification procedures); (2) AMA, which is an adaptive memory algo-
rithm using CNS-SAT2 as intensification procedure (note that the AMA generic
methodology was introduced in [20]); (3) GENITOR [1], which is a genetic algo-
rithm that usually provides the best solutions for SAT2 up to 2007. GENITOR is
based on the permutation search space, where, as proposed by several researchers
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Table 2. Results on the SAT2 instances.

Instance fGEN fCNS fAMA Instance fGEN fCNS fAMA

1 115.75 55.75 55.5 11 106 51.75 52
2 101.5 54 54 12 106.25 46.5 46.75
3 125.75 65.75 63.5 13 111 56.75 56.75
4 117 49.5 50.25 14 112 58 57.5
5 113.75 52.25 51.75 15 108.75 42.5 42.75
6 121 59 58.75 16 119.75 58 58.25
7 120.5 53.25 52.5 17 107.25 50.25 50.5
8 103.5 49.5 48.75 18 112.25 53.25 52.5
9 97 38.25 38.5 19 100.25 47.5 47
10 104 50.75 51.5 20 96.75 41 41

(e.g. [1, 10]), a solution is encoded as a permutation π of the n jobs to sched-
ule. Let S(permutation) be the search space containing all the possible permuta-
tions. From a permutation π in S(permutation), it is possible to generate a sched-
ule in S(feasible) by the use of a schedule builder, which is a greedy constructive
heuristic.

The most difficult benchmark instances are of size 500 (i.e. n = 500) with
k = 9 resources (as described in [27]). Each instance was built by a well-known
generator described and used in [1]. It produces instances of SAT2 by modeling
realistic features. A maximum time limit of 15 min Pentium 4 (2 GHz, 512 MB
of RAM) is considered in Table 2, which is consistent with the ones used in [1],
and is appropriate in a practical standpoint. In Table 2, we compare the aver-
age number of bumped jobs of GENITOR, CNS-SAT2 and AMA, respectively
denoted fGEN, fCNS and fAMA. For each method and each instance, 30 runs were
performed. We can easily compute that in average, there are 110 bumped jobs by
GENITOR, 51.68 bumped jobs by CNS-SAT2, and 51.5 bumped jobs by AMA.
Such huge differences between the previous best existing algorithm for SAT2
(namely GENITOR) and CNS-based methods (namely CNS-SAT2 and AMA)
obviously show the outstanding performance of CNS approaches for this problem.

5. Satellite scheduling with partial acquisition

and transition times

The baseline study associated with this section is [12], in which the considered
problem (denoted SAT3) consists in scheduling the photographs of an agile Earth
observing satellite.

5.1. Description of the problem

The satellite range scheduling with partial acquisition and transition times prob-
lem (SAT3) consists again in selecting and scheduling a subset of requests yielding
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a maximal gain, subject to operational constraints, while considering a single orbit
of one satellite. In contrast with SAT1 and SAT2, a request can either be a target
or a polygon. In the latter case, several photographs have to be taken in order to
capture the polygon, and a non linear profit function is associated with the partial
acquisition of a polygon, which makes the problem harder. Another difference is
the consideration of transition times between the realization of two shots.

More precisely, a target consists of a single strip (rectangular shape), whereas a
polygon may cover a wide geographical area. Because of their size, polygons cannot
usually be photographed in a single shot. For this reason, they are partitioned into
strips of equal width but possibly unequal lengths and the time required to acquire
a strip is proportional to its length. In the course of a single orbit, the satellite may
be able to photograph several strips of the same polygon. Because of its agility,
it is also able to acquire a strip using two opposite azimuths (direct and indirect)
according to the satellite rotation sense. Hence, two shots (or images) per strip are
possible. The starting date of the acquisition of each shot must be in accordance
with its visibility time window. Moreover, some requests are mono while others
are stereo. A mono request consists of a single shot of each strip in the polygon. A
stereo request consists of two shots of each strip at different angles but in the same
direction. A strip from a stereo request is considered to have been acquired only
if its twin strip has also been acquired. Finally, for each pair of shots, the satellite
requires a minimum transition time to maneuver the camera from the end of the
first strip to the start of the second one.

Below are formally presented the given data, the constraints and the objective
function.

5.1.1. Given data

A problem with n strips involves 2n possible acquisitions since for each strip i
two shooting directions are possible. These shots are numbered 2i − 1 (an odd
number for a shot acquired in the direct azimuth) and 2i (an even number for a
shot acquired in the indirect azimuth).

For each strip i ∈ [1, n] let: tw(i) be the index of its stereo twin strip, 0 if i is
mono; d(i) be its shooting duration; su(i) be its corresponding surface.

For each shot (image) j ∈ [1, 2n] let: es(j) and ls(j) be its earliest and latest
start dates, respectively; ee(j) and le(j) be its earliest and latest end dates, re-
spectively. For each shot pair (i, j), i �= j ∈ [1, 2n], t(i → j) denotes the minimum
transition time between the end of i to the beginning of j. It is assumed that
t(i → j) ≥ es(j) − le(i) (otherwise it is obviously underestimated).

Four variables are associated with each shot i ∈ [1, 2n]: (1) xi ∈ {0, 1} equals 1
if and only if shot i is selected; (2) y0→i ∈ {0, 1} equals 1 if and only if shot i is
the first of the selection; (3) yi→2n+1 ∈ {0, 1} equals 1 if and only if shot i is the
last of the selection; (4) ti is the shooting start date of i. The value of this variable
is irrelevant when xi = 0. The ti values allow to order and to schedule the shots
in time.
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Let m be the number of polygons. The kth polygon is characterized by: its total
area surface s(k); its gain gk when fully acquired; the set p(k) ⊂ [1, 2n] of shots that
it contains. Remind that each polygon is divided into a set of strips. Moreover, two
shots are possible per strip according to the sense of its acquisition. Two continuous
variables are associated with each polygon k ∈ [1, m]: Sk ∈ [0, 1] is the percentage
of the surface covered by the selected strips; Gk ∈ [0, 1] is the corresponding
percentage of the polygon gain. Finally, one binary variable is defined for each
pair of acquisitions i �= j ∈ [1, 2n]: yi→j ∈ {0, 1} equals 1 if and only if the shot j
is immediately acquired after the shot i.

5.1.2. Constraints

The equations constraining the variables are listed below. The acquisition of the
same strip in both directions is forbidden by (1). Equation (2) states the stereo
constraints: simultaneous selection with identical direction. The time window for
the starting time of a shot is imposed by (3). Shooting dates of consecutive images
must respect minimum transition times (4). These last two equations correspond
to the time constraints.

(1) ∀j ∈ [1, n], x2j−1 + x2j ≤ 1.

(2) ∀j ∈ [1, n], if tw(j) �= 0, then (x2j−1 = x2tw(j)−1 and x2j = x2tw(j)).

(3) ∀i ∈ [1, 2n], if xi = 1, then ti ∈ [es(i), ls(i)].

(4) ∀i �= j ∈ [1, 2n], tj − ti ≥ (d(i) + t(i → j)) · yi→j + (es(j) − ls(j)) · (1 − yi→j).
C4 denotes the set of shot pairs (i, j) that satisfy the condition (4).

Furthermore, there is at most one first shot and one last shot (5), and each selected
acquisition has exactly one predecessor and one successor (6).

(5)
∑

i∈[1,2n]

y0→i ≤ 1 and
∑

i∈[1,2n]

yi→2n+1 ≤ 1.

(6) ∀i ∈ [1, 2n],
∑

j∈[0,2n+1]|j �=i

yj→i = xi =
∑

j∈[0,2n+1]|j �=i

yi→j .

In the remaining part of this section, constraints (5) and (6) are assumed to be
always satisfied.

5.1.3. Objective function

The criterion to maximize is a global gain G defined by the sum of the gains as-
sociated with the complete or partial acquisition of each polygon k and formulated

by: G =
m∑

k=1

gk · Gk such that:

• ∀k ∈ [1, m], Sk =
1

s(k)

∑

i∈p(k)

su(i) · xi.

• Gk = f(Sk).
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• f : [0, 1] → [0, 1] is a non linear function, piecewise linear and defined by the
points {(0, 0), (0.4, 0.1), (0.7, 0.4), (1, 1)}.

5.2. Description of the method

CNS-SAT3 was combined with a secondary optimization problem, the latter be-
ing tackled by a “classical” tabu search algorithm. The set B of relaxed constraints
is set to ∅.

5.2.1. Solution representation and neighborhood structure

A solution s can be modeled as ((x1, t1), (x2, t2), . . . , (x2n, t2n)), with i ∈
{1, . . . , 2n} such that xi ∈ {0, 1} and ti is a real, and such that constraints (1)
to (4) are satisfied. In this formulation, i is a shot number among the 2 ·n possible
ones issued from the n strips (two shots per strip), and ti is the (unconstrained)
beginning time acquisition of the shot i. Each vector s is evaluated by its corre-

sponding gain G(s) =
m∑

k=1

gk · f( 1
s(k)

∑
i∈p(k)

su(i) ·xi). The number of shots that are

selected in s is |s| =
2n∑
i=1

xi.

The neighborhood function N : X → (2X − ∅) is defined over the totally con-
strained search space X as follows (i.e. the set B of relaxed constraints is set
to ∅). The solution s′ = ((x′

1, t′1), (x′
2, t′2), . . . , (x

′
2n, t′2n)) is a neighbor of solution

s = ((x1, t1), (x2, t2), . . . , (x2n, t2n)) (i.e. s′ ∈ N(s)), if and only if the following
conditions are checked.

(1) ∃! i ∈ [1, 2n] such that xi = 0 and x′
i = 1. Moreover, if tw(i) �= 0, then

xtw(i) = 0 and x′
tw(i) = 1 (try to insert exactly one shot in s, and its twin if it

exists).
(2) For any shot i that satisfies the condition (1) and a shot j ∈ [1, 2n] such as i

and j are issued from the same strip, we have xj = x′
j = 0. Moreover, if

tw(i) �= 0, then xk = x′
k = 0 such as the shots tw(i) and k are also issued from

the same twin strip. This condition forbids the acquisition of a strip (and its
twin if it exists) in two directions.

(3) For any shot i that satisfies the condition (1), we have ti ∈ [es(i), ls(i)].
Moreover, if tw(i) �= 0, then ttw(i) ∈ [es(tw(i)), ls(tw(i))]. This condition
deals with the time window visibility constraint.

(4) For each shot i that satisfies the condition (1), ∀k ∈ [1, 2n] such that (i, k) �∈
C4 and xk = 1, we have x′

k = 0 and if tw(k) �= 0, then x′
tw(k) = 0. Moreover, if

tw(i) �= 0, then ∀l ∈ [1, 2n] such that (tw(i), l) �∈ C4 and xl = 1, then x′
l = 0.

In addition, if tw(l) �= 0, then x′
tw(l) = 0.

(5) For any shot i that satisfies the condition (1), −3 ≤ |s′| − |s| ≤ 1. Also, if
tw(i) �= 0, then −6 ≤ |s′| − |s| ≤ 2.

(6) For any shot i that satisfies the condition (1) and such that its insertion in s
requires at most the removal of two shots j, k ∈ [1, 2n] with their twin shots
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if they exist (−3 ≤ |s′| − |s| ≤ −1, xj = xk = 1, x′
j = x′

k = 0 and j �= tw(k)),
then even yj→k = 1 or yk→j = 1 in s (k and j are acquired one behind the
other in s).

Thus, the neighborhood of s is obtained by adding a free shot i (not yet scheduled,
xi = 0) by flipping xi from 0 to 1 (condition 1), then removing some shots k (by
flipping xk from 1 to 0) to repair the violated constraints (condition 4). In fact,
inserting a new shot may require to drop a certain number of the already fixed ones
to maintain the consistency of the constraints (1) to (4). However, the condition (5)
enforces a maximum of two shot removals if all the dropped shots are mono, and
four if they are stereo (in order to maintain the consistency of the stereo constraint,
if a stereo shot is removed then its twin is removed too).

According to the conditions mentioned above, the best case is the insertion of
a stereo shot and its twin without any removal (|s′| − |s| = 2). Oppositely to this
case, the worst one corresponds to two insertions (stereo shot plus it twin: +2),
such as each of these two insertions needs the removal of two stereo shots plus
their twins: −4 (|s′| − |s| = +2 − 4 − 4 = −6). Moreover, this choice heuristic is
also restricted to the removal of successive shots as described in the condition (6).

5.2.2. Enumerations for the neighborhood evaluation

N(s) is evaluated according to the gain criterion. For this purpose, consider a
solution s = ((x1, t1), (x2, t2), . . . , (x2n, t2n)) where |s| images are selected and an
image j such that xj = 0 (i.e. j is not yet selected). The shot j can be inserted in s
through |s|+ 1 positions: before the first shot, after the last shot, or between two
successive shots on the schedule s. Hence, as it was similarly done in CNS-SAT2,
the insertion of the shot j in each of the |s| + 1 positions is tested by allowing
successive image removals (as explained above). If a position is tested positively,
then a neighbor solution s′ is reached by inserting j at this position in s (and
dropping some others images, if necessary). Solution s′ is evaluated by computing
its corresponding gain value G(s′). Among all the feasible insertions of j, the one
that maximizes the gain value is selected. Consequently, at each step of CNS-SAT3,
the decision problem of finding the best insertion position for each free shot in s
according to the gain function is solved. If several moves lead to the same objective
function value (such a situation often occurs), the following rules are sequentially
used.

R1 Minimize the sum of the transition times.
R2 Perform a random choice.

5.2.3. Other successful ingredients

The tabu tenure is dynamically formulated by: tabu(i) = iter+α·freq(i), where:
(1) iter is the number of the current iteration of the tabu algorithm, (2) freq(i)
counts the number of times that the shot i has been selected by the tabu algorithm
(note that a shot can be inserted at a given iteration and be dropped some itera-
tions later, then reselected after and so on), and (3) α is a variable parameter used
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to weight tabu(i) according to freq(i). Moreover, a sequence of shots is tabu if all
its shots are tabu, and not tabu if it contains at least one non tabu shot. Then,
a candidate neighbor schedule obtained from the current schedule by removing a
tabu sequence is also tabu, otherwise it is not tabu.

The intensification procedure is based on a second objective function: the
sum of transition durations that separate the acquisition of the shots. Such a
problem is also tackled with a tabu search, but in its more usual form. For a
given solution s, the sum of the transition times between the strips shooting is

TdT (s) =
2n∑
i=1

2n∑
j=1,j �=i

xi ·xj ·yi→j ·d(i → j). The reduction of this sum can generate

visibility time windows sufficiently broad and usable by the satellite to acquire new
shots and without removing those that are already selected. The minimization of
TdT is based on two operations: the exchange of the order of the shots and the
inversion of the acquisition direction of the strips. The order exchange is inspired
by the 2-opt operation [15] which is widely used in solving the Traveling Salesman
Problem.

The diversification procedure mainly consists in restarting CNS-SAT3 from a
different initial solution.

5.3. Comparisons with other methods

The SAT3 was the subject of the Challenge ROADEF 2003. The problem was
proposed by CNES and ONERA (the French National Space and Aeronautic Agen-
cies). The two first ranks were obtained by the following teams (see http://www.
roadef.org/content/roadef/challenge.htm for more details on the instances
and the other competitors).

The Cordeau and Laporte team proposed a tabu search algorithm which bor-
rows from the Unified Tabu Search Algorithm [5] developed for the vehicle routing
problem with time windows. An important feature of their algorithm is the possi-
bility of exploring infeasible solutions during the search by allowing the violation
of the time window constraints. Moreover, the algorithm uses two powerful diver-
sification mechanisms.

E.J. Kuipers proposed a local search algorithm based on two stages. In the
first one, the most promising solutions are constructed then further optimized
in the second stage. These two parts use simulated annealing algorithms. The
neighborhood is constructed in two steps. In the first one, from one to four requests
(or parts of requests) are removed from the current solution, and in the second
step, from one to four requests (or parts of requests) are added to the solution
resulting from the first one.

The provided instances are artificially generated, with the number of requests
(m value) ranging from 2 to 375, and the number of strips (n value) varying
from 2 to 534 with a maximum of 113 stereo strips (nstereo value). Table 3 gives
the properties of each of the 20 used instances. All the experiments were carried

http://www.roadef.org/content/roadef/challenge.htm
http://www.roadef.org/content/roadef/challenge.htm
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Table 3. Results on the SAT3 instances.

Instance m n nstereo G� GapCNS Gap�
CNS timeCNS

2 9 36 2 2 0 10 423 440 0 0 1
2 9 66 4 7 0 115 710 959 0 0 1

2 13 111 68 106 12 563 597 071 0 0 90
2 15 170 218 295 39 719 417 220 0 0 561
2 26 96 336 483 63 1 005 301 900 0 –1.55 443
2 27 22 375 534 67 967 910 750 –0.13 –0.13 57
2 9 170 12 25 4 191 358 231 0 0 1
3 25 22 150 342 113 425 983 220 0 0 95
3 8 155 12 28 10 121 680 360 0 0 1
4 17 186 77 147 48 185 406 200 0 0 1
2 21 140 284 420 58 1 029 892 360 0.02 –0.06 467
2 21 155 311 472 55 1 150 632 847 0 –1.57 762
2 21 170 294 450 71 891 060 370 2.68 2.37 1151
2 21 22 306 455 54 1 160 366 840 0.02 0.02 831
2 21 37 315 477 62 954 965 580 0 –0.02 602
2 21 7 289 410 49 842 378 700 0 0 116
2 21 81 297 436 59 986 679 410 0 –0.08 778
2 21 96 291 437 49 1 133 044 250 0.13 –0.25 932
3 21 155 135 295 105 460 196 570 0 0 3
3 21 81 135 283 88 373 553 350 0 0 16
Average 664 477 981 0.18 –0.14 345

on a Pentium 4 (1.9 GHz, 512 MB of RAM) with a imposed maximum time limit
of 1800 s.

In Table 3, the following information is respectively given. The name of the
instance, the m, n and nstereo values, the value G� of the best known solution,
the average percentage gap GapCNS (over 10 runs) between CNS-SAT3 and G�,
the smallest percentage gap Gap�

CNS between CNS-SAT3 and G�, and the average
computing time timeCNS (in seconds) needed by CNS-SAT3 to provide a solution.
CNS-SAT3 got the third rank in the Challenge (involving more than 50 research
teams from all over the world). We can see that the obtained results are in average
very close to the best ones (even better on two instances). In addition, the best
results of CNS-SAT3 are usually better than the best known results. Such elements
allow to conclude that CNS is very appropriate and competitive for SAT3.

6. Discussion and conclusions

In this paper, we propose an extended version of CNS, which is a generic method
appropriate for hard combinatorial optimization problems. It was showed that CNS
was efficiently adapted to various satellite scheduling problems. It is important to
mention that CNS approaches were also successfully adapted in other fields: graph
coloring (e.g., [4,16,17]), telecommunications (e.g., [6,7,21]), and the management
of a fleet of vehicles (e.g., [13]).
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As mentioned in the introduction, the performance of a metaheuristic can be
evaluated according to several criteria, such as quality, speed, robustness, ease of
adaptation, and ability to take advantage of the problem structure. Relying on the
guidelines given in [26], the following discussion aims at positioning CNS according
to these criteria.

First of all, the design of CNS is not cumbersome, which means that CNS
ranks highly according to the ease of adaptation criterion. More precisely, to adapt
CNS to a problem, the following strategic decisions have to be made: (1) choose
the nature of the local search (e.g., descent algorithm, tabu search, simulated
annealing); (2) determine the set A of active constraints (A is usually well adapted
for the constraints involving a few number of variables, like binary or ternary
constraints); (3) find a way to model a solution of the problem; (4) determine the
deleting rules associated with the repairing process; (5) determine the external
ingredients which can be efficiently combined with CNS (e.g., intensification and
diversification procedures).

The presented CNS deal with various ways of representing a solution, making it
able to incorporate the properties of the problem. The component i of solution s,
denoted si, can for example involve only one information (e.g., a binary decision
value associated with a selection of a photograph or not), or several data of different
nature (e.g., a binary decision value for the selection of a photograph and the
associated camera). This also allows to better manage the repairing phase.

The generation of a single solution in the selected solution space is not time
consuming. This is due on the one hand to the use of efficient incremental compu-
tations (i.e. the ability to evaluate a neighbor solution from the current solution,
its value and the considered move). Incremental computation strongly contributes
to speed. On the other hand, quick repairing procedures are performed, which are
able to remove at least a drawback of the current solution when generating the
neighbor solution (even if several new drawbacks are created in the latter). This
specifically contributes to robustness (it also helps to escape from local optima)
and to the consideration of the properties of the problem. Incremental computation
and quick repairing procedures make the CNS metaheuristic very aggressive.

The use of deleting rules helps in avoiding plateaus of the solution space. A
plateau occurs in solution space S associated with neighborhood structure N and
objective function f if there are several neighbor solutions with the same value.
The deleting rules have obviously the ability to take advantage of the problem
structure and to guide the search in S.

To conclude, we would like to mention that CNS is a very flexible method for
at least four reasons.

• CNS can consider various types of constraints. It is well adapted for constraints
linking two or three variables together, because the repairing phase is usually
straightforward in such situations. Such constraints usually belong to the set A
of active constraints. In contrast, if a specific constraint involves several vari-
ables, it can be relaxed (at least to save CPU time) and put in the B set, as it
was the case for the capacity constraint associated with SAT1.
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• Flexible moves are always used in the existing CNS adaptations. More pre-
cisely, from any solution s, we conjecture that it is possible to reach any other
solution s′ of the solution space by performing a sequence of moves. This fa-
vors connectivity in the neighborhood graph and specifically contributes to
robustness.

• Various ingredients can be easily added to the CNS framework to enhance
its performance, such as intensification procedures (contributing to efficiency),
diversification procedures (contributing to robustness), dynamic tabu tenures
(helping in both efficiency and robustness).

• CNS can be hybridized with evolutionary metaheuristics, like genetic or
adaptive memory algorithms. Such combinations were already successfully
performed for graph coloring [16] and the SAT2 satellite range scheduling
problem [27].
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